JP5650057B2 - Transparent electrode substrate and manufacturing method thereof - Google Patents

Transparent electrode substrate and manufacturing method thereof Download PDF

Info

Publication number
JP5650057B2
JP5650057B2 JP2011122649A JP2011122649A JP5650057B2 JP 5650057 B2 JP5650057 B2 JP 5650057B2 JP 2011122649 A JP2011122649 A JP 2011122649A JP 2011122649 A JP2011122649 A JP 2011122649A JP 5650057 B2 JP5650057 B2 JP 5650057B2
Authority
JP
Japan
Prior art keywords
substrate
fine particles
transparent electrode
small
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011122649A
Other languages
Japanese (ja)
Other versions
JP2012253089A (en
Inventor
明 田結荘
明 田結荘
裕子 多和田
裕子 多和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2011122649A priority Critical patent/JP5650057B2/en
Publication of JP2012253089A publication Critical patent/JP2012253089A/en
Application granted granted Critical
Publication of JP5650057B2 publication Critical patent/JP5650057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、例えば、薄膜太陽電池用の基板や、タッチパネル用基板、光検出器用基板として好適に用いることのできる、透光性凹凸基板、及びその製造方法に関する。 The present invention relates to a light-transmitting uneven substrate that can be suitably used as, for example, a thin film solar cell substrate, a touch panel substrate, or a photodetector substrate, and a method for manufacturing the same.

太陽電池は各国の導入加速政策によって、普及が急速に拡大している。中でも、低コスト化、高効率化を両立するために原材料が少なくてすむ薄膜太陽電池が注目されている。 The spread of solar cells is rapidly expanding due to the introduction acceleration policy of each country. In particular, thin film solar cells that require less raw materials in order to achieve both cost reduction and high efficiency are attracting attention.

薄膜太陽電池を形成するためには、その一部に透明電極を備えることが不可欠である。すなわち、薄膜太陽電池は、透明電極と裏面電極の間に1以上の光電変換ユニットを含む構造から構成される。そして、光は透明電極側から入射される。透明電極としては、たとえば、酸化錫(SnO2)、酸化亜鉛(ZnO)、酸化インジウム錫(ITOともいう)などの導電性金属酸化物が用いられ、それは、通常、化学気相成長法(CVD法ともいう)、スパッタ、蒸着などの方法で形成される。 In order to form a thin film solar cell, it is indispensable to provide a transparent electrode in a part thereof. That is, a thin film solar cell is comprised from the structure containing 1 or more photoelectric conversion units between a transparent electrode and a back surface electrode. And light injects from the transparent electrode side. As the transparent electrode, for example, a conductive metal oxide such as tin oxide (SnO 2 ), zinc oxide (ZnO), indium tin oxide (also referred to as ITO) is used, which is usually chemical vapor deposition (CVD). It is also formed by a method such as sputtering or vapor deposition.

前記光電変換ユニットは、pn接合またはpin接合を含む半導体層で形成されている。光電変換ユニットがpin接合を含む場合、p型層、i型層、およびn型層がこの順、または逆順に積層されており、そのユニットの主要部を占めるi型の光電変換層が非晶質のものは非晶質光電変換ユニットと呼ばれ、結晶質のものは結晶質光電変換ユニットと呼ばれている。 The photoelectric conversion unit is formed of a semiconductor layer including a pn junction or a pin junction. When the photoelectric conversion unit includes a pin junction, the p-type layer, the i-type layer, and the n-type layer are stacked in this order or in reverse order, and the i-type photoelectric conversion layer that occupies the main part of the unit is amorphous. Those of quality are called amorphous photoelectric conversion units, and those of crystalline quality are called crystalline photoelectric conversion units.

半導体層には、シリコン系薄膜として非晶質シリコン層または結晶質シリコン層を用いることができ、また化合物半導体薄膜としてCuInSe2(略称CIS)といったCIS系、またはCdTeといったCdTe−CdS系などの薄膜が用いられ得る。なお、本願明細書において、「結晶質」と「微結晶」の用語は、部分的に非晶質を含んでいるものを意味する。 As the semiconductor layer, an amorphous silicon layer or a crystalline silicon layer can be used as a silicon-based thin film, and a CIS-based film such as CuInSe 2 (abbreviated CIS) or a CdTe-CdS-based thin film such as CdTe is used as a compound semiconductor thin film. Can be used. In the specification of the present application, the terms “crystalline” and “microcrystalline” mean those partially containing amorphous.

薄膜太陽電池の変換効率を向上させる方法として、2つ以上の光電変換ユニットを積層して積層型薄膜太陽電池にすることが知られている。この方法においては、薄膜太陽電池の光入射側に大きなエネルギバンドギャップを有する光電変換層を含む前方ユニットを配置し、その後ろに順に小さなバンドギャップを有する光電変換層を含む後方ユニットを配置することによって、入射光の広い波長範囲にわたる光電変換を可能にして、太陽電池全体としての変換効率の向上が図られている。積層型薄膜太陽電池の中でも、非晶質光電変換ユニットと結晶質光電変換ユニットを積層したものはハイブリッド型薄膜太陽電池と称されている。 As a method for improving the conversion efficiency of a thin film solar cell, it is known that two or more photoelectric conversion units are stacked to form a stacked thin film solar cell. In this method, a front unit including a photoelectric conversion layer having a large energy band gap is disposed on the light incident side of the thin film solar cell, and a rear unit including a photoelectric conversion layer having a small band gap is disposed behind the front unit. Thus, photoelectric conversion over a wide wavelength range of incident light is enabled, and the conversion efficiency of the entire solar cell is improved. Among stacked thin film solar cells, a stack of an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit is called a hybrid thin film solar cell.

上述のような薄膜太陽電池においては、従来のバルクの単結晶や多結晶のシリコン基板を利用する太陽電池に比べて光電変換層を薄くすることが可能であるが、光吸収が膜厚によって制限されるという問題がある。そこで、光電変換層を含む光電変換ユニットに入射した光をより有効に利用するために、光電変換層から見て光入射側である、透明電極やガラス基板、または裏面電極側である金属層の表面が微細に凹凸化(テクスチャ化)される。すなわち、その微細凹凸界面で光を散乱させた後に光電変換ユニット内へ入射させることによって、光電変換層内での光路を長くして光吸収量を増加させることが意図されている。この表面凹凸(表面テクスチャ)技術は「光閉じ込め」技術とも呼ばれており、高い光電変換効率を有する薄膜太陽電池を実用化する上で重要な基本的技術となっている。 In the thin film solar cell as described above, the photoelectric conversion layer can be made thinner than the conventional solar cell using a bulk single crystal or polycrystalline silicon substrate, but the light absorption is limited by the film thickness. There is a problem of being. Therefore, in order to more effectively use the light incident on the photoelectric conversion unit including the photoelectric conversion layer, the transparent electrode or the glass substrate on the light incident side as viewed from the photoelectric conversion layer, or the metal layer on the back electrode side. The surface is finely textured (textured). That is, it is intended to increase the amount of light absorption by lengthening the optical path in the photoelectric conversion layer by scattering the light at the fine uneven interface and then entering the photoelectric conversion unit. This surface unevenness (surface texture) technology is also called “light confinement” technology, and is an important basic technology for practical use of a thin film solar cell having high photoelectric conversion efficiency.

太陽電池の光閉じ込め技術は、一般に、透明電極の表面凹凸構造(例えば、特許文献1参照)やガラス基板をエッチングやサンドブラスト、微粒子塗布によって凹凸にした構造(例えば、特許文献2〜3参照)により実施されており、均一な凹凸の作製が容易なことから、ガラス基板に凹凸を形成させる手法としては微粒子塗布が用いられることが多い。例えば、特許文献2には、散乱する光の波長は凹凸の大きさに依存していることから、薄膜太陽電池の光閉じ込めに用いられる微粒子の粒径は0.2〜1.5μmの範囲であることが開示されており、特許文献3では同様に透光性微粒子の粒径は10〜100nmであることが開示されている。 The light confinement technology of a solar cell is generally based on a surface uneven structure of a transparent electrode (for example, see Patent Document 1) or a structure in which a glass substrate is made uneven by etching, sandblasting, or fine particle coating (for example, see Patent Documents 2 and 3). Since it is implemented and it is easy to produce uniform irregularities, fine particle coating is often used as a method for forming irregularities on a glass substrate. For example, in Patent Document 2, since the wavelength of the scattered light depends on the size of the unevenness, the particle size of the fine particles used for light confinement of the thin film solar cell is in the range of 0.2 to 1.5 μm. Similarly, Patent Document 3 discloses that the particle diameter of the light-transmitting fine particles is 10 to 100 nm.

特開2003−253435号公報JP 2003-253435 A 特表2002−529937号公報Special Table 2002-529937 特開2005−311292号公報JP-A-2005-311292

本発明者らは、特許文献2に開示の基板に相当する凹凸付きガラス基板を用いて薄膜太陽電池を作製したところ、光閉じ込め効果による薄膜太陽電池の発電電流すなわち短絡電流密度(Jsc)の増加は確認されたが、同時にその凹凸に起因すると思われる開放電圧(Voc)と曲線因子(FF)の低下が観察され、結果的に薄膜太陽電池の変換効率が向上しないという問題が確認された。従って、微粒子を用いて表面凹凸を形成したガラス基板については改善する余地があると言える。 When the present inventors produced a thin film solar cell using a glass substrate with projections and depressions corresponding to the substrate disclosed in Patent Document 2, an increase in power generation current of the thin film solar cell, that is, a short circuit current density (Jsc) due to the light confinement effect. However, at the same time, a decrease in open-circuit voltage (Voc) and fill factor (FF), which are thought to be caused by the unevenness, was observed, and as a result, a problem that the conversion efficiency of the thin-film solar cell was not improved was confirmed. Therefore, it can be said that there is room for improvement for a glass substrate in which surface irregularities are formed using fine particles.

本発明の目的は、例えば、薄膜太陽電池に本発明に係る透光性凹凸基板を適用した場合に、基板の凹凸に起因する薄膜太陽電池のVocおよびFFを低下させることなく、Jscを向上させることができ、薄膜太陽電池の変換効率を向上できる、透明電極基板を提供することにある。 An object of the present invention is to improve Jsc without lowering Voc and FF of a thin film solar cell caused by the unevenness of the substrate when, for example, the translucent uneven substrate according to the present invention is applied to the thin film solar cell. It is possible to provide a transparent electrode substrate that can improve the conversion efficiency of a thin film solar cell.

本発明者らは、前記課題に基づき鋭意検討を行った結果、透光性基板の一主面である下地面において、大きな微粒子の上部に小さな微粒子を付着させることなく、大きな微粒子の周囲に小さな微粒子を固定させることで、薄膜太陽電池の変換効率が向上することを見出し、本発明を完成させるに至った。 As a result of intensive studies based on the above problems, the inventors of the present invention have found that a small surface around a large fine particle does not adhere to the upper surface of the large fine particle on the base surface, which is one main surface of the translucent substrate. It has been found that the conversion efficiency of the thin-film solar cell is improved by fixing the fine particles, and the present invention has been completed.

すなわち本発明の第1は、少なくとも大きな微粒子と小さな微粒子の2種類を含有し、各微粒子がバインダーで基板の一主面である下地面上に固定されている下地層を有する透光性凹凸基板上に透明電極層が積層された透明電極基板であって、記下地層上に前記透明電極層が積層された透明電極基板において、記大きな微粒子の平均粒径は0.4μm以上1.5μm以下であり、かつ、大きな微粒子は基板の粒子被覆率が10%以上80%以下となるように下地層中に単層で存在し、記小さな微粒子の平均粒径は50nm以上150nm以下であり、かつ小さな微粒子は実質的に前記大きな微粒子の周囲に隣接して存在し、さらに、前記大きな微粒子の上部に存在する前記小さな微粒子の量は、その他の部分に存在する小さな微粒子の量に対して20%以下であることを特徴とする、透明電極基板に関する。
つまり、少なくとも大きな微粒子と小さな微粒子の2種類を含有し、各微粒子がバインダーで基板の一主面である下地面上に固定されている下地層を有する透光性凹凸基板であって、前記大きな微粒子の平均粒径は0.4μm以上1.5μm以下であり、かつ、大きな微粒子は基板の粒子被覆率が10%以上80%以下となるように下地層中に単層で存在し、前記小さな微粒子の平均粒径は50nm以上150nm以下であり、かつ小さな微粒子は実質的に前記大きな微粒子の周囲に隣接して存在し、さらに、前記大きな微粒子の上部に存在する前記小さな微粒子の量は、その他の部分に存在する小さな微粒子の量に対して20%以下であることを特徴とする。
That is, the first aspect of the present invention is a translucent uneven substrate having at least two kinds of large fine particles and small fine particles, each of which has a base layer fixed on a base surface which is one main surface of the substrate with a binder. A transparent electrode substrate having a transparent electrode layer laminated thereon, wherein the average particle size of the large fine particles is 0.4 μm to 1.5 μm in the transparent electrode substrate having the transparent electrode layer laminated on the underlayer. And the large fine particles are present in a single layer in the underlayer so that the particle coverage of the substrate is 10% or more and 80% or less, and the average particle size of the small fine particles is 50 nm or more and 150 nm or less, and Small particulates are present substantially adjacent to the periphery of the large particulate, and the amount of the small particulate present on top of the large particulate is relative to the amount of small particulate present elsewhere. It is related with a transparent electrode substrate characterized by being 20% or less.
That is, the translucent uneven substrate having at least two kinds of large fine particles and small fine particles, each fine particle having a base layer fixed on a base surface which is one main surface of the substrate with a binder, The average particle diameter of the fine particles is 0.4 μm or more and 1.5 μm or less, and the large fine particles are present in a single layer in the underlayer so that the particle coverage of the substrate is 10% or more and 80% or less. The average particle size of the fine particles is 50 nm or more and 150 nm or less, and the small fine particles are present substantially adjacent to the periphery of the large fine particles. Further, the amount of the small fine particles present on the large fine particles you equal to or less than 20% relative to the amount of small particles present in the parts.

好ましい実施態様は、前記透光性凹凸基板は、前記の大きな微粒子と小さな微粒子が同一の材料からなることを特徴とする、前記の透明電極基板に関する
すなわち、前記の大きな微粒子と小さな微粒子が同一の材料からなることを特徴とする
A preferred embodiment relates to the transparent electrode substrate, wherein the light-transmitting concavo-convex substrate is composed of the same material for the large fine particles and the small fine particles .
That is, the large fine particles and the small fine particles are made of the same material .

好ましい実施態様は、前記透光性凹凸基板は、前記小さな微粒子が前記下地面とは反対側の基板の一主面にも固定されており、前記下地面とは反対側の基板の一主面における反射率が2%以下であることを特徴とする、前記いずれかの透明電極基板に関する
すなわち、前記小さな微粒子が前記下地面とは反対側の基板の一主面にも固定されており、前記下地面とは反対側の基板の一主面における反射率が2%以下であることを特徴とする
In a preferred embodiment, the light-transmitting concavo-convex substrate has the small fine particles fixed to one main surface of the substrate opposite to the base surface, and one main surface of the substrate opposite to the base surface. In any one of the said transparent electrode substrates, The reflectance in 2 is below 2% .
That is, the small fine particles are also fixed to one main surface of the substrate opposite to the base surface, and the reflectance on the one main surface of the substrate opposite to the base surface is 2% or less. Features .

本発明の第2は、前記いずれかの透明電極基板の製造方法であって、前記透光性凹凸基板を形成する際に、下地面に大きな微粒子を固定した後、小さな微粒子を含有する溶液中に当該基板をディッピングして小さな微粒子を固定することを特徴とする、透明電極基板の製造方法に関する。
すなわち、前記いずれかの透光性凹凸基板の製造方法であって、基板の下地面に大きな微粒子を固定した後、小さな微粒子を含有する溶液中に当該基板をディッピングして小さな微粒子を固定することを特徴とする。
A second aspect of the present invention is the method for producing any one of the transparent electrode substrates, wherein when forming the light-transmitting concavo-convex substrate, a large fine particle is fixed on a base surface and then in a solution containing small fine particles. The present invention relates to a method for producing a transparent electrode substrate, wherein the substrate is dipped to fix small fine particles.
That is, in any one of the above methods for producing a light-transmitting uneven substrate, after fixing large particles on the ground of the substrate, the substrate is dipped in a solution containing small particles to fix the small particles. the shall be the feature.

好ましい実施態様は、前記透光性凹凸基板を形成する際に、前記大きな微粒子をディッピング法で下地面に塗布し、固定することを特徴とする、前記の透明電極基板の製造方法に関する。
すなわち、前記大きな微粒子をディッピング法で下地面に塗布し、固定することを特徴とする。
A preferred embodiment relates to the method for producing a transparent electrode substrate, wherein when forming the translucent uneven substrate, the large fine particