JP2011014736A - Thin film photoelectric conversion device and method of manufacturing the same - Google Patents

Thin film photoelectric conversion device and method of manufacturing the same Download PDF

Info

Publication number
JP2011014736A
JP2011014736A JP2009158018A JP2009158018A JP2011014736A JP 2011014736 A JP2011014736 A JP 2011014736A JP 2009158018 A JP2009158018 A JP 2009158018A JP 2009158018 A JP2009158018 A JP 2009158018A JP 2011014736 A JP2011014736 A JP 2011014736A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion device
thin film
film photoelectric
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009158018A
Other languages
Japanese (ja)
Other versions
JP5548400B2 (en
Inventor
Toshiaki Sasaki
敏明 佐々木
Ko Yoshida
航 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2009158018A priority Critical patent/JP5548400B2/en
Publication of JP2011014736A publication Critical patent/JP2011014736A/en
Application granted granted Critical
Publication of JP5548400B2 publication Critical patent/JP5548400B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a thin film photoelectric conversion device which has high reliability and has unevenness effective for optical confinement.SOLUTION: The thin film photoelectric conversion device includes a structure wherein a first electrode layer, a semiconductor layer including one or more photoelectric conversion units, and a second electrode are arranged in order from a side close to a substrate, wherein a base layer is included between the substrate and first electrode and has fine periodical unevenness in a direction parallel with one principal surface of the substrate.

Description

本発明は、薄膜光電変換装置、及びその製造方法に関する。更に詳しくは、信頼性が高く、光閉じ込めに有効な凹凸構造を有する薄膜光電変換装置、及びその製造方法に関する。   The present invention relates to a thin film photoelectric conversion device and a manufacturing method thereof. More specifically, the present invention relates to a thin film photoelectric conversion device having a concavo-convex structure that is highly reliable and effective for light confinement, and a manufacturing method thereof.

光電変換装置は、受光センサー、太陽電池など様々な分野で用いられている。なかでも太陽電池は、地球に優しいエネルギー源の一つとして脚光を浴びており、近年の環境問題に対する関心の高まりと各国の導入加速政策によって、太陽電池の普及が急速に進んでいる。   Photoelectric conversion devices are used in various fields such as light receiving sensors and solar cells. In particular, solar cells are in the limelight as one of the earth-friendly energy sources, and the spread of solar cells is rapidly progressing due to the recent growing interest in environmental issues and the introduction acceleration policies of each country.

光電変換装置のなかで、太陽電池を含む光電変換装置の低コスト化、高効率化を両立するために原材料が少なくてすむ薄膜光電変換装置が注目され、開発が精力的に行われている。特に、ガラス等の安価な基板上に低温プロセスを用いて良質の半導体層を形成する方法が低コストを実現可能な方法として期待されている。   Among photoelectric conversion devices, thin film photoelectric conversion devices that require less raw materials in order to achieve both low cost and high efficiency of photoelectric conversion devices including solar cells have attracted attention and are being energetically developed. In particular, a method of forming a high-quality semiconductor layer on an inexpensive substrate such as glass using a low-temperature process is expected as a method capable of realizing low cost.

一般的に、光電変換装置を形成するためには、その一部に透明導電膜を用いることが不可欠である。光電変換装置は、透明導電膜と裏面電極層の間に、1つ以上の光電変換ユニットを含むものであり、光は透明導電膜側から入射される。   In general, in order to form a photoelectric conversion device, it is indispensable to use a transparent conductive film for a part thereof. The photoelectric conversion device includes one or more photoelectric conversion units between the transparent conductive film and the back electrode layer, and light is incident from the transparent conductive film side.

ここで、光電変換ユニットはpn接合またはpin接合の半導体層からなる。光電変換ユニットにpin接合を用いる場合、p型層、i型層、及びn型層がこの順、またはその逆順に積層されてなり、その主要部を占めるi型の光電変換層が非晶質のものは非晶質光電変換ユニットと呼ばれ、i型層が結晶質のものは結晶質光電変換ユニットと呼ばれている。   Here, the photoelectric conversion unit is composed of a pn junction or pin junction semiconductor layer. When a pin junction is used for a photoelectric conversion unit, a p-type layer, an i-type layer, and an n-type layer are laminated in this order or vice versa, and the i-type photoelectric conversion layer occupying the main part is amorphous. Are called amorphous photoelectric conversion units, and those having an i-type layer crystalline are called crystalline photoelectric conversion units.

透明導電膜は、例えば、ITO(酸化インジウム錫)、SnO2、ZnO等の導電性金属酸化物が用いられ、CVD(Chemical Vapor Deposition)、スパッタ、蒸着等の方法で形成される。透明導電膜はその表面に微細な凹凸を有することにより、入射光の散乱を増大させる効果を有することが望ましい。入射光を散乱させることによって、光電変換ユニット内の光路長が延びて、光電変換装置の短絡電流密度を増大させ、変換効率が向上する。透明導電膜の凹凸による光の散乱の効果は、単結晶シリコンや多結晶シリコンなどの光電変換ユニットの厚さが100〜500μmと厚い、いわゆるバルクの光電変換装置で有効であるだけでなく、光電変換ユニットの厚さが0.1〜10μmと薄い、いわゆる薄膜光電変換装置で特に有効である。 The transparent conductive film is made of a conductive metal oxide such as ITO (indium tin oxide), SnO 2 , or ZnO, and is formed by a method such as CVD (Chemical Vapor Deposition), sputtering, or vapor deposition. The transparent conductive film desirably has an effect of increasing the scattering of incident light by having fine irregularities on the surface. By scattering incident light, the optical path length in the photoelectric conversion unit is extended, the short-circuit current density of the photoelectric conversion device is increased, and the conversion efficiency is improved. The effect of light scattering due to the unevenness of the transparent conductive film is not only effective in a so-called bulk photoelectric conversion device in which the thickness of a photoelectric conversion unit such as single crystal silicon or polycrystalline silicon is as thick as 100 to 500 μm, This is particularly effective for a so-called thin film photoelectric conversion device in which the thickness of the conversion unit is as thin as 0.1 to 10 μm.

薄膜光電変換装置は、光電変換ユニットに用いる半導体材料によって分類され、シリコン系薄膜光電変換装置、CdTe薄膜光電変換装置、CIS薄膜光電変換装置が代表的である。シリコン系薄膜光電変換装置は、光電変換ユニットに、非晶質シリコン、微結晶シリコン、多結晶シリコンなどを材料に用いたpin接合の構成を取り、基板側、または基板と反対面側から光を入射し、p層を光入射側に配置する。CdTe薄膜光電変換装置は、光電変換ユニットにn型のCdSと、p型のCdTeからなるpn接合の構成をとり、基板と反対面側から光を入射し、n層を光入射側に配置する。CIS薄膜光電変換装置は、光電変換ユニットにn型のCdSと、p型のCuInSe2(略称CIS)からなるpn接合の構成をとり、基板と反対面側から光を入射し、n層を光入射側に配置する。 Thin film photoelectric conversion devices are classified according to the semiconductor material used for the photoelectric conversion unit, and silicon based thin film photoelectric conversion devices, CdTe thin film photoelectric conversion devices, and CIS thin film photoelectric conversion devices are representative. A silicon-based thin film photoelectric conversion device has a pin junction configuration using amorphous silicon, microcrystalline silicon, polycrystalline silicon, or the like as a material for a photoelectric conversion unit, and emits light from the substrate side or the opposite side of the substrate. Incident and the p-layer is disposed on the light incident side. The CdTe thin film photoelectric conversion device has a configuration of a pn junction made of n-type CdS and p-type CdTe in a photoelectric conversion unit, light is incident from the side opposite to the substrate, and an n layer is disposed on the light incident side. . The CIS thin film photoelectric conversion device has a pn junction structure composed of n-type CdS and p-type CuInSe 2 (abbreviated as CIS) in the photoelectric conversion unit. Arrange on the incident side.

薄膜光電変換装置の一例であるシリコン系薄膜光電変換装置は、光電変換ユニットに、p型層、実質的に真性な光電変換層であるi型層、およびn型層から成るpin接合を用いる。このうちi型層に非晶質シリコンを用いたものを非晶質シリコン光電変換ユニット、結晶質を含むシリコンを用いたものを結晶質シリコン光電変換ユニットと呼ぶ。なお、非晶質あるいは結晶質のシリコン系材料としては、半導体を構成する主要元素としてシリコンのみを用いる場合だけでなく、炭素、酸素、窒素、ゲルマニウムなどの元素をも含む合金材料も用い得る。また、導電型層の主要構成材料としては、必ずしもi型層と同質のものである必要はなく、例えば非晶質シリコン光電変換ユニットのp型層に非晶質シリコンカーバイドを用い得るし、n型層に結晶質を含むシリコン層(μc−Siとも呼ばれる)も用い得る。   A silicon-based thin film photoelectric conversion device which is an example of a thin film photoelectric conversion device uses a pin junction including a p-type layer, an i-type layer which is a substantially intrinsic photoelectric conversion layer, and an n-type layer as a photoelectric conversion unit. Among these, those using amorphous silicon for the i-type layer are called amorphous silicon photoelectric conversion units, and those using crystalline silicon are called crystalline silicon photoelectric conversion units. Note that as the amorphous or crystalline silicon-based material, not only a case where only silicon is used as a main element constituting a semiconductor, but also an alloy material including elements such as carbon, oxygen, nitrogen, germanium, and the like can be used. The main constituent material of the conductive layer is not necessarily the same as that of the i-type layer. For example, amorphous silicon carbide can be used for the p-type layer of the amorphous silicon photoelectric conversion unit, and n A silicon layer (also referred to as μc-Si) containing crystal in the mold layer can also be used.

基板側から光を入射するタイプの光電変換装置にて用いられる透明絶縁基板には、ガラス、透明樹脂等から成る板状部材やシート状部材が用いられる。   A plate-like member or a sheet-like member made of glass, transparent resin, or the like is used for a transparent insulating substrate used in a photoelectric conversion device of a type in which light enters from the substrate side.

光電変換ユニットの上に形成される裏面電極層としては、例えば、Al、Agなどの金属層をスパッタ法または蒸着法により形成する。また、光電変換ユニットと金属電極との間に、ITO、SnO2、ZnO等の導電性酸化物からなる層を形成しても構わない。 As the back electrode layer formed on the photoelectric conversion unit, for example, a metal layer such as Al or Ag is formed by sputtering or vapor deposition. Further, a layer made of a conductive oxide such as ITO, SnO 2 , or ZnO may be formed between the photoelectric conversion unit and the metal electrode.

薄膜光電変換装置の一例である非晶質シリコン光電変換装置は、単結晶や多結晶光電変換装置に比べ、初期光電変換効率が低く、さらに光劣化現象により変換効率が低下するという問題がある。そこで、薄膜多結晶シリコンや微結晶シリコンのような結晶質シリコンを光電変換層として用いた結晶質シリコン薄膜光電変換装置が、低コスト化と高効率化とを両立可能なものとして期待され、検討されている。なぜなら、結晶質シリコン薄膜光電変換装置は、非晶質シリコンの形成と同様にプラズマCVD法にて低温形成でき、さらに光劣化現象がほとんど生じないからである。また、非晶質シリコン光電変換層が長波長側において800nm程度の波長の光を光電変換し得るのに対し、結晶質シリコン光電変換層はそれより長い約1200nm程度の波長の光までを光電変換することができる。   An amorphous silicon photoelectric conversion device, which is an example of a thin film photoelectric conversion device, has a problem that the initial photoelectric conversion efficiency is lower than that of a single crystal or polycrystalline photoelectric conversion device, and further, the conversion efficiency is lowered due to a photodegradation phenomenon. Therefore, a crystalline silicon thin film photoelectric conversion device using crystalline silicon such as thin film polycrystalline silicon or microcrystalline silicon as a photoelectric conversion layer is expected to be able to achieve both low cost and high efficiency. Has been. This is because the crystalline silicon thin film photoelectric conversion device can be formed at a low temperature by the plasma CVD method similarly to the formation of amorphous silicon, and the light deterioration phenomenon hardly occurs. The amorphous silicon photoelectric conversion layer can photoelectrically convert light having a wavelength of about 800 nm on the long wavelength side, while the crystalline silicon photoelectric conversion layer photoelectrically converts light having a longer wavelength of about 1200 nm. can do.

また、光電変換装置の変換効率を向上させる方法として、2つ以上の光電変換ユニットを積層した、積層型と呼ばれる構造を採用した光電変換装置が知られている。この方法においては、光電変換装置の光入射側に大きな光学的禁制帯幅を有する光電変換層を含む前方光電変換ユニットを配置し、その後ろに順に小さなバンドギャップを有する光電変換層を含む後方光電変換ユニットを配置することにより、入射光の広い波長範囲にわたる光電変換を可能にし、入射する光を有効利用することにより装置全体としての変換効率の向上が図られている。なお、本発明においては、相対的に光入射側に配置された光電変換ユニットを前方光電変換ユニットと呼び、これよりも相対的に光入射側から遠い側の界面に隣接して配置された光電変換ユニットを後方光電変換ユニットと呼ぶ。   As a method for improving the conversion efficiency of a photoelectric conversion device, a photoelectric conversion device employing a structure called a stacked type in which two or more photoelectric conversion units are stacked is known. In this method, a front photoelectric conversion unit including a photoelectric conversion layer having a large optical forbidden bandwidth is arranged on the light incident side of the photoelectric conversion device, and a rear photoelectric conversion including a photoelectric conversion layer having a small band gap in order behind the photoelectric conversion layer. By arranging the conversion unit, photoelectric conversion over a wide wavelength range of incident light is possible, and the conversion efficiency of the entire apparatus is improved by effectively using incident light. In the present invention, the photoelectric conversion unit disposed relatively on the light incident side is referred to as a front photoelectric conversion unit, and the photoelectric conversion unit disposed adjacent to the interface farther from the light incident side than this. The conversion unit is called a rear photoelectric conversion unit.

ところで、薄膜光電変換装置は、従来のバルクの単結晶や多結晶シリコンを使用した光電変換装置に比べて光電変換層を薄くすることが可能であるが、反面、薄膜全体の光吸収が膜厚によって制限されてしまうという問題がある。そこで、光電変換層を含む光電変換ユニットに入射した光をより有効に利用するために、光電変換ユニットに接する透明導電膜あるいは金属層の表面を凹凸化(テクスチャ化ともいう)し、その界面で光を散乱した後、光電変換ユニット内へ入射させることで光路長を延長せしめ、光電変換層内での光吸収量を増加させる工夫がなされている。この技術は「光閉じ込め」と呼ばれており、高い光電変換効率を有する薄膜光電変換装置を実用化する上で、重要な要素技術となっている。   By the way, the thin film photoelectric conversion device can make the photoelectric conversion layer thinner than the photoelectric conversion device using the conventional bulk single crystal or polycrystalline silicon, but on the other hand, the light absorption of the entire thin film is the film thickness. There is a problem that it is limited by. Therefore, in order to use light incident on the photoelectric conversion unit including the photoelectric conversion layer more effectively, the surface of the transparent conductive film or metal layer in contact with the photoelectric conversion unit is made uneven (also referred to as texturing), and at the interface. After scattering light, the optical path length is extended by making it enter into a photoelectric conversion unit, and the device which makes the light absorption amount in a photoelectric converting layer increase is made | formed. This technique is called “optical confinement”, and is an important elemental technique for practical use of a thin film photoelectric conversion device having high photoelectric conversion efficiency.

光電変換装置に最適な透明導電膜の凹凸形状を求めるために、凹凸の形状を定量的に示す指標が必要である。凹凸の形状を表す指標として、ヘイズ率がある。   In order to obtain the concavo-convex shape of the transparent conductive film optimum for the photoelectric conversion device, an index that quantitatively indicates the concavo-convex shape is necessary. There is a haze ratio as an index representing the shape of the unevenness.

ヘイズ率とは、透明な基板の凹凸を光学的に評価する指標で、(拡散透過率/全光線透過率)×100[%]で表されるものである(JIS K7136)。ヘイズ率の測定は、ヘイズ率を自動測定するヘイズメータが市販されており、容易に測定することができる。測定用の光源としては、C光源を用いて測定するものが一般的である。   The haze ratio is an index for optically evaluating the unevenness of a transparent substrate, and is expressed by (diffuse transmittance / total light transmittance) × 100 [%] (JIS K7136). The haze ratio can be easily measured by commercially available haze meters that automatically measure the haze ratio. As a light source for measurement, what is measured using a C light source is generally used.

薄膜光電変換装置の一例である非晶質シリコン光電変換装置は、ガラス等の透明基体上に形成され、透明導電膜として表面凹凸を有する酸化錫(SnO2)膜をよく用いている。しかし、一般に用いられている常圧熱CVD法(常圧熱化学的気相堆積法)によるSnO2膜の凹凸の大きさは、ばらつきがあり、光閉じこめに有効な凹凸を制御性よく設計することは困難である。また、平均的な凹凸を示す指標であるヘイズ率においても、再現性よく制御することが困難であり、ヘイズ率が基板の面内で分布を持ったり、生産ロットでばらつきが生じる問題がある。また、光閉じこめの効果としては不十分で、改善の余地がある。また、光閉じ込めに有効な表面凹凸を有する透明導電膜として常圧熱CVD法によりSnO2膜を形成したガラス基体は、その透明導電膜を形成するために約550〜650℃の高温プロセスを必要とするので製造コストが高いという問題がある。また、製膜温度が高いため、固体化後のガラスやプラスチックフィルムなどの安価な基体が使えない問題がある。強化ガラスを高温プロセスにさらすと強化が取れてしまうので、強化ガラスを基体に使えず、大面積太陽電池に適用する場合、ガラス基体の強度を確保するためには、ガラスを厚くすることが必要となり、結果として、重くなってしまう問題がある。 An amorphous silicon photoelectric conversion device which is an example of a thin-film photoelectric conversion device often uses a tin oxide (SnO 2 ) film formed on a transparent substrate such as glass and having surface irregularities as a transparent conductive film. However, the size of the unevenness of the SnO 2 film by the ordinary atmospheric pressure CVD method (normal pressure thermochemical vapor deposition method) varies, and the unevenness effective for light confinement is designed with good controllability. It is difficult. In addition, it is difficult to control the haze ratio, which is an index indicating average unevenness, with a high reproducibility, and there is a problem in that the haze ratio has a distribution in the plane of the substrate and varies among production lots. Also, the effect of light confinement is insufficient and there is room for improvement. Further, a glass substrate on which an SnO 2 film is formed by atmospheric pressure CVD as a transparent conductive film having surface irregularities effective for light confinement requires a high-temperature process of about 550 to 650 ° C. to form the transparent conductive film. Therefore, there is a problem that the manufacturing cost is high. In addition, since the film forming temperature is high, there is a problem that an inexpensive substrate such as glass or plastic film after solidification cannot be used. When tempered glass is exposed to a high-temperature process, it can be tempered, so it is not possible to use tempered glass as a substrate. As a result, there is a problem of becoming heavy.

また、SnO2膜は耐プラズマ性が低く、水素を使用した大きなプラズマ密度での光電変換層の堆積環境下では、SnO2膜が還元されてしまう。SnO2膜が還元されると黒化し、黒化した透明導電膜部分で入射光が吸収され、光電変換層への透過光量が減少し、変換効率の低下を招く原因となる。 In addition, the SnO 2 film has low plasma resistance, and the SnO 2 film is reduced in the deposition environment of the photoelectric conversion layer at a high plasma density using hydrogen. When the SnO 2 film is reduced, the SnO 2 film is blackened, and the incident light is absorbed by the blackened transparent conductive film portion, the amount of transmitted light to the photoelectric conversion layer is reduced, which causes a decrease in conversion efficiency.

一方、酸化亜鉛(ZnO)は、透明導電膜の材料として広く用いられているSnO2あるいは酸化インジウム錫(ITO)よりも安価であり、また耐プラズマ性が高いという利点を有しており、薄膜太陽電池用の透明導電膜材料として好適である。特に、非晶質シリコンの形成時に用いられる堆積条件よりも多量の水素を使用し、かつ大きなプラズマ密度を必要とする薄膜多結晶シリコンや微結晶シリコンのような結晶質シリコンを光電変換ユニットの一部として用いた結晶質シリコン薄膜光電変換装置に有効である。 On the other hand, zinc oxide (ZnO) has advantages that it is cheaper than SnO 2 or indium tin oxide (ITO), which are widely used as a material for transparent conductive films, and has high plasma resistance. It is suitable as a transparent conductive film material for solar cells. In particular, crystalline silicon such as thin-film polycrystalline silicon or microcrystalline silicon that uses a larger amount of hydrogen than the deposition conditions used when forming amorphous silicon and requires a large plasma density is used as one of the photoelectric conversion units. It is effective for a crystalline silicon thin film photoelectric conversion device used as a part.

ZnO膜で光閉じこめに有効な凹凸を形成する方法として、200℃以下の低圧熱CVD法(あるいはMOCVD法とも呼ばれる)でZnOを形成すると、低温で凹凸を有する透明導電膜が形成できることが知られている。しかし、低圧熱CVD法によるZnO膜の凹凸の大きさにはばらつきがある問題がある。また、平均的な凹凸を示す指標であるヘイズ率においても、低圧熱CVD法の条件で凹凸の形状が敏感に変わり、凹凸を再現性よく制御することが困難であり、ヘイズ率が基板の面内で分布を持ったり、生産ロットでばらつきが生じる問題がある。   As a method for forming irregularities effective for light confinement in a ZnO film, it is known that when a ZnO film is formed by a low-pressure thermal CVD method (also called MOCVD method) of 200 ° C. or less, a transparent conductive film having irregularities can be formed at a low temperature. ing. However, there is a problem that the size of the unevenness of the ZnO film formed by the low pressure thermal CVD method varies. In addition, even in the haze ratio, which is an index indicating average unevenness, the shape of the unevenness changes sensitively under the conditions of the low-pressure thermal CVD method, and it is difficult to control the unevenness with good reproducibility. There is a problem in that there is a distribution within, and there are variations in production lots.

また、スパッタ法でZnO膜を形成した後、ウェットエッチングによってZnO膜に凹凸をつける方法が知られている。しかし、スパッタ法とエッチングによるZnO膜の凹凸の大きさにばらつきがある問題がある。また、平均的な凹凸を示す指標であるヘイズ率においても、ウェットエッチングの条件で凹凸の形状が敏感に変わり、凹凸を再現性よく制御することが困難であり、ヘイズ率が基板の面内で分布を持ったり、生産ロットでばらつきが生じる問題がある。   Further, a method is known in which a ZnO film is formed by sputtering, and then the ZnO film is roughened by wet etching. However, there is a problem that the unevenness of the ZnO film due to sputtering and etching varies. Also, in the haze ratio, which is an index indicating average unevenness, the shape of the unevenness changes sensitively under wet etching conditions, and it is difficult to control the unevenness with good reproducibility. There is a problem in that there is a distribution or variation in production lots.

最近、微細な凹凸を形成する方法として、数十nmから数μmの微細な凹凸を被加工物に押し付けて凹凸パターンを転写するナノインプリント技術が、レジストの紫外線露光によるパターニング技術に代わるものとしてLSI等への応用が期待されている。   Recently, as a method for forming fine unevenness, nanoimprint technology that transfers uneven patterns by pressing fine unevenness of several tens of nanometers to several μm against a workpiece is an alternative to patterning technology by resist UV exposure. Application to is expected.

また、ナノインプリント技術を光学的に利用する方法として、無反射コーティング(AR)層への応用の検討が行われている。通常の凹凸のないAR層は、例えば、屈折率1の空気から屈折率1.5のガラスに光が入射する場合、それらの中間の屈折率1.25の物質を、波長の1/4の厚さコーティングする。これに対して、ナノインプリントを用いて光の波長より十分小さいピッチの凹凸の膜を形成すると、この凹凸膜は空気と凹凸膜物質の中間の屈折率を実質的に示し、反射率を低減する効果を発揮する。蛾の眼の表面の構造と同様であることから蛾の眼(モス・アイ:Moth Eye)構造とも呼ばれている。   In addition, as a method of using the nanoimprint technology optically, application to an antireflection coating (AR) layer has been studied. For example, when light is incident on a glass having a refractive index of 1.5 from an air having a refractive index of 1, an ordinary AR layer having no irregularities has a refractive index of 1.25 between them and a quarter of the wavelength. Coating thickness. On the other hand, when an uneven film having a pitch sufficiently smaller than the wavelength of light is formed using nanoimprint, the uneven film substantially exhibits an intermediate refractive index between air and the uneven film material, and reduces the reflectance. Demonstrate. Since it has the same structure as the surface of the eye of the eyelid, it is also referred to as a “moth eye” structure.

なお、本願明細書における、「結晶質」、「微結晶」の用語は、部分的に非晶質を含んでいるものも含んでいるものとする。   In the specification of the present application, the terms “crystalline” and “microcrystal” include those partially including amorphous.

(先行例1)
特許文献1には、透光性基板/透明導電膜/pin接合からなるアモルファスシリコン層/Ag電極の構造の太陽電池で、透光性基板上の透明導電膜に300nm以下のピッチの凹凸の金型を押し付けて透明導電膜に凹凸をつける方法が開示されている。具体的には、透明導電膜の形成方法は、基板に塗布したIn23−SnO2系ゾルゲル材料に、100nmの凹凸ピッチの金型を押し付けて加熱して凹凸パターンを転写するいわゆる熱ナノインプリント法を用いて凹凸を形成している。透明導電膜に太陽電池の入射光の波長より小さいピッチの周期構造の凹凸が形成されることによって、透明導電膜とアモルファスシリコン層との界面の反射が抑制され、いわゆる無反射層を形成し、太陽光の反射ロスを低減して太陽電池の特性が改善されるとしている。
(Prior Example 1)
Patent Document 1 discloses a solar cell having a structure of translucent substrate / transparent conductive film / pin junction and having an amorphous silicon layer / Ag electrode structure. The transparent conductive film on the translucent substrate has an uneven gold with a pitch of 300 nm or less. A method is disclosed in which a mold is pressed to make the transparent conductive film uneven. Specifically, a method for forming a transparent conductive film is a so-called thermal nanoimprint in which a concavo-convex pattern is transferred by pressing a mold with a concavo-convex pitch of 100 nm on an In 2 O 3 —SnO 2 sol-gel material applied to a substrate and heating it. Unevenness is formed using the method. By forming irregularities with a periodic structure with a pitch smaller than the wavelength of incident light of the solar cell in the transparent conductive film, reflection at the interface between the transparent conductive film and the amorphous silicon layer is suppressed, forming a so-called non-reflective layer, It is said that the solar cell characteristics are improved by reducing the reflection loss of sunlight.

(先行例2)
特許文献2には、シロキサン成分、特に水素シルセスキオキサン樹脂(HSQ)を含む混合液を基板に塗布して、微細な凹凸を持つ金型を塗布面に室温で押し付けて、凹凸パターンを転写するいわゆる室温ナノインプリント法を用いたシリコン酸化物の凹凸形成方法が開示されている。具体的な応用法としては、ドライエッチングのマスクパターンへの適用や、量子デバイス(単電子トランジスター、量子磁気ディスク)が挙げられている。
(Prior Example 2)
In Patent Document 2, a mixed liquid containing a siloxane component, particularly hydrogen silsesquioxane resin (HSQ), is applied to a substrate, a mold having fine irregularities is pressed against the coated surface at room temperature, and the irregular pattern is transferred. A method for forming irregularities of silicon oxide using a so-called room temperature nanoimprint method is disclosed. Specific application methods include application to dry etching mask patterns and quantum devices (single-electron transistors, quantum magnetic disks).

(先行例3)
特許文献3には、透明電極層の表面をランダム波状曲線として、半導体層に入る光の光路長を伸ばして、発電電流を増加しうることが開示されている。具体的には平滑ガラス基板の上に、SiO2の凹凸下地層、ITOの透明電極層、非晶質シリコンのpin構造の半導体層、Al電極層の順に積層した光電変換装置である。
(Prior Example 3)
Patent Document 3 discloses that the surface of the transparent electrode layer can be a random wavy curve to increase the optical path length of light entering the semiconductor layer and increase the generated current. Specifically, it is a photoelectric conversion device in which a concavo-convex underlayer of SiO 2 , an ITO transparent electrode layer, an amorphous silicon pin structure semiconductor layer, and an Al electrode layer are laminated on a smooth glass substrate in this order.

特開2008−153570号公報JP 2008-153570 A 特開2003−100609号公報Japanese Patent Laid-Open No. 2003-100609 特開昭61−44476号公報JP 61-44476 A

本発明の目的は、信頼性が高く、かつ光閉じ込めに有効な凹凸をもつ薄膜光電変換装置を提供することである。   An object of the present invention is to provide a thin film photoelectric conversion device having high reliability and unevenness effective for light confinement.

透明電極層に製膜条件やエッチングで凹凸を形成した場合、凹凸の大きさがばらつく、凹凸の再現性の制御が難しい、光閉じこめが十分でない問題がある。   When unevenness is formed on the transparent electrode layer by film forming conditions or etching, there are problems that the size of the unevenness varies, it is difficult to control the reproducibility of the unevenness, and light confinement is not sufficient.

また、薄膜光電変換装置のガラス基板の受光面側に、ナノインプリント法によりモス・アイ構造を作成した場合、長時間の屋外使用が前提となる薄膜光電変換装置、特に薄膜太陽電池においては、微細な凹凸構造は水や埃がつきやすく、また、一度ついたら取れにくく、AR効果を発揮できなくなる問題がある。また、微細な凹凸が破損して、AR効果を発揮できなくなる問題がある。さらに、UVナノインプリント法を用いてモス・アイ構造を作成した場合、紫外線に対して透過率が低下して、薄膜太陽電池への入射光量が低下する問題がある。   In addition, when a moth-eye structure is created on the light-receiving surface side of a glass substrate of a thin film photoelectric conversion device by a nanoimprint method, in a thin film photoelectric conversion device, particularly a thin film solar cell, which is premised on long-term outdoor use, The concavo-convex structure is prone to water and dust, and is difficult to remove once attached, making it impossible to exhibit the AR effect. In addition, there is a problem that the fine unevenness is damaged and the AR effect cannot be exhibited. Furthermore, when a moth-eye structure is created using the UV nanoimprint method, there is a problem that the transmittance with respect to ultraviolet rays is reduced and the amount of incident light on the thin-film solar cell is reduced.

これに対して、先行例1では、透明導電膜に、熱ナノインプリントでピッチ300nm以下の微細な凹凸構造を形成し、微細な凹凸構造が表面に露出していないので、上記のような汚れや破損の心配が少ない。しかしながら、透明電極層にゾルゲル法のITOを用いており、一般に抵抗率が高く、また、透過率が低く、良質な透明電極層を得るのが困難な問題がある。これに対して、抵抗率が低く、透過率が高い透明電極層は、スパッタ法、蒸着法、常圧熱CVD法、低温熱CVD法などで形成されるが、これらの形成方法による透明電極層は固体化しており、ナノインプリント法で凹凸を形成することは難しい問題がある。   On the other hand, in the first example, a fine uneven structure having a pitch of 300 nm or less is formed on the transparent conductive film by thermal nanoimprint, and the fine uneven structure is not exposed on the surface. There is little worry of. However, sol-gel ITO is used for the transparent electrode layer, which generally has a high resistivity and a low transmittance, making it difficult to obtain a good quality transparent electrode layer. On the other hand, a transparent electrode layer with low resistivity and high transmittance is formed by sputtering, vapor deposition, atmospheric pressure CVD, low temperature CVD, etc. Is solidified, and it is difficult to form irregularities by the nanoimprint method.

また、熱ナノインプリントやUVナノインプリント法に用いる被加工物は有機樹脂が一般的で、200℃以上の耐熱性がない問題がある。このため150〜300℃の熱プロセスを工程に有する薄膜光電変換装置に利用できない問題がある。   In addition, a workpiece used for thermal nanoimprinting or UV nanoimprinting is generally an organic resin, and there is a problem that it does not have heat resistance of 200 ° C. or higher. For this reason, there exists a problem which cannot be utilized for the thin film photoelectric conversion apparatus which has a 150-300 degreeC thermal process in a process.

先行例2にHSQを用いた室温ナノインプリント法によるシリコン酸化物の凹凸形成方法が開示されているが、光学的な応用法は示されていない。   Prior Example 2 discloses a method for forming irregularities of silicon oxide by room temperature nanoimprinting using HSQ, but does not show an optical application method.

上記の課題を鑑み、本発明の目的は、長時間の屋外使用の信頼性があり、かつ光閉じ込め効果を高めた凹凸構造によって、特性の改善された薄膜光電変換装置を提供することである。   In view of the above problems, an object of the present invention is to provide a thin film photoelectric conversion device having improved characteristics by a concavo-convex structure that is reliable for long-term outdoor use and has an enhanced light confinement effect.

本発明の薄膜光電変換装置は、基板に近い側から順に、第一電極層、1以上の光電変換ユニットを含む半導体層、第二電極層を、順次配置した構造を含む薄膜光電変換装置であって、基板と第一電極の間に下地層を含み、かつ前記下地層が基板の一主面に平行な方向に微細な周期的凹凸を有することによって、課題を解決する。微細な周期的凹凸が薄膜光電変換装置の表面に露出していないことによって、長時間の屋外使用においても凹凸層の汚れや破損の問題がない。また、下地層の微細な周期的凹凸によって、薄膜光電変換装置に入射した光が効果的に散乱されて光路長が伸び、光閉じこめ効果が発揮され、短絡電流密度が増加して薄膜光電変換装置の特性が高くなる。   The thin film photoelectric conversion device of the present invention is a thin film photoelectric conversion device including a structure in which a first electrode layer, a semiconductor layer including one or more photoelectric conversion units, and a second electrode layer are sequentially arranged from the side closer to the substrate. Thus, the problem is solved by including an underlayer between the substrate and the first electrode, and the underlayer having fine periodic irregularities in a direction parallel to one main surface of the substrate. Since the fine periodic unevenness is not exposed on the surface of the thin film photoelectric conversion device, there is no problem of the unevenness of the uneven layer or damage even when used outdoors for a long time. Also, the thin periodic photoelectric unevenness of the underlayer is effectively scattered by the light incident on the thin film photoelectric conversion device, the optical path length is extended, the light confinement effect is exhibited, and the short-circuit current density is increased. The characteristic of becomes higher.

前記下地層の基板の一主面に平行した方向の凹凸のピッチ(L)が、入射光の最小波長以上の長さであることが望ましい。   It is desirable that the pitch (L) of the unevenness in the direction parallel to one main surface of the substrate of the base layer is a length equal to or longer than the minimum wavelength of incident light.

上記の凹凸のピッチ(L)は、100nmより大きく10μm以下が好ましく、更には300nmより大きく2μm以下であることがより好ましい。   The unevenness pitch (L) is preferably greater than 100 nm and not greater than 10 μm, and more preferably greater than 300 nm and not greater than 2 μm.

また、前記下地層は基板の一主面に鉛直な方向の凹凸の高低差Dと、前記Lの比(D/L)であるアスペクト比が1以上であることが好ましい。   Further, it is preferable that the base layer has an aspect ratio which is a ratio (D / L) between the height difference D of unevenness in a direction perpendicular to one principal surface of the substrate and L is 1 or more.

前記下地層はシリコン酸化物で形成することができる。シリコン酸化物の耐熱性が十分高いので、下地層を形成した後に300℃以上のプラズマCVDなどの工程を行うことができる。また、シリコン酸化物の透過率が高いので、光電変換ユニットより光入射側に形成することができる。   The underlayer can be formed of silicon oxide. Since the heat resistance of silicon oxide is sufficiently high, a process such as plasma CVD at 300 ° C. or higher can be performed after the base layer is formed. Moreover, since the transmittance | permeability of a silicon oxide is high, it can form in the light-incidence side from a photoelectric conversion unit.

具体的に、本発明の薄膜光電変換装置は、透光性絶縁基板の一主面上に、微細な周期的凹凸をもつ透光性下地層、透光性第一電極層、1以上の光電変換ユニットを含む半導体層、第二電極層を順次配置し、基板を透過して光を入射する構造を取りえる。   Specifically, the thin film photoelectric conversion device of the present invention includes a light-transmitting underlayer, a light-transmitting first electrode layer, and one or more photoelectric elements having fine periodic irregularities on one main surface of a light-transmitting insulating substrate. A structure in which a semiconductor layer including a conversion unit and a second electrode layer are sequentially arranged and light is incident through the substrate can be obtained.

あるいは、本発明の薄膜光電変換装置は、基板の一主面上に、下地層、第一電極層、1以上の光電変換ユニットを含む半導体層、透光性第二電極層を順次配置し、透光性第二電極層を透過して光を入射する構造を取りえる。この場合、基板および下地層、第一電極層は不透明であってもかまわない。   Alternatively, in the thin film photoelectric conversion device of the present invention, an underlying layer, a first electrode layer, a semiconductor layer including one or more photoelectric conversion units, and a translucent second electrode layer are sequentially disposed on one main surface of the substrate, A structure in which light is transmitted through the translucent second electrode layer can be taken. In this case, the substrate, the base layer, and the first electrode layer may be opaque.

本発明の薄膜光電変換装置は、前記下地層を作製する工程が、ナノインプリント法を用いることによって製造することができる。   The thin film photoelectric conversion device of the present invention can be manufactured by using the nanoimprint method in the step of producing the base layer.

具体的に、本発明の薄膜光電変換装置の下地層を作製する工程として、水素シルセスキオキサン樹脂(HSQ)を含む混合液を前記基板上に塗布し、微細な周期的凹凸をもつ金型を室温で型押しし、金型を離型した後、加熱および/または加水分解によって硬化処理を行うことによって製造することができる。   Specifically, as a process for preparing the underlayer of the thin film photoelectric conversion device of the present invention, a mixed liquid containing hydrogen silsesquioxane resin (HSQ) is applied onto the substrate, and a mold having fine periodic irregularities. Can be manufactured by embossing at room temperature and releasing the mold, followed by heating and / or hydrolysis.

あるいは、本発明の薄膜光電変換装置の下地層を作製する工程として、アルコキシシランを含むゾルゲル材料を前記基板上に塗布した後、第一の温度で加熱し、微細な周期的凹凸をもつ金型を型押しし、第一の温度より高い第二の温度で加熱した後、金型を離型することによって製造することができる。   Alternatively, as a process for producing the underlayer of the thin film photoelectric conversion device of the present invention, a sol-gel material containing alkoxysilane is applied on the substrate, and then heated at a first temperature to have a fine periodic unevenness Can be manufactured by releasing the mold after embossing and heating at a second temperature higher than the first temperature.

なお、「低圧熱CVD法」の用語は、本発明では大気圧より低い圧力の気体を用いた熱化学的気相成長法を指す。低圧熱CVD法は、減圧CVD法、ロー・プレッシャー・CVD法(Low Pressure CVD:略称LP−CVD)とも呼ばれ、大気圧より低い圧力の気体を用いた熱化学的気相成長法と定義される。通常、「CVD」の用語は、「プラズマCVD」、「光CVD」などエネルギー源を明示した場合を除いて、「熱CVD」のことを指すので、「低圧CVD法」の用語は、「低圧熱CVD法」と同義である。また、低圧熱CVD法は、減圧下の有機金属CVD法(略称、MO−CVD法)も抱合する。   In the present invention, the term “low pressure thermal CVD method” refers to a thermochemical vapor deposition method using a gas having a pressure lower than atmospheric pressure. Low pressure thermal CVD is also called low pressure CVD or low pressure CVD (abbreviation LP-CVD), and is defined as thermochemical vapor deposition using a gas lower than atmospheric pressure. The Usually, the term “CVD” refers to “thermal CVD” except when an energy source is clearly indicated, such as “plasma CVD”, “photo CVD”, etc. It is synonymous with “thermal CVD method”. In addition, the low pressure thermal CVD method includes an organometallic CVD method (abbreviation, MO-CVD method) under reduced pressure.

また、「ナノインプリント」の用語は、0.1nmから100μmのサイズの微細な凹凸をもつ型を被加工材料に押し付けて転写・成形する加工技術をいう。「ナノインプリント材料」とは、ナノインプリントによって型の凹凸を転写される被加工材料のことをいう。   The term “nanoimprint” refers to a processing technique in which a mold having fine irregularities with a size of 0.1 nm to 100 μm is pressed against a material to be processed for transfer / molding. The “nanoimprint material” refers to a material to be processed onto which the unevenness of the mold is transferred by nanoimprint.

本発明によれば、基板に近い側から順に、第一電極層、1以上の光電変換ユニットを含む半導体層、第二電極層を、順次配置した構造を含む薄膜光電変換装置であって、基板と第一電極の間に下地層を含み、かつ前記下地層が基板の一主面に平行な方向に微細な周期的凹凸を有することによって、長時間の屋外使用において凹凸層の汚れや破損の問題がなく、また、光閉じこめ効果を高めて、信頼性と特性が高い薄膜光電変換装置を提供することができる。   According to the present invention, a thin film photoelectric conversion device including a structure in which a first electrode layer, a semiconductor layer including one or more photoelectric conversion units, and a second electrode layer are sequentially arranged from the side closer to the substrate, And an underlying layer between the first electrode and the first layer, and the underlying layer has fine periodic irregularities in a direction parallel to one main surface of the substrate, so that the irregular layer is soiled or damaged in long-term outdoor use. There is no problem, and a thin film photoelectric conversion device with high reliability and characteristics can be provided by improving the light confinement effect.

また、微細な周期的凹凸有する下地層をシリコン酸化物で形成することによって、下地層を形成した後に300℃以上のプラズマCVDなどの工程を行うことができる。また、シリコン酸化物の透過率が高いので、光電変換ユニットより光入射側に下地層を形成することができる。   Further, by forming a base layer having fine periodic unevenness with silicon oxide, a process such as plasma CVD at 300 ° C. or higher can be performed after the base layer is formed. Moreover, since the transmittance | permeability of a silicon oxide is high, a base layer can be formed in the light-incidence side from a photoelectric conversion unit.

また、本発明によれば、ナノインプリント法を用いることによって、微細な周期的凹凸を有する下地層を精度と再現性よく製造することができる。   In addition, according to the present invention, by using the nanoimprint method, an underlayer having fine periodic irregularities can be manufactured with high accuracy and reproducibility.

本発明の一実施形態の薄膜光電変換装置の断面図である。It is sectional drawing of the thin film photoelectric conversion apparatus of one Embodiment of this invention. 本発明による微細な周期的凹凸の下地層の製造方法である。It is a manufacturing method of the base layer of the fine periodic unevenness | corrugation by this invention. 本発明による実施例1の透光性絶縁基板と透光性下地層の透過スペクトルおよび従来法による比較例1の透光性絶縁基板の透過スペクトルである。It is the transmission spectrum of the translucent insulating substrate of Example 1 by this invention and a translucent base layer, and the transmission spectrum of the translucent insulating substrate of the comparative example 1 by a conventional method. 本発明による実施例1および従来法による比較例1、2の分光感度スペクトルである。It is a spectral sensitivity spectrum of Example 1 by this invention and Comparative Examples 1 and 2 by a conventional method. 従来法による比較例1の薄膜光電変換装置の断面図である。It is sectional drawing of the thin film photoelectric conversion apparatus of the comparative example 1 by a conventional method. 従来法による比較例2の薄膜光電変換装置の断面図である。It is sectional drawing of the thin film photoelectric conversion apparatus of the comparative example 2 by a conventional method. 本発明の実施例11の薄膜光電変換装置の断面図である。It is sectional drawing of the thin film photoelectric conversion apparatus of Example 11 of this invention. 本発明による実施例1および従来法による比較例3の分光感度スペクトルである。It is the spectral sensitivity spectrum of Example 1 by this invention, and the comparative example 3 by a conventional method. 本発明による実施例4の透光性下地層のSEM像である。It is a SEM image of the translucent base layer of Example 4 by this invention.

以下において本発明の好ましい実施の形態について図面を参照しつつ説明する。なお本願の各図において、厚さや長さなどの寸法関係については図面の明瞭化と簡略化のため適宜変更されており、実際の寸法関係を表してはいない。また、各図において、同一の参照符号は同一部分または相当部分を表している。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each drawing of the present application, dimensional relationships such as thickness and length are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships. Moreover, in each figure, the same referential mark represents the same part or an equivalent part.

薄膜光電変換装置において、無反射層による反射率の低減や、微細な凹凸構造による光散乱による光閉じこめ効果は、短絡電流密度(Jsc)を増加して変換効率を向上するために重要である。しかし、課題でも述べたように、透明電極層に製膜条件やエッチングで凹凸を形成した場合、凹凸の大きさがばらつく、凹凸の再現性の制御が難しい、光閉じこめが十分でない問題がある。   In a thin film photoelectric conversion device, the reduction of the reflectance by the non-reflective layer and the light confinement effect by the light scattering by the fine uneven structure are important for increasing the short-circuit current density (Jsc) and improving the conversion efficiency. However, as described in the problem, when unevenness is formed on the transparent electrode layer by film forming conditions or etching, there are problems that the size of the unevenness varies, it is difficult to control the reproducibility of the unevenness, and light confinement is not sufficient.

一方、凹凸を再現性よく精度よく形成する方法として、ナノインプリント法が挙げられるが、光学的な応用としては、光学素子の受光面側に光の波長より十分小さいピッチの凹凸の膜、いわゆるモス・アイ構造を形成して、反射防止層を形成する方法が知られている。しかし、長時間の屋外使用が前提となる薄膜光電変換装置、特に薄膜太陽電池においては、受光面側の微細な凹凸構造は汚れの付着や、破損がおきやすく、無反射効果を発揮できなくなって、薄膜光電変換装置の信頼性が低い問題がある。   On the other hand, nanoimprinting can be used as a method for forming irregularities with high reproducibility and accuracy, but as an optical application, an uneven film having a pitch sufficiently smaller than the wavelength of light on the light receiving surface side of an optical element, so-called MOS A method for forming an antireflection layer by forming an eye structure is known. However, in thin-film photoelectric conversion devices that are premised on long-term outdoor use, especially thin-film solar cells, the fine uneven structure on the light-receiving surface side is likely to be contaminated and damaged, making it impossible to exhibit an anti-reflection effect. There is a problem that the reliability of the thin film photoelectric conversion device is low.

また、一般にナノインプリント材料はガラス転移温度が低く(たとえば、ポリメタクリル酸メチルのガラス転移温度は105℃)、ナノインプリントで凹凸を形成した後に200℃以上の工程を行うことが困難である。このため、薄膜光電変換装置のデバイスの内側(デバイスの最表面以外)にナノインプリントで凹凸を形成した例は、発明者らが知る限りではほとんどない。先行例1にゾルゲル材料の透明電極を、ナノインプリント材料に用いた例が報告されているが、ゾルゲル材料の透明電極は抵抗率が高く、また、透過率が低いので、薄膜光電変換装置の透明電極材料として好適とは言い難い。   In general, a nanoimprint material has a low glass transition temperature (for example, the glass transition temperature of polymethyl methacrylate is 105 ° C.), and it is difficult to perform a process at 200 ° C. or higher after forming irregularities by nanoimprint. For this reason, as far as the inventors know, there are few examples in which irregularities are formed by nanoimprint inside the device of the thin film photoelectric conversion device (other than the outermost surface of the device). Although the example which used the transparent electrode of the sol-gel material for the nanoimprint material was reported to the prior example 1, since the transparent electrode of a sol-gel material has a high resistivity and a low transmittance, the transparent electrode of the thin film photoelectric conversion device It is hard to say that it is suitable as a material.

発明者らは、上記の課題を鑑みて、信頼性が高く、かつ光閉じこめに有効な凹凸を高い精度でかつ再現性よく形成するデバイス構造とその製造方法を鋭意検討した。   In view of the above-mentioned problems, the inventors diligently studied a device structure and a manufacturing method for forming a highly reliable unevenness effective for light confinement with high accuracy and good reproducibility.

その結果、基板に近い側から順に、第一電極層、1以上の光電変換ユニットを含む半導体層、第二電極層を、順次配置した構造を含む薄膜光電変換装置であって、基板と第一電極の間に下地層を含み、かつ前記下地層が基板の一主面に平行な方向に微細な周期的凹凸を有することを特徴とすることによって、本発明を完成するに至った。   As a result, a thin film photoelectric conversion device including a structure in which a first electrode layer, a semiconductor layer including one or more photoelectric conversion units, and a second electrode layer are sequentially arranged from the side closer to the substrate, The present invention has been completed by including a base layer between the electrodes, and the base layer having fine periodic irregularities in a direction parallel to one main surface of the substrate.

その際、意外にも下地層の基板の一主面に平行した方向の凹凸のピッチ(L)が、入射光の最小波長より長いことが望ましいことを見出した。受光面の反射防止層として、ナノインプリント法で形成したモス・アイ構造がよく知られているが、その場合は、Lは入射光の波長より十分小さいことが重要である。しかしながら、本発明においては、むしろ、Lが入射光より長い場合に薄膜光電変換装置の特性が改善されている。これは、Lを波長以上の長さにすることによって、周期的凹凸構造を有する界面で多重反射的に光の散乱が強くおきて高い光閉じこめ効果を発揮したためと考えられる。   At that time, it was surprisingly found that the pitch (L) of the unevenness in the direction parallel to one main surface of the substrate of the underlayer is preferably longer than the minimum wavelength of incident light. A moth-eye structure formed by a nanoimprint method is well known as an antireflection layer on the light receiving surface. In this case, it is important that L is sufficiently smaller than the wavelength of incident light. However, in the present invention, rather, the characteristics of the thin film photoelectric conversion device are improved when L is longer than the incident light. This is considered to be due to the fact that by making L longer than the wavelength, light scattering is strongly reflected at the interface having the periodic concavo-convex structure to exhibit a high light confinement effect.

また、周期的な凹凸構造の場合、特定の波長だけに強い散乱効果が現れると通常は考えられる。したがって、周期的な凹凸よりも、さまざまな大きさやピッチを持ったいわゆるランダムな凹凸のほうが広い波長範囲で散乱効果が現れると通常は考えられる。しかし、意外なことに、本発明の構成によれば、周期的凹凸構造を有するにもかかわらず、広い波長範囲で散乱効果が得られることがわかった。たとえば、図4に示す分光感度スペクトルから、500〜1000nmの広い波長範囲で光散乱効果が本発明で得られていることがわかる。   In the case of a periodic uneven structure, it is usually considered that a strong scattering effect appears only at a specific wavelength. Therefore, it is usually considered that the so-called random unevenness having various sizes and pitches exhibits a scattering effect in a wider wavelength range than the periodic unevenness. However, surprisingly, according to the configuration of the present invention, it has been found that the scattering effect can be obtained in a wide wavelength range despite having the periodic uneven structure. For example, it can be seen from the spectral sensitivity spectrum shown in FIG. 4 that the light scattering effect is obtained in the present invention in a wide wavelength range of 500 to 1000 nm.

図1に、本発明の実施形態の一例による薄膜光電変換装置の断面図を示す。入射光7に近い側から順に、透光性絶縁基板1、微細な周期的凹凸を持つ透光性下地層2、透光性第一電極層3、結晶質光電変換ユニット4、第二電極層5を順次配置している。   FIG. 1 is a cross-sectional view of a thin film photoelectric conversion device according to an example of an embodiment of the present invention. In order from the side closer to the incident light 7, the transparent insulating substrate 1, the transparent base layer 2 having fine periodic irregularities, the transparent first electrode layer 3, the crystalline photoelectric conversion unit 4, and the second electrode layer 5 are arranged sequentially.

透光性絶縁基板1には、ガラス、透明樹脂等から成る板状部材やシート状部材が主に用いられる。特に透光性絶縁基板1として主にガラス基板を用いると、透過率が高く、安価であることから、透光性絶縁基板1として望ましい。   A plate-like member or sheet-like member made of glass, transparent resin or the like is mainly used for the translucent insulating substrate 1. In particular, when a glass substrate is mainly used as the light-transmitting insulating substrate 1, it is desirable as the light-transmitting insulating substrate 1 because of its high transmittance and low cost.

透明絶縁基板1は薄膜光電変換装置5を構成した際に光入射側に位置することから、より多くの太陽光を透過させて非晶質または結晶質の光電変換ユニットに吸収させるために、できるだけ透明であることが好ましく、その材料としてはガラス板が好適である。同様の意図から、太陽光の光入射面における光反射ロスを低減させるように、透光性絶縁基板1の光入射面に無反射コーティングを行うことが望ましい。   Since the transparent insulating substrate 1 is located on the light incident side when the thin film photoelectric conversion device 5 is configured, in order to transmit more sunlight and absorb it in the amorphous or crystalline photoelectric conversion unit, as much as possible It is preferably transparent, and a glass plate is suitable as the material. For the same purpose, it is desirable to apply a non-reflective coating to the light incident surface of the translucent insulating substrate 1 so as to reduce the light reflection loss on the light incident surface of sunlight.

透光性絶縁基板1の上に微細な周期的凹凸を有する透光性下地層2を形成する。透光性下地層は、シリコン酸化物にナノインプリント法で凹凸をつけて作製することが望ましい。シリコン酸化物は耐熱性が高いので、下地層を形成した後に150〜300℃に達するプラズマCVDやスパッタなどの工程を行うことができる。また、シリコン酸化物は、透過率が高いので光電変換ユニットの光入射側の下地層として配置することができる。   A translucent underlayer 2 having fine periodic irregularities is formed on the translucent insulating substrate 1. The light-transmitting underlayer is preferably produced by forming irregularities on silicon oxide by a nanoimprint method. Since silicon oxide has high heat resistance, a process such as plasma CVD or sputtering that reaches 150 to 300 ° C. can be performed after the base layer is formed. Further, since silicon oxide has high transmittance, it can be disposed as a base layer on the light incident side of the photoelectric conversion unit.

透光性下地層2は、例えば、水素シルセスキオキサン樹脂(HSQ)をナノインプリント材料として、図2に示すような工程のいわゆる室温インプリント法で作成することができる。図2(a)で、まず、透光性絶縁基板1を、洗浄槽801で洗浄する。このとき、洗浄液802はアルカリ洗剤、純水を順次使用して、超音波洗浄することが望ましい。   The translucent underlayer 2 can be formed by, for example, a so-called room temperature imprinting method in a process as shown in FIG. 2 using hydrogen silsesquioxane resin (HSQ) as a nanoimprint material. In FIG. 2A, first, the translucent insulating substrate 1 is cleaned in the cleaning tank 801. At this time, it is desirable that the cleaning liquid 802 be ultrasonically cleaned by sequentially using an alkaline detergent and pure water.

次に、図2(b)に示すように、水素シルセスキオキサンを含む混合液201を透光性絶縁基板上に塗布して、塗布膜202を形成する。塗布する方法としては、ディッピング法、スピンコート法、バーコート法、スプレー法、ダイコート法、ロールコート法、フローコート法等が挙げられるが、塗布膜を均一に形成するにはスピンコート法が好適に用いられる。HSQは、HSiO3/2の繰り返し構造をもつ樹脂である。HSQは大きく分けてかご形構造と梯子形構造があるが、耐熱性を上げるために梯子形構造のHSQを混合液201に含むことが望ましい。混合液201はHSQ以外に有機溶媒として、アルコール、エステル、ケトン、あるいはそれらの混合物を含むことが望ましい。 Next, as illustrated in FIG. 2B, a mixed liquid 201 containing hydrogen silsesquioxane is applied onto a light-transmitting insulating substrate to form a coating film 202. Examples of the coating method include a dipping method, a spin coating method, a bar coating method, a spray method, a die coating method, a roll coating method, a flow coating method, and the like. A spin coating method is preferable for uniformly forming a coating film. Used for. HSQ is a resin having a repeating structure of HSiO 3/2 . HSQ is roughly classified into a cage structure and a ladder structure, but it is desirable to include the ladder-shaped HSQ in the mixed solution 201 in order to increase heat resistance. The mixed solution 201 preferably contains alcohol, ester, ketone, or a mixture thereof as an organic solvent in addition to HSQ.

次に、図2(c)に示すように、ステージ803とプレス板804からなるナノインプリント装置を用いて、微細な周期的凹凸を持つ型であるモールド805を塗布膜202に型押しする。型押しは室温において、圧力5〜100MPaで行うことができる。モールド805はあらかじめ表面にフッ素系樹脂からなる離型材を塗布しておくのが好ましい。その後、図2(d)に示すように、室温のまま、モールド805を塗布膜202から離型する。   Next, as shown in FIG. 2C, a mold 805, which is a mold having fine periodic irregularities, is pressed onto the coating film 202 using a nanoimprint apparatus including a stage 803 and a press plate 804. The embossing can be performed at room temperature at a pressure of 5 to 100 MPa. The mold 805 is preferably preliminarily coated with a release material made of a fluorine resin on the surface. Thereafter, as shown in FIG. 2D, the mold 805 is released from the coating film 202 while keeping the room temperature.

次に、図2(e)に示すように、オーブン806で加熱して、凹凸のついた塗布膜202を硬化させる。加熱は200〜500℃の温度で、1分〜12時間の範囲で行えばよい。こうして、図2(f)に示すように、シリコン酸化物からなり、微細な周期的凹凸を持つ下地層2が作製される。   Next, as shown in FIG. 2E, the uneven coating film 202 is cured by heating in an oven 806. Heating may be performed at a temperature of 200 to 500 ° C. for 1 minute to 12 hours. Thus, as shown in FIG. 2F, the underlayer 2 made of silicon oxide and having fine periodic irregularities is produced.

透光性下地層2は、アルコキシシランを含むゾルゲル材料をナノインプリント材料として、型押しと加熱硬化をおこなういわゆる熱ナノインプリント法でも形成することができる。まず、図2(a)と同様に透光性絶縁基板1の洗浄、乾燥を行う。次にアルコキシシランを含むゾルゲル材料を図2(b)と同様に塗布する。アルコキシシランとしては、テトラエトキシシラン(TEOS)、テトラメトキシシラン、テトラプロポキシシラン、アルキルアルコキシシランなどが挙げられる。また、アルコキシシランとして、縮合体のエチルシリケート40(ポリエトキシシランで、SiO2が40重量%含まれ平均してTEOSの5量体縮合物)やメチルシリケート51(ポリメトキシシランで、SiO2が51重量%含まれ平均してテトラメトキシシランの4量体縮合物)なども用いることができる。例えば、水、エチルセロソルブの混合液にテトラエトキシシランを加え、更に塩酸を添加してテトラエトキシシランを加水分解させ、さらに希釈液として、ジアセトンアルコールおよびプロピレングリコールを加えて、ゾルゲル材料の塗布液とすることができる。この塗布液を透光性絶縁基板1に塗布した後、20℃から150℃の第一の温度、望ましくは60℃〜90℃で、5分から60分、加熱して、半硬化させうる。次に透明絶縁基板上の塗布液にモールドを型押しして、20〜500℃で第一の温度より高い第二の温度に加熱して、5分から60分保持すればよい。塗布液が固化した後、モールドを離型する。このようにして、シリコン酸化物からなる微細な周期的凹凸をもつ下地層2が作製できる。 The translucent underlayer 2 can also be formed by a so-called thermal nanoimprint method in which embossing and heat curing are performed using a sol-gel material containing alkoxysilane as a nanoimprint material. First, the transparent insulating substrate 1 is cleaned and dried as in FIG. Next, a sol-gel material containing alkoxysilane is applied in the same manner as in FIG. Examples of the alkoxysilane include tetraethoxysilane (TEOS), tetramethoxysilane, tetrapropoxysilane, and alkylalkoxysilane. Further, as alkoxysilanes, condensate ethylsilicate 40 (polyethoxysilane, containing SiO 2 in an amount of 40% by weight and averaging TEOS pentamer condensate) and methylsilicate 51 (polymethoxysilane, SiO 2 being SiO 2 A tetramer silane tetramer condensate containing 51% by weight on average can also be used. For example, tetraethoxysilane is added to a mixed solution of water and ethyl cellosolve, hydrochloric acid is further added to hydrolyze tetraethoxysilane, and diacetone alcohol and propylene glycol are added as a diluting solution, and a coating solution for a sol-gel material. It can be. After this coating liquid is applied to the translucent insulating substrate 1, it can be semi-cured by heating at a first temperature of 20 ° C. to 150 ° C., preferably 60 ° C. to 90 ° C. for 5 minutes to 60 minutes. Next, the mold may be pressed into the coating solution on the transparent insulating substrate, heated to a second temperature higher than the first temperature at 20 to 500 ° C., and held for 5 to 60 minutes. After the coating solution is solidified, the mold is released. In this way, the underlayer 2 having fine periodic irregularities made of silicon oxide can be produced.

下地層2の基板の一主面に平行な方向の凹凸ピッチ(L)は、入射光の最小波長以上の長さであることが望ましい。これにより、Lが入射光の最小波長以上の場合に、光の散乱が強くなり、光閉じこめ効果を高めることができる。ガラス基板および透明電極層を透過させて、光電変換ユニットに光を入射する場合、ガラス基板および透明電極層の吸収によって、300nmより長い波長の光しか実質的に利用できない。   It is desirable that the uneven pitch (L) in the direction parallel to the one main surface of the substrate of the underlayer 2 is a length equal to or longer than the minimum wavelength of incident light. Thereby, when L is more than the minimum wavelength of incident light, light scattering becomes strong and the light confinement effect can be enhanced. When light is incident on the photoelectric conversion unit through the glass substrate and the transparent electrode layer, only light having a wavelength longer than 300 nm can be substantially used due to absorption of the glass substrate and the transparent electrode layer.

また、Lは、100nmより大きく10μm以下が好ましく、300nmより大きく2μm以下であることがより好ましい。Lが100nmより大きいと散乱効果が認められ、Lが300nmより大きいと光電変換ユニットへの入射波長より大きくなってさらに散乱効果が大きくなる。また、Lが小さいとモールドの作製が困難であるとともに、ナノインプリントで凹凸を形成する際に、モールドの凹部にナノインプリント材料が入りにくくなり、凹凸がだれやすくなるので、Lは100nmより大きいことが好ましく、300nmより大きいことがより好ましく、500nm以上が特に好ましい。Lが広すぎると、ナノインプリントで凹凸の高低差、特にアスペクト比を大きくすることが困難になるので、Lは10μm以下が好ましく、2μm以下がより好ましい。   L is preferably greater than 100 nm and not greater than 10 μm, and more preferably greater than 300 nm and not greater than 2 μm. When L is larger than 100 nm, a scattering effect is recognized, and when L is larger than 300 nm, the scattering effect is further increased because it is larger than the incident wavelength to the photoelectric conversion unit. In addition, when L is small, it is difficult to produce a mold, and when forming irregularities by nanoimprinting, it becomes difficult for the nanoimprint material to enter the concave portions of the mold, and the irregularities are liable to sag. Therefore, L is preferably larger than 100 nm. , Larger than 300 nm, more preferably 500 nm or more. If L is too wide, it becomes difficult to increase the unevenness of the unevenness, particularly the aspect ratio, by nanoimprinting. Therefore, L is preferably 10 μm or less, and more preferably 2 μm or less.

下地層は基板の一主面に鉛直な方向の凹凸の高低差Dと、前記Lの比(D/L)であるアスペクト比が1以上であることが好ましい。これは、アスペクト比を1以上にすることによって、光の散乱効果がより顕著になるためである。   It is preferable that the underlayer has an aspect ratio which is a ratio (D / L) of 1 or more of the height difference D of the unevenness in the direction perpendicular to one main surface of the substrate and the L. This is because the light scattering effect becomes more remarkable by setting the aspect ratio to 1 or more.

透光性第一電極層3の材料としては、例えばSnO2、ITO、ZnOが用いられうる。特にZnOが300℃以下の低温でスパッタ法や低圧熱CVD法を用いて、安価に作製できるので好適である。スパッタ法で製膜する場合、抵抗率を下げるためにZnOのターゲットにB、Al、Gaのいずれかの不純物を0.5〜10重量%、望ましくは2〜5重量%含んでいることが望ましい。 The material of the light transmissive first electrode layer 3 may for example SnO 2, ITO, ZnO is used. In particular, ZnO is preferable because it can be manufactured at low cost using a sputtering method or low-pressure thermal CVD method at a low temperature of 300 ° C. or lower. In the case of forming a film by sputtering, it is desirable that the ZnO target contains 0.5 to 10% by weight, preferably 2 to 5% by weight, of any of B, Al and Ga impurities in order to lower the resistivity. .

低圧熱CVD法でZnOを製膜する場合は、有機金属蒸気としてジエチル亜鉛(DEZ)またはジメチル亜鉛、酸化剤蒸気として水、硼素含有ガスとしてジボラン(B26)を用い、希釈ガスとしてH2、N2、希ガス(He、Ar、Ne、Kr、Rn)のいずれかまたは複数を加えて、混合したガスを、圧力を5〜200Paに保持した真空槽に導入して、ZnOの製膜を行なうことが好ましい。具体的には、有機金属蒸気の流量(FZ)としてDEZの流量10〜1000sccm、硼素含有ガスの流量(FB)としてB26の流量0.01〜100sccm、水の流量10〜1000sccm、H2の流量100〜10000sccm、Arの流量100〜10000sccmが好ましい。 When depositing ZnO by low-pressure thermal CVD, diethylzinc (DEZ) or dimethylzinc is used as the organometallic vapor, water is used as the oxidant vapor, diborane (B 2 H 6 ) is used as the boron-containing gas, and H is used as the dilution gas. 2 , N 2 , or any one or more of rare gases (He, Ar, Ne, Kr, Rn), and the mixed gas is introduced into a vacuum chamber maintained at a pressure of 5 to 200 Pa to produce ZnO. It is preferable to carry out the membrane. Specifically, DEZ flow rate 10 to 1000 sccm as organometallic vapor flow rate (FZ), boron-containing gas flow rate (FB) B 2 H 6 flow rate 0.01 to 100 sccm, water flow rate 10 to 1000 sccm, H A flow rate of 2 to 100 sccm and an Ar flow rate of 100 to 10,000 sccm are preferable.

ZnOのシート抵抗は、15Ω/□以下、望ましくは10Ω/□以下が、抵抗損失を抑制するために望ましい。   The sheet resistance of ZnO is 15Ω / □ or less, preferably 10Ω / □ or less, in order to suppress resistance loss.

ZnO膜の平均厚さは0.3〜3μmであることが好ましく、0.5〜2μmであることがより好ましい。なぜなら、ZnO膜が薄すぎれば、透明導電膜として必要な導電性が得にくく、厚すぎればZnO膜自体による光吸収により、ZnOを透過し光電変換ユニットへ到達する光量が減るため、効率が低下するからである。さらに、厚すぎる場合は、製膜時間の増大によりその製膜コストが増大する。   The average thickness of the ZnO film is preferably 0.3 to 3 μm, and more preferably 0.5 to 2 μm. This is because if the ZnO film is too thin, it is difficult to obtain the necessary conductivity as a transparent conductive film, and if it is too thick, the light absorption by the ZnO film itself reduces the amount of light that passes through the ZnO and reaches the photoelectric conversion unit, thus lowering the efficiency. Because it does. Furthermore, when it is too thick, the film forming cost increases due to an increase in the film forming time.

結晶質シリコン光電変換ユニット4は、たとえば、プラズマCVD法を用いて、p型半導体層、i型層、およびn型半導体層の順に、積層して形成される。具体的には、ボロンが0.01原子%以上ドープされたp型微結晶シリコン層41、実質的にi型の結晶質シリコン光電変換層42、およびリンが0.01原子%以上ドープされたn型微結晶シリコン層43がこの順に堆積される。   The crystalline silicon photoelectric conversion unit 4 is formed by stacking a p-type semiconductor layer, an i-type layer, and an n-type semiconductor layer in this order using, for example, a plasma CVD method. Specifically, p-type microcrystalline silicon layer 41 doped with 0.01 atomic% or more of boron, substantially i-type crystalline silicon photoelectric conversion layer 42, and 0.01 atomic% or more of phosphorus are doped. An n-type microcrystalline silicon layer 43 is deposited in this order.

第二電極層5としては、アルミニウム(Al)、銀(Ag)、金(Au)、銅(Cu)、白金(Pt)およびクロム(Cr)から選ばれる少なくとも一つの材料からなる少なくとも一層の金属層をスパッタ法または蒸着法により形成することが好ましい。また、光電変換ユニットと金属層との間に、ITO、SnO2、ZnO等の導電性酸化物からなる層を形成しても構わない(図示せず)。 The second electrode layer 5 includes at least one metal layer made of at least one material selected from aluminum (Al), silver (Ag), gold (Au), copper (Cu), platinum (Pt), and chromium (Cr). The layer is preferably formed by sputtering or vapor deposition. Between the photoelectric conversion unit and the metal layer, ITO, may be formed a layer made of SnO 2, conductive oxides such as ZnO (not shown).

さらに、第二電極層の上に、エチレンビニルアセテート樹脂(EVA)を接着層として、ラミネートにより保護フィルムを接着することもできる(図示せず)。   Furthermore, a protective film can be adhered by lamination using ethylene vinyl acetate resin (EVA) as an adhesive layer on the second electrode layer (not shown).

なお、図1では光電変換ユニットに結晶質シリコン光電変換層を用いた単接合の薄膜光電変換装置を示したが、それ以外の材料を用いた光電変換ユニットでもよいことは言うまでもない。例えば、pin接合を有する光電変換層に非晶質シリコン、非晶質シリコンゲルマニウム、非晶質ゲルマニウム、結晶質シリコンゲルマニウム、結晶質ゲルマニウムを用いた光電変換ユニットを用いることができる。あるいは、pn接合を有するCdS/CdTeの積層膜やCIS/CdSの積層膜を光電変換ユニットに用いることができる。   Although FIG. 1 shows a single-junction thin-film photoelectric conversion device using a crystalline silicon photoelectric conversion layer as a photoelectric conversion unit, it goes without saying that a photoelectric conversion unit using other materials may be used. For example, a photoelectric conversion unit using amorphous silicon, amorphous silicon germanium, amorphous germanium, crystalline silicon germanium, or crystalline germanium can be used for the photoelectric conversion layer having a pin junction. Alternatively, a CdS / CdTe laminated film or a CIS / CdS laminated film having a pn junction can be used for the photoelectric conversion unit.

また、図1では単接合の薄膜光電変換装置を示したが、2接合あるいは3接合以上の光電変換ユニットが積層された薄膜光電変換装置であってもよいことは言うまでもない。例えば、非晶質シリコン光電変換ユニット/結晶質シリコン光電変換ユニットを積層したいわゆるハイブリッド型光電変換装置を構成することもできる。   Although FIG. 1 shows a single junction thin film photoelectric conversion device, it goes without saying that a thin film photoelectric conversion device in which two or more junction or more photoelectric conversion units are stacked may be used. For example, a so-called hybrid photoelectric conversion device in which amorphous silicon photoelectric conversion units / crystalline silicon photoelectric conversion units are stacked can also be configured.

また、図1では基板側から光を入射する薄膜光電変換装置を示したが、基板と反対側から光を入射する薄膜光電変換装置においても、本発明は有効である。その場合、図7に示すように、薄膜光電変換装置は、基板11の一主面上に、下地層21、第一電極層31、1以上の光電変換ユニットを含む半導体層4、透光性第二電極層51を順次配置し、透光性第二電極層51を透過して光7を入射する構造を取りえる。この場合、基板11、下地層21、および第一電極層31は不透明であってもかまわない。また、光電変換ユニット4は、n型微結晶シリコン層43、実質的にi型の結晶質シリコン光電変換層42、p型微結晶シリコン層41の順に積層することが、望ましい。これはホールの拡散距離が電子に比べて短いために、p型層を光入射側に配置したほうが薄膜光電変換装置の特性が高くなるためである。   Although FIG. 1 shows a thin film photoelectric conversion device in which light is incident from the substrate side, the present invention is also effective in a thin film photoelectric conversion device in which light is incident from the side opposite to the substrate. In that case, as shown in FIG. 7, the thin film photoelectric conversion device includes a base layer 21, a first electrode layer 31, a semiconductor layer 4 including one or more photoelectric conversion units, a light-transmitting property, on one main surface of the substrate 11. A structure in which the second electrode layers 51 are sequentially disposed and the light 7 is incident through the light-transmissive second electrode layer 51 can be obtained. In this case, the substrate 11, the base layer 21, and the first electrode layer 31 may be opaque. The photoelectric conversion unit 4 is desirably laminated in the order of an n-type microcrystalline silicon layer 43, a substantially i-type crystalline silicon photoelectric conversion layer 42, and a p-type microcrystalline silicon layer 41. This is because the hole diffusion distance is shorter than that of electrons, so that the characteristics of the thin film photoelectric conversion device are enhanced when the p-type layer is disposed on the light incident side.

以下、本発明による実施例と、従来技術による比較例に基づいて詳細に説明する。各図において同様の部材には同一の参照符号を付し、重複する説明は省略する。また、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。実施例は好ましい態様の一つである。   Hereinafter, examples according to the present invention and comparative examples according to the prior art will be described in detail. In the drawings, the same members are denoted by the same reference numerals, and redundant description is omitted. Moreover, this invention is not limited to a following example, unless the meaning is exceeded. The embodiment is one of the preferred embodiments.

(実施例1)
本発明の実施例1として、図1に示す構造の薄膜光電変換装置9を作製した。透光性絶縁基板1として、厚み1mm、50mm×50mmのガラス基板を用いた。
Example 1
As Example 1 of the present invention, a thin film photoelectric conversion device 9 having the structure shown in FIG. 1 was produced. As the translucent insulating substrate 1, a glass substrate having a thickness of 1 mm and 50 mm × 50 mm was used.

透光性下地層2は、図2に示す工程で作製した。基板をアルカリ洗剤、純水で順次5分ずつ超音波洗浄した後、80℃で30分乾燥させた。HSQを約20重量%含み、有機溶媒にプロピレングリコールジメチルエーテルを用いた混合液201を用い、スピンコートにより、膜厚500nmの塗布膜202を透光性絶縁基板1上に作製した。   The translucent underlayer 2 was produced by the process shown in FIG. The substrate was ultrasonically washed successively with an alkaline detergent and pure water for 5 minutes, and then dried at 80 ° C. for 30 minutes. A coating film 202 having a thickness of 500 nm was formed on the translucent insulating substrate 1 by spin coating using a mixed solution 201 containing about 20% by weight of HSQ and using propylene glycol dimethyl ether as an organic solvent.

円柱型で高さ320nm、ピッチ320nmの結晶シリコン製のモールド805を用いた。モールド805には、離型材としてダイキン工業(株)製オプツールDSXをあらかじめ塗布した。ステージ803とプレス板804からなるナノインプリント装置を用いて、このモールドを室温で、透光性絶縁基板1上の塗布液202に10MPaの圧力で1分間、型押しした。その後、モールドを離型し、オーブン806で300℃、30分間加熱して、透光性下地層2を形成した。この透光性下地層2をSEMで観察したところ、円柱状の穴が観察され、透光性絶縁基板1の表面に平行な方向にピッチ(L)が320nm、深さ(D)が200nm、アスペクト比(D/L)が0.625であった。   A cylindrical silicon mold 805 having a height of 320 nm and a pitch of 320 nm was used. The mold 805 was previously coated with OPTOOL DSX manufactured by Daikin Industries, Ltd. as a release material. Using a nanoimprint apparatus comprising a stage 803 and a press plate 804, this mold was embossed at room temperature at a pressure of 10 MPa for 1 minute in the coating liquid 202 on the light-transmitting insulating substrate 1. Thereafter, the mold was released and heated in an oven 806 at 300 ° C. for 30 minutes to form a translucent underlayer 2. When this translucent underlayer 2 was observed with an SEM, cylindrical holes were observed, and the pitch (L) was 320 nm and the depth (D) was 200 nm in a direction parallel to the surface of the translucent insulating substrate 1. The aspect ratio (D / L) was 0.625.

この透光性下地層2がついた透光性絶縁基板の透過スペクトルを図3の実施例1にしめす。光を透光性下地層2がついていない側から入射して透過スペクトルを測定した。透過スペクトルは、島津製作所製の自記記録分光光度計UV3100を用いた。検知部には積分球を用いた。参考までに、透光性下地層2がついていないガラス基板だけの透過スペクトルを比較例1として示す。実施例1の透過スペクトルは、波長約370nmから800nmの範囲で、比較例1のガラス基板だけの透過スペクトルより透過率が低くなっている。このことから、透光性下地層2は無反射層の働きはしていないことがわかる。また、実施例1の透過スペクトルが低くなっている領域は、ほぼ一定の透過率を示し、通常の薄膜の干渉とは異なる特異なスペクトルを示している。これは、透光性下地層2で強く光が散乱されて、検知部に積分球を使用しているにもかかわらず、透過光の検知量が低下したためと考えられる。   The transmission spectrum of the light-transmitting insulating substrate with the light-transmitting underlayer 2 is shown in Example 1 in FIG. Light was incident from the side where the transparent base layer 2 was not attached, and the transmission spectrum was measured. For the transmission spectrum, a self-recording spectrophotometer UV3100 manufactured by Shimadzu Corporation was used. An integrating sphere was used for the detector. For reference, a transmission spectrum of only a glass substrate without the translucent underlayer 2 is shown as Comparative Example 1. The transmission spectrum of Example 1 has a transmittance lower than the transmission spectrum of the glass substrate of Comparative Example 1 only in the wavelength range of about 370 nm to 800 nm. From this, it can be seen that the translucent underlayer 2 does not function as a non-reflective layer. Moreover, the region where the transmission spectrum of Example 1 is low shows a substantially constant transmittance, and shows a unique spectrum different from the interference of a normal thin film. This is presumably because the amount of transmitted light detected was reduced despite the fact that light was strongly scattered by the light-transmitting underlayer 2 and an integrating sphere was used for the detection unit.

この透光性下地層2の上に、透光性第一電極層3として、直流電源を用いたスパッタ法でZnOを約700nm作製した。ターゲットには、Al23が3重量%含まれたZnOターゲットを用いた。作製したZnO膜のシート抵抗は5Ω/□であった。 About 700 nm of ZnO was formed on the light-transmitting underlayer 2 as the light-transmitting first electrode layer 3 by sputtering using a DC power source. A ZnO target containing 3% by weight of Al 2 O 3 was used as the target. The sheet resistance of the produced ZnO film was 5Ω / □.

さらに、結晶質シリコン光電変換ユニット4を、プラズマCVD法を用いて作製した。厚さ15nmのp型微結晶シリコン層41、厚さ1.7μmの実質的に真性な結晶質シリコンの結晶質シリコン光電変換層42、及び厚さ15nmのn型微結晶シリコン層43からなる結晶質シリコン光電変換層ユニットを順次プラズマCVD法で形成した。   Furthermore, the crystalline silicon photoelectric conversion unit 4 was produced using the plasma CVD method. A crystal composed of a p-type microcrystalline silicon layer 41 having a thickness of 15 nm, a crystalline silicon photoelectric conversion layer 42 of substantially intrinsic crystalline silicon having a thickness of 1.7 μm, and an n-type microcrystalline silicon layer 43 having a thickness of 15 nm. Quality silicon photoelectric conversion layer units were sequentially formed by plasma CVD.

その次に、第二電極層5として厚さ90nmの3重量%Al23がドープされたZnOの導電性酸化物層と厚さ200nmのAgの金属層を、開口部1cm2のマスクを用いてスパッタ法にて順次形成した。その後、リード線を超音波半田で取り付けた後、EVAを接着層として保護フィルムを接着した。 Next, a conductive oxide layer of ZnO doped with 3 wt% Al 2 O 3 with a thickness of 90 nm and an Ag metal layer with a thickness of 200 nm were used as the second electrode layer 5, and a mask with an opening of 1 cm 2 was used. They were sequentially formed by sputtering. Then, after attaching a lead wire with ultrasonic soldering, the protective film was adhered using EVA as an adhesive layer.

このようにして得られた実施例1の薄膜光電変換装置にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定ところ、開放電圧(Voc)が0.517V、短絡電流密度(Jsc)が21.82mA/cm2、曲線因子(FF)が0.633、そして変換効率(Eff)が7.14%であった。 The thin film photoelectric conversion device of Example 1 thus obtained was irradiated with AM 1.5 light at a light amount of 100 mW / cm 2 and the output characteristics were measured. The open circuit voltage (Voc) was 0.517 V and the short-circuit current was measured. The density (Jsc) was 21.82 mA / cm 2 , the fill factor (FF) was 0.633, and the conversion efficiency (Eff) was 7.14%.

また、実施例1の薄膜光電変換装置の分光感度を図4に示す。   Moreover, the spectral sensitivity of the thin film photoelectric conversion apparatus of Example 1 is shown in FIG.

また、実施例1を60日間の屋外暴露を行った後、特性を測定したところ、Effの保持率は99%であった。   Moreover, when the characteristics were measured after Example 1 was exposed outdoors for 60 days, the retention rate of Eff was 99%.

(比較例1)
従来法による比較例1として、図5に示す構造の薄膜光電変換装置91を作製した。比較例1は、透光性下地層2がないことを除いて、その構造、作製方法は実施例1と同様とした。比較例1の透光性絶縁基板1だけの透過スペクトルを図3に示す。
(Comparative Example 1)
As Comparative Example 1 by a conventional method, a thin film photoelectric conversion device 91 having a structure shown in FIG. 5 was produced. The structure and the manufacturing method of Comparative Example 1 were the same as those of Example 1 except that there was no translucent underlayer 2. A transmission spectrum of only the translucent insulating substrate 1 of Comparative Example 1 is shown in FIG.

得られた比較例1の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.519V、Jsc=20.14mA/cm2、FF=0.635、そしてEff=6.64%であった。比較例1は、実施例1に比べてJscが低くなって、Effが低下している。これは、光閉じこめ効果が比較例1ではほとんど得られないためと考えられる。 When the output characteristics of the obtained thin film photoelectric conversion device of Comparative Example 1 were measured in the same manner as in Example 1, Voc = 0.519 V, Jsc = 20.14 mA / cm 2 , FF = 0.635, and Eff = 6. It was 64%. In Comparative Example 1, Jsc is lower and Eff is lower than that in Example 1. This is probably because the light confinement effect is hardly obtained in Comparative Example 1.

図4に比較例1の分光感度を示す。図3で実施例1の透光性下地層2がついたガラス基板の透過率が、ガラス基板だけの透過率より370nmから800nmの波長範囲で低くなっているにも関わらず、実施例1の分光感度は比較例1よりも500nmから1000nmの広い波長範囲で高くなっている。このことから、透光性下地層2によって強い散乱が起きて、有効な光閉じこめが実施例1の薄膜光電変換装置で実現されて、Jsc、Effが増加したといえる。   FIG. 4 shows the spectral sensitivity of Comparative Example 1. Although the transmittance | permeability of the glass substrate with the translucent base layer 2 of Example 1 in FIG. 3 is lower in the wavelength range of 370 nm to 800 nm than the transmittance | permeability of only a glass substrate, of Example 1 The spectral sensitivity is higher than that of Comparative Example 1 over a wide wavelength range from 500 nm to 1000 nm. From this, it can be said that strong scattering occurs by the translucent underlayer 2, and effective light confinement is realized in the thin film photoelectric conversion device of Example 1, and Jsc and Eff are increased.

また、比較例1を60日間の屋外暴露を行った後、特性を測定したところ、Effの保持率は98%であった。   Moreover, when the characteristics of the Comparative Example 1 were measured after 60 days of outdoor exposure, the retention rate of Eff was 98%.

(比較例2)
従来法による比較例2として、図6に示す構造の薄膜光電変換装置92を作製した。比較例2は、透光性下地層2がないかわりに、受光面側に凹凸層6を実施例1の透光性下地層2と同様に作製したことを除いて、その構造、作製方法は実施例1と同様とした。
(Comparative Example 2)
As Comparative Example 2 by the conventional method, a thin film photoelectric conversion device 92 having a structure shown in FIG. 6 was produced. The comparative example 2 has the same structure and production method except that the concavo-convex layer 6 was produced on the light receiving surface side in the same manner as the translucent underlayer 2 of Example 1 instead of having no translucent underlayer 2. Same as Example 1.

得られた比較例2の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.516V、Jsc=20.94mA/cm2、FF=0.631、そしてEff=6.82%であった。また、比較例2の分光感度を図4に示す。 When the output characteristics of the obtained thin film photoelectric conversion device of Comparative Example 2 were measured in the same manner as in Example 1, Voc = 0.516 V, Jsc = 20.94 mA / cm 2 , FF = 0.631, and Eff = 6. 82%. The spectral sensitivity of Comparative Example 2 is shown in FIG.

比較例2は、比較例1よりJscが増加したが、実施例1に比べてJscが低くなって、Effが低くなっている。この凹凸層6は、図3の実施例1の透過スペクトルから判断して、無反射層の効果はないといえる。比較例1に対してややJscが増加したのは光散乱効果によると考えられるが、凹凸層6が受光面側にあるため、透光性絶縁基板1の厚みの分、散乱された光が光電変換ユニット4に入射しにくくなって、実施例1よりJscが低くなったと考えられる。   In Comparative Example 2, Jsc increased compared to Comparative Example 1, but Jsc was lower and Eff was lower than Example 1. Judging from the transmission spectrum of Example 1 in FIG. 3, the uneven layer 6 can be said to have no effect of the non-reflective layer. Although it is considered that the Jsc slightly increased as compared with Comparative Example 1, the light scattering effect is considered. However, since the uneven layer 6 is on the light receiving surface side, the scattered light is photoelectrically equivalent to the thickness of the translucent insulating substrate 1. It is considered that the Jsc is lower than that of Example 1 because it is difficult to enter the conversion unit 4.

また、比較例2を60日間の屋外暴露を行った後、特性を測定したところ、Effの保持率は87%であった。これは、受光面の凹凸層6が屋外暴露によって汚れがつくともに、微細な凹凸に破損がみられ、このため透過率の低下、散乱効果の低減が起こって特性が低下したといえる。   Moreover, when the comparative example 2 was exposed outdoors for 60 days and then the characteristics were measured, the retention rate of Eff was 87%. This can be said that the uneven layer 6 on the light-receiving surface is soiled by exposure to the outside, and the fine unevenness is damaged, and thus the transmittance and the scattering effect are reduced, and the characteristics are deteriorated.

(比較例3)
従来法による比較例3として、比較例1に類似の薄膜光電変換装置を作製した。比較例3は、周期的凹凸の透光性下地層2がなく、透光性第一電極層3としてランダムな凹凸を有する酸化錫がガラス基板についた市販品を用いたことが比較例1と異なる。その他の点は、薄膜光電変換装置の構造、作製方法は比較例1と同様とした。
(Comparative Example 3)
As Comparative Example 3 by a conventional method, a thin film photoelectric conversion device similar to Comparative Example 1 was produced. In Comparative Example 3, the transparent base layer 2 having periodic unevenness was used, and a commercially available product in which tin oxide having random unevenness was attached to the glass substrate as the transparent first electrode layer 3 was used as Comparative Example 1 Different. In other respects, the structure and manufacturing method of the thin film photoelectric conversion device were the same as those in Comparative Example 1.

得られた比較例3の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.512V、Jsc=21.35mA/cm2、FF=0.630、そしてEff=6.89%であった。また、比較例3の分光感度を図8に示す。 When the output characteristics of the obtained thin film photoelectric conversion device of Comparative Example 3 were measured in the same manner as in Example 1, Voc = 0.512 V, Jsc = 21.35 mA / cm 2 , FF = 0.630, and Eff = 6. It was 89%. The spectral sensitivity of Comparative Example 3 is shown in FIG.

比較例3は、比較例2よりJscが増加したが、実施例1に比べてJscが低くなって、Effが低くなっている。比較例3は、透光性第一電極層3のランダムな凹凸により、光散乱効果がある程度あり、Jscが比較例1、2より高くなっているが、実施例1のJscはさらに高く、周期的凹凸構造を内面に持つ実施例1のほうが、光散乱効果がより高いといえる。   In Comparative Example 3, Jsc increased compared to Comparative Example 2, but Jsc was lower and Eff was lower than Example 1. Comparative Example 3 has a light scattering effect to some extent due to the random unevenness of the translucent first electrode layer 3, and Jsc is higher than Comparative Examples 1 and 2. However, Jsc of Example 1 is higher and the period is higher. It can be said that the light scattering effect is higher in Example 1 having an internal uneven structure on the inner surface.

図8から、700〜1000nmの広い波長範囲で実施例1が比較例3より分光感度が高くなっている。通常、広い波長範囲で光散乱効果を得るためには、さまざまなサイズの凹凸が必須で、ランダムな凹凸構造が必要と一般的に考えられる。逆に周期的な凹凸構造の場合、特定の波長だけに光散乱効果があると一般的には考えられる。しかし、図8で明らかなように、本発明の周期的な凹凸構造を持つ薄膜光電変換装置は特定の波長だけに光散乱効果があるのではなく、意外なことに、広い波長範囲で散乱効果があることがわかる。   From FIG. 8, the spectral sensitivity of Example 1 is higher than that of Comparative Example 3 over a wide wavelength range of 700 to 1000 nm. Usually, in order to obtain a light scattering effect in a wide wavelength range, unevenness of various sizes is essential, and it is generally considered that a random uneven structure is necessary. Conversely, in the case of a periodic uneven structure, it is generally considered that only a specific wavelength has a light scattering effect. However, as is apparent from FIG. 8, the thin film photoelectric conversion device having a periodic uneven structure according to the present invention does not have a light scattering effect only at a specific wavelength. I understand that there is.

なお、300〜400nmで比較例3の分光感度が実施例1より高いのは、比較例3の透明電極層材料である酸化錫の吸収係数が、実施例1の透明電極層材料ZnOより低いためで、本発明の本質の光散乱効果とは無関係である。   Note that the spectral sensitivity of Comparative Example 3 is higher than that of Example 1 at 300 to 400 nm because the absorption coefficient of tin oxide, which is the transparent electrode layer material of Comparative Example 3, is lower than that of the transparent electrode layer material ZnO of Example 1. Thus, it is unrelated to the light scattering effect of the present invention.

(実施例2)
本発明の実施例2として、図1に示す構造の薄膜光電変換装置9を作製した。実施例2は、透光性下地層2をナノインプリントで作製するときの押し圧を20MPaとしたことを除いて、その構造、作製方法は実施例1と同様とした。
(Example 2)
As Example 2 of the present invention, a thin film photoelectric conversion device 9 having the structure shown in FIG. 1 was produced. In Example 2, the structure and the production method were the same as those in Example 1, except that the pressing pressure when producing the translucent underlayer 2 by nanoimprinting was 20 MPa.

実施例2の透光性下地層2をSEMで観察したところ、円柱状の穴が観察され、L=320nm、D=320nm、アスペクト比D/L=1.0であった。   When the light-transmitting underlayer 2 of Example 2 was observed by SEM, cylindrical holes were observed, and L = 320 nm, D = 320 nm, and aspect ratio D / L = 1.0.

得られた実施例2の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.520V、Jsc=22.43mA/cm2、FF=0.632、そしてEff=7.37%であった。実施例2は、実施例1に比べて透光性下地層2のアスペクト比が1に増加して、Jscが増加して、Effが向上している。 When the output characteristics of the obtained thin film photoelectric conversion device of Example 2 were measured in the same manner as in Example 1, Voc = 0.520V, Jsc = 22.43 mA / cm 2 , FF = 0.632, and Eff = 7. 37%. In the second embodiment, the aspect ratio of the light-transmitting underlayer 2 is increased to 1, the Jsc is increased, and the Eff is improved as compared with the first embodiment.

(実施例3)
本発明の実施例3として、図1に示す構造の薄膜光電変換装置9を作製した。実施例3は、透光性下地層2を形成するときのモールドに円柱型で高さ500nm、ピッチ500nmのものを用いたことを除いて、その構造、作製方法は実施例2と同様とした。
(Example 3)
As Example 3 of the present invention, a thin film photoelectric conversion device 9 having the structure shown in FIG. 1 was produced. In Example 3, the structure and the manufacturing method were the same as those in Example 2 except that a cylindrical mold having a height of 500 nm and a pitch of 500 nm was used for forming the light-transmitting underlayer 2. .

実施例3の透光性下地層2をSEMで観察したところ、円柱状の穴が観察され、L=500nm、D=500nm、アスペクト比D/L=1.0であった。   When the light-transmitting underlayer 2 of Example 3 was observed by SEM, cylindrical holes were observed, and L = 500 nm, D = 500 nm, and aspect ratio D / L = 1.0.

得られた実施例3の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.518V、Jsc=23.35mA/cm2、FF=0.627、そしてEff=7.58%であった。実施例3は、実施例2に比べてさらにJscが増加して、Effが向上している。 When the output characteristics of the obtained thin film photoelectric conversion device of Example 3 were measured in the same manner as in Example 1, Voc = 0.518 V, Jsc = 23.35 mA / cm 2 , FF = 0.627, and Eff = 7. 58%. In Example 3, Jsc further increased and Eff improved compared to Example 2.

(実施例4)
本発明の実施例4として、図1に示す構造の薄膜光電変換装置9を作製した。実施例4は、透光性下地層2を形成するときの塗布膜202の厚さを1000nmとしたことと、モールドに円柱型で高さ1000nm、ピッチ1000nmのもの用いたことを除いて、その構造、作製方法は実施例2と同様とした。
Example 4
As Example 4 of this invention, the thin film photoelectric conversion apparatus 9 of the structure shown in FIG. 1 was produced. In Example 4, the thickness of the coating film 202 when forming the light-transmitting underlayer 2 was set to 1000 nm, and the mold was used in a cylindrical shape with a height of 1000 nm and a pitch of 1000 nm. The structure and manufacturing method were the same as in Example 2.

実施例4の透光性下地層2をSEMで観察したところ、円柱状の穴が観察され、L=1000nm、D=950nm、アスペクト比D/L=0.95であった。図9にSEM像を示す。   When the light-transmitting underlayer 2 of Example 4 was observed by SEM, cylindrical holes were observed, L = 1000 nm, D = 950 nm, and aspect ratio D / L = 0.95. FIG. 9 shows an SEM image.

得られた実施例4の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.517V、Jsc=22.48mA/cm2、FF=0.625、そしてEff=7.26%であった。 When the output characteristics of the obtained thin film photoelectric conversion device of Example 4 were measured in the same manner as in Example 1, Voc = 0.517V, Jsc = 2.48 mA / cm 2 , FF = 0.625, and Eff = 7. 26%.

(実施例5)
本発明の実施例5として、図1に示す構造の薄膜光電変換装置9を作製した。実施例5は、透光性下地層2を形成するときの塗布膜202の厚さを2000nmとしたことと、モールドに円柱型で高さ2000nm、ピッチ2000nmのものを用いたことを除いて、その構造、作製方法は実施例2と同様とした。
(Example 5)
As Example 5 of the present invention, a thin film photoelectric conversion device 9 having the structure shown in FIG. 1 was produced. In Example 5, the thickness of the coating film 202 when forming the translucent underlayer 2 was set to 2000 nm, and a mold having a cylindrical shape with a height of 2000 nm and a pitch of 2000 nm was used. The structure and manufacturing method were the same as in Example 2.

実施例5の透光性下地層2をSEMで観察したところ、円柱状の穴が観察され、L=2000nm、D=1800nm、アスペクト比D/L=0.90であった。   When the light-transmitting underlayer 2 of Example 5 was observed by SEM, cylindrical holes were observed, and L = 2000 nm, D = 1800 nm, and aspect ratio D / L = 0.90.

得られた実施例5の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.516V、Jsc=22.15mA/cm2、FF=0.620、そしてEff=7.09%であった。 When the output characteristics of the obtained thin film photoelectric conversion device of Example 5 were measured in the same manner as in Example 1, Voc = 0.516 V, Jsc = 22.25 mA / cm 2 , FF = 0.620, and Eff = 7. 09%.

(実施例6)
本発明の実施例6として、図1に示す構造の薄膜光電変換装置9を作製した。実施例6は、透光性下地層2を形成するときの塗布膜202の厚さを10000nmとしたことと、モールドに円柱型で高さ9500nm、ピッチ9500nmのものを用いたことを除いて、その構造、作製方法は実施例2と同様とした。
(Example 6)
As Example 6 of this invention, the thin film photoelectric conversion apparatus 9 of the structure shown in FIG. 1 was produced. In Example 6, except that the thickness of the coating film 202 when forming the translucent underlayer 2 was 10000 nm, and a mold having a cylindrical shape with a height of 9500 nm and a pitch of 9500 nm was used. The structure and manufacturing method were the same as in Example 2.

実施例6の透光性下地層2をSEMで観察したところ、円柱状の穴が観察され、L=9500nm、D=8000nm、アスペクト比D/L=0.842であった。   When the light-transmitting underlayer 2 of Example 6 was observed by SEM, cylindrical holes were observed, L = 9500 nm, D = 8000 nm, and aspect ratio D / L = 0.842.

得られた実施例6の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.518V、Jsc=21.76mA/cm2、FF=0.618、そしてEff=6.97%であった。 When the output characteristics of the obtained thin film photoelectric conversion device of Example 6 were measured in the same manner as in Example 1, Voc = 0.518 V, Jsc = 21.76 mA / cm 2 , FF = 0.618, and Eff = 6. 97%.

(実施例7)
本発明の実施例7として、図1に示す構造の薄膜光電変換装置9を作製した。実施例7は、透光性下地層2を形成するときの塗布膜202の厚さを200nmとしたことと、モールドに円柱型で高さ120nm、ピッチ120nmのものを用いたことを除いて、その構造、作製方法は実施例2と同様とした。
(Example 7)
As Example 7 of the present invention, a thin film photoelectric conversion device 9 having the structure shown in FIG. 1 was produced. In Example 7, the thickness of the coating film 202 when forming the translucent underlayer 2 was set to 200 nm, and a mold having a cylindrical shape with a height of 120 nm and a pitch of 120 nm was used. The structure and manufacturing method were the same as in Example 2.

実施例7の透光性下地層2をSEMで観察したところ、円柱状の穴が観察され、L=120nm、D=120nm、アスペクト比D/L=1.0であった。   When the light-transmitting underlayer 2 of Example 7 was observed by SEM, cylindrical holes were observed, and L = 120 nm, D = 120 nm, and the aspect ratio D / L = 1.0.

得られた実施例7の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.517V、Jsc=21.41mA/cm2、FF=0.634、そしてEff=7.02%であった。 When the output characteristics of the thin film photoelectric conversion device of Example 7 obtained were measured in the same manner as in Example 1, Voc = 0.517V, Jsc = 21.41 mA / cm 2 , FF = 0.634, and Eff = 7. 02%.

(実施例8)
本発明の実施例8として、図1に示す構造の薄膜光電変換装置9を作製した。実施例8は、透光性下地層2をナノインプリントで作製するときの押し圧を7MPaとしたことを除いて、その構造、作製方法は実施例3と同様とした。
(Example 8)
As Example 8 of the present invention, a thin film photoelectric conversion device 9 having the structure shown in FIG. 1 was produced. In Example 8, the structure and the production method were the same as those in Example 3 except that the pressing pressure when producing the translucent underlayer 2 by nanoimprinting was 7 MPa.

実施例8の透光性下地層2をSEMで観察したところ、円柱状の穴が観察され、L=500nm、D=250nm、アスペクト比D/L=0.5であった。   When the light-transmitting underlayer 2 of Example 8 was observed by SEM, cylindrical holes were observed, and L = 500 nm, D = 250 nm, and aspect ratio D / L = 0.5.

得られた実施例8の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.517V、Jsc=21.55mA/cm2、FF=0.630、そしてEff=7.02%であった。 When the output characteristics of the obtained thin film photoelectric conversion device of Example 8 were measured in the same manner as in Example 1, Voc = 0.517V, Jsc = 21.55 mA / cm 2 , FF = 0.630, and Eff = 7. 02%.

(実施例9)
本発明の実施例9として、図1に示す構造の薄膜光電変換装置9を作製した。実施例9は、透光性下地層2を形成するときの塗布膜202の厚さを1000nmとしたことと、モールドに円柱型で高さ1000nm、ピッチ500nmのものを用いたことを除いて、その構造、作製方法は実施例2と同様とした。
Example 9
As Example 9 of the present invention, a thin film photoelectric conversion device 9 having a structure shown in FIG. 1 was produced. In Example 9, except that the thickness of the coating film 202 when forming the translucent underlayer 2 was 1000 nm, and a mold having a cylindrical shape with a height of 1000 nm and a pitch of 500 nm was used. The structure and manufacturing method were the same as in Example 2.

実施例9の透光性下地層2をSEMで観察したところ、円柱状の穴が観察され、L=500nm、D=1000nm、アスペクト比D/L=2.0であった。   When the light-transmitting underlayer 2 of Example 9 was observed by SEM, cylindrical holes were observed, and L = 500 nm, D = 1000 nm, and aspect ratio D / L = 2.0.

得られた実施例9の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.516V、Jsc=24.35mA/cm2、FF=0.627、そしてEff=7.88%であった。 When the output characteristics of the obtained thin film photoelectric conversion device of Example 9 were measured in the same manner as in Example 1, Voc = 0.516 V, Jsc = 24.35 mA / cm 2 , FF = 0.627, and Eff = 7. It was 88%.

(実施例10)
本発明の実施例10として、図1に示す構造の薄膜光電変換装置9を作製した。実施例10は、透光性下地層2を形成するときの塗布膜202の厚さを2000nmとしたことと、モールドに円柱型で高さ2000nm、ピッチ500nmのものを用いたことを除いて、その構造、作製方法は実施例2と同様とした。
(Example 10)
As Example 10 of this invention, the thin film photoelectric conversion apparatus 9 of the structure shown in FIG. 1 was produced. In Example 10, except that the thickness of the coating film 202 when forming the light-transmitting underlayer 2 was 2000 nm, and a mold having a cylindrical shape with a height of 2000 nm and a pitch of 500 nm was used. The structure and manufacturing method were the same as in Example 2.

実施例10の透光性下地層2をSEMで観察したところ、円柱状の穴が観察され、L=500nm、D=2000nm、アスペクト比D/L=4.0であった。   When the light-transmitting underlayer 2 of Example 10 was observed with an SEM, cylindrical holes were observed, L = 500 nm, D = 2000 nm, and aspect ratio D / L = 4.0.

得られた実施例10の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.515V、Jsc=25.17mA/cm2、FF=0.619、そしてEff=8.02%であった。 When the output characteristics of the obtained thin film photoelectric conversion device of Example 10 were measured in the same manner as in Example 1, Voc = 0.515 V, Jsc = 2.17 mA / cm 2 , FF = 0.619, and Eff = 8. 02%.

(実施例11)
本発明の実施例11として、図7に示す構造の薄膜光電変換装置93を作製した。基板11として、厚み1mm、50mm×50mmのステンレス基板(SUS304)を用いた。下地層21は、実施例3と同様に作製した。実施例11の下地層21をSEMで観察したところ、円柱状の穴が観察され、L=500nm、D=500nm、アスペクト比D/L=1.0であった。
(Example 11)
As Example 11 of the present invention, a thin film photoelectric conversion device 93 having a structure shown in FIG. 7 was produced. As the substrate 11, a stainless steel substrate (SUS304) having a thickness of 1 mm and 50 mm × 50 mm was used. The underlayer 21 was produced in the same manner as in Example 3. When the underlayer 21 of Example 11 was observed by SEM, cylindrical holes were observed, and L = 500 nm, D = 500 nm, and the aspect ratio D / L = 1.0.

その上に、スパッタ法を用いて、第一電極層31として厚さ90nmの3重量%Al23がドープされたZnOの導電性酸化物層と厚さ200nmのAgの金属層、さらに厚さ90nmの3重量%Al23がドープされたZnOの導電性酸化物層を、スパッタ法にて順次形成した。その上に結晶質光電変換ユニット4を、積層順をn型層、i型層、p型層としたことを除いて実施例1と同様に作製した。さらに、透光性第二電極層51として、厚さ70nmのITOを、開口面積1cm2のマスクを用いて、スパッタ法で形成した。 Further, a ZnO conductive oxide layer doped with 3 wt% Al 2 O 3 with a thickness of 90 nm and an Ag metal layer with a thickness of 200 nm are formed as a first electrode layer 31 by sputtering. A conductive oxide layer of ZnO doped with 3 wt% Al 2 O 3 having a thickness of 90 nm was sequentially formed by sputtering. A crystalline photoelectric conversion unit 4 was produced in the same manner as in Example 1 except that the stacking order was an n-type layer, an i-type layer, and a p-type layer. Further, as the translucent second electrode layer 51, ITO having a thickness of 70 nm was formed by sputtering using a mask having an opening area of 1 cm 2 .

得られた実施例11の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.520V、Jsc=23.62mA/cm2、FF=0.635、そしてEff=7.80%であった。 When the output characteristics of the obtained thin film photoelectric conversion device of Example 11 were measured in the same manner as in Example 1, Voc = 0.520V, Jsc = 23.62 mA / cm 2 , FF = 0.635, and Eff = 7. 80%.

(比較例4)
従来法による比較例4として、薄膜光電変換装置を作製した。比較例4は、下地層21がないことを除いて、その構造、作製方法は実施例11と同様とした。
(Comparative Example 4)
As Comparative Example 4 by a conventional method, a thin film photoelectric conversion device was produced. In Comparative Example 4, the structure and the manufacturing method were the same as those in Example 11 except that the base layer 21 was not provided.

得られた比較例4の薄膜光電変換装置の出力特性を実施例1と同様に測定ところ、Voc=0.519V、Jsc=20.57mA/cm2、FF=0.634、そしてEff=6.77%であった。 When the output characteristics of the obtained thin film photoelectric conversion device of Comparative Example 4 were measured in the same manner as in Example 1, Voc = 0.519 V, Jsc = 20.57 mA / cm 2 , FF = 0.634, and Eff = 6. 77%.

(実施例1〜11、比較例1〜4)
表1に実施例1〜11、比較例1〜4の薄膜光電変換装置の作製方法の概要と特性をまとめて示す。
(Examples 1-11, Comparative Examples 1-4)
Table 1 summarizes the outline and characteristics of the manufacturing methods of the thin film photoelectric conversion devices of Examples 1 to 11 and Comparative Examples 1 to 4.

1 透光性絶縁基板
11 基板
2 透光性下地層
21 下地層
201 塗布液
202 塗布膜
3 透光性第一電極層
31 第一電極層
4 結晶質シリコン光電変換ユニット
41 p型微結晶シリコン層
42 実質的に真性な結晶質シリコン光電変換層
43 n型微結晶シリコン層
5 第二電極層
51 透光性第二電極層
6 凹凸層
7 入射光
801 洗浄槽
802 洗浄液
803 ステージ
804 プレス板
805 モールド
806 オーブン
9 本発明の薄膜光電変換装置
91 従来法による薄膜光電変換装置
92 別の従来法による薄膜光電変換装置
93 別の本発明による薄膜光電変換装置
DESCRIPTION OF SYMBOLS 1 Translucent insulating substrate 11 Substrate 2 Translucent foundation layer 21 Underlayer 201 Coating liquid 202 Coating film 3 Translucent first electrode layer 31 First electrode layer 4 Crystalline silicon photoelectric conversion unit 41 p-type microcrystalline silicon layer 42 substantially intrinsic crystalline silicon photoelectric conversion layer 43 n-type microcrystalline silicon layer 5 second electrode layer 51 translucent second electrode layer 6 uneven layer 7 incident light 801 cleaning tank 802 cleaning liquid 803 stage 804 press plate 805 mold 806 Oven 9 Thin Film Photoelectric Conversion Device According to the Present Invention 91 Thin Film Photoelectric Conversion Device According to Conventional Method 92 Thin Film Photoelectric Conversion Device According to Another Conventional Method 93 Thin Film Photoelectric Conversion Device According to Another Present Invention

Claims (11)

基板に近い側から順に、第一電極層、1以上の光電変換ユニットを含む半導体層、第二電極層を、順次配置した構造を含む薄膜光電変換装置であって、基板と第一電極の間に下地層を含み、かつ前記下地層が基板の一主面に平行な方向に微細な周期的凹凸を有することを特徴とする薄膜光電変換装置。   A thin film photoelectric conversion device including a structure in which a first electrode layer, a semiconductor layer including one or more photoelectric conversion units, and a second electrode layer are sequentially arranged from the side closer to the substrate, between the substrate and the first electrode A thin film photoelectric conversion device comprising: a base layer, wherein the base layer has fine periodic irregularities in a direction parallel to one main surface of the substrate. 請求項1に記載の薄膜光電変換装置であって、前記下地層の基板の一主面に平行した方向の凹凸のピッチ(L)が、入射光の最小波長以上の長さであることを特徴とする薄膜光電変換装置。   2. The thin film photoelectric conversion device according to claim 1, wherein a pitch (L) of unevenness in a direction parallel to one main surface of the substrate of the base layer is a length equal to or longer than a minimum wavelength of incident light. A thin film photoelectric conversion device. 請求項1に記載の薄膜光電変換装置であって、前記下地層の基板の一主面に平行した方向の凹凸のピッチ(L)が、100nmより大きく10μm以下、望ましくは300nmより大きく2μm以下であることを特徴とする薄膜光電変換装置。   2. The thin-film photoelectric conversion device according to claim 1, wherein an unevenness pitch (L) in a direction parallel to one principal surface of the substrate of the base layer is greater than 100 nm and less than or equal to 10 μm, desirably greater than 300 nm and less than or equal to 2 μm. There is a thin film photoelectric conversion device. 請求項1に記載の薄膜光電変換装置であって、前記下地層の基板の一主面に平行した方向の凹凸のピッチ(L)が、300nmより大きく2μm以下であることを特徴とする薄膜光電変換装置。   2. The thin film photoelectric conversion device according to claim 1, wherein a pitch (L) of unevenness in a direction parallel to one main surface of the substrate of the base layer is greater than 300 nm and equal to or less than 2 μm. Conversion device. 請求項1乃至4のいずれかに記載の薄膜光電変換装置であって、前記下地層は基板の一主面に鉛直な方向の凹凸の高低差Dと、前記Lの比(D/L)であるアスペクト比が1以上であることを特徴とする薄膜光電変換装置。   5. The thin-film photoelectric conversion device according to claim 1, wherein the underlayer has a height difference D of unevenness in a direction perpendicular to one main surface of the substrate and a ratio of L (D / L). A thin film photoelectric conversion device having an aspect ratio of 1 or more. 請求項1乃至5のいずれかに記載の薄膜光電変換装置であって、前記下地層はシリコン酸化物であることを特徴とする薄膜光電変換装置。   6. The thin film photoelectric conversion device according to claim 1, wherein the underlayer is silicon oxide. 請求項1乃至6のいずれかに記載の薄膜光電変換装置であって、透光性絶縁基板の一主面上に、透光性下地層、透光性第一電極層、1以上の光電変換ユニットを含む半導体層、第二電極層を順次配置し、基板を透過して光を入射することを特徴とする薄膜光電変換装置。   The thin-film photoelectric conversion device according to claim 1, wherein a light-transmitting underlayer, a light-transmitting first electrode layer, and one or more photoelectric conversions are provided on one main surface of the light-transmitting insulating substrate. A thin film photoelectric conversion device, wherein a semiconductor layer including a unit and a second electrode layer are sequentially arranged, and light is incident through the substrate. 請求項1乃至6のいずれかに記載の薄膜光電変換装置であって、基板の一主面上に、下地層、第一電極層、1以上の光電変換ユニットを含む半導体層、透光性第二電極層を順次配置し、透光性第二電極層を透過して光を入射することを特徴とする薄膜光電変換装置。   7. The thin film photoelectric conversion device according to claim 1, wherein a base layer, a first electrode layer, a semiconductor layer including one or more photoelectric conversion units, a translucent layer on one main surface of the substrate. A thin film photoelectric conversion device, wherein two electrode layers are sequentially arranged, and light enters through a light-transmitting second electrode layer. 請求項1乃至8のいずれかに記載の薄膜光電変換装置の製造方法であって、前記下地層を作製する工程が、ナノインプリント法を用いることを特徴とする薄膜光電変換装置の製造方法。   9. The method for manufacturing a thin film photoelectric conversion device according to claim 1, wherein the step of forming the underlayer uses a nanoimprint method. 請求項9に記載の薄膜光電変換装置の製造方法であって、前記下地層を作製する工程が、水素シルセスキオキサン樹脂(HSQ)を含む混合液を前記基板上に塗布し、微細な周期的凹凸をもつ金型を室温で型押しし、金型を離型した後、加熱および/または加水分解によって硬化処理を行うことによって、前記下地層を作製することを特徴とする薄膜光電変換装置の製造方法。   10. The method of manufacturing a thin film photoelectric conversion device according to claim 9, wherein the step of forming the base layer is performed by applying a liquid mixture containing hydrogen silsesquioxane resin (HSQ) on the substrate, and performing a fine cycle. A thin-film photoelectric conversion device, wherein the underlayer is produced by pressing a mold having irregularities at room temperature, releasing the mold, and performing a curing process by heating and / or hydrolysis Manufacturing method. 請求項9に記載の薄膜光電変換装置の製造方法であって、前記下地層を作製する工程が、アルコキシシランを含むゾルゲル材料を前記基板上に塗布した後、第一の温度で加熱し、微細な周期的凹凸をもつ金型を型押しし、第一の温度より高い第二の温度で加熱した後、金型を離型することによって、前記下地層を作製することを特徴とする薄膜光電変換装置の製造方法。   10. The method for manufacturing a thin film photoelectric conversion device according to claim 9, wherein the step of producing the underlayer is performed by applying a sol-gel material containing alkoxysilane on the substrate, and then heating the substrate at a first temperature. A thin-film photoelectric converter characterized by producing a base layer by embossing a mold having periodic irregularities, heating the mold at a second temperature higher than the first temperature, and then releasing the mold. A method for manufacturing a conversion device.
JP2009158018A 2009-07-02 2009-07-02 Thin film photoelectric conversion device and manufacturing method thereof Expired - Fee Related JP5548400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158018A JP5548400B2 (en) 2009-07-02 2009-07-02 Thin film photoelectric conversion device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158018A JP5548400B2 (en) 2009-07-02 2009-07-02 Thin film photoelectric conversion device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011014736A true JP2011014736A (en) 2011-01-20
JP5548400B2 JP5548400B2 (en) 2014-07-16

Family

ID=43593341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158018A Expired - Fee Related JP5548400B2 (en) 2009-07-02 2009-07-02 Thin film photoelectric conversion device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5548400B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031851A1 (en) * 2011-08-30 2013-03-07 エルシード株式会社 Production method using dry etching of glass substrate having concave-convex film, glass substrate having concave-convex film, solar cell, and production method for solar cell
CN103254457A (en) * 2013-04-11 2013-08-21 宁波大学 Preparation method for solar cell spectrum conversion polymeric membrane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313874A (en) * 1987-05-22 1988-12-21 旭硝子株式会社 Solar battery substrate
JP2000216417A (en) * 1999-01-25 2000-08-04 Goyo Paper Working Co Ltd Substrate with fine uneven pattern
JP2003298076A (en) * 2002-03-29 2003-10-17 Tdk Corp Solar cell and manufacturing method therefor
JP2005079405A (en) * 2003-09-01 2005-03-24 Nippon Steel Corp Stainless steel foil coated with silica-based inorganic polymer film and its manufacturing method
JP2006261265A (en) * 2005-03-16 2006-09-28 Ricoh Opt Ind Co Ltd Phase shifter optical element, manufacturing method thereof, and element obtained with the same method
WO2008148978A2 (en) * 2007-05-04 2008-12-11 Saint-Gobain Glass France Transparent substrate with advanced electrode layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313874A (en) * 1987-05-22 1988-12-21 旭硝子株式会社 Solar battery substrate
JP2000216417A (en) * 1999-01-25 2000-08-04 Goyo Paper Working Co Ltd Substrate with fine uneven pattern
JP2003298076A (en) * 2002-03-29 2003-10-17 Tdk Corp Solar cell and manufacturing method therefor
JP2005079405A (en) * 2003-09-01 2005-03-24 Nippon Steel Corp Stainless steel foil coated with silica-based inorganic polymer film and its manufacturing method
JP2006261265A (en) * 2005-03-16 2006-09-28 Ricoh Opt Ind Co Ltd Phase shifter optical element, manufacturing method thereof, and element obtained with the same method
WO2008148978A2 (en) * 2007-05-04 2008-12-11 Saint-Gobain Glass France Transparent substrate with advanced electrode layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031851A1 (en) * 2011-08-30 2013-03-07 エルシード株式会社 Production method using dry etching of glass substrate having concave-convex film, glass substrate having concave-convex film, solar cell, and production method for solar cell
JP5455142B2 (en) * 2011-08-30 2014-03-26 エルシード株式会社 Manufacturing method using dry etching of glass substrate with uneven structure film, glass substrate with uneven structure film, solar cell, and manufacturing method of solar cell
JP2014064042A (en) * 2011-08-30 2014-04-10 El-Seed Corp Production method for glass substrate with uneven structure film using dry etching, glass substrate with uneven structure film, solar cell, and manufacturing method for solar cell
CN103765603A (en) * 2011-08-30 2014-04-30 崇高种子公司 Production method using dry etching of glass substrate having concave-convex film, glass substrate having concave-convex film, solar cell, and production method for solar cell
JPWO2013031851A1 (en) * 2011-08-30 2015-03-23 エルシード株式会社 Manufacturing method using dry etching of glass substrate with uneven structure film, glass substrate with uneven structure film, solar cell, and manufacturing method of solar cell
US9117967B2 (en) 2011-08-30 2015-08-25 El-Seed Corporation Method of manufacturing glass substrate with concave-convex film using dry etching, glass substrate with concave-convex film, solar cell, and method of manufacturing solar cell
CN103254457A (en) * 2013-04-11 2013-08-21 宁波大学 Preparation method for solar cell spectrum conversion polymeric membrane

Also Published As

Publication number Publication date
JP5548400B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5156641B2 (en) Substrate with transparent conductive film for photoelectric conversion device and method for manufacturing photoelectric conversion device
JP5600660B2 (en) Thin film solar cell substrate and method for manufacturing thin film solar cell
JP5514207B2 (en) Crystalline silicon solar cell and manufacturing method thereof
JP4811945B2 (en) Thin film photoelectric converter
TWI438904B (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
JP5243697B2 (en) Transparent conductive film for photoelectric conversion device and manufacturing method thereof
JP2003347572A (en) Tandem type thin film photoelectric converter and method of manufacturing the same
JP4928337B2 (en) Method for manufacturing photoelectric conversion device
US20140124030A1 (en) Thin film solar cell and method for manufacturing same
JP4713819B2 (en) Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device using the same
JP2008270562A (en) Multi-junction type solar cell
JP4904311B2 (en) Method for manufacturing substrate with transparent conductive film for thin film photoelectric conversion device
KR101076611B1 (en) Solar cell and manufacturing method of the same
JP5270889B2 (en) Method for manufacturing thin film photoelectric conversion device
JP5548400B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
WO2011136177A1 (en) Thin film solar cell and method for manufacturing same, and base with transparent conductive film and method for producing same
JP2009016556A (en) Light scattering film for solar battery, optical member for solar battery and solar battery
JP5469298B2 (en) Transparent conductive film for photoelectric conversion device and method for producing the same
JP2011119480A (en) Method of manufacturing thin film solar cell
JP2011003639A (en) Crystal silicon-based solar cell and manufacturing method thereof
JP2011096730A (en) Thin-film solar cell and method of manufacturing the same
JP2010080672A (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP5650057B2 (en) Transparent electrode substrate and manufacturing method thereof
JP2011187495A (en) Solar battery module
JP5613296B2 (en) Transparent conductive film for photoelectric conversion device, photoelectric conversion device, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140519

R150 Certificate of patent or registration of utility model

Ref document number: 5548400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees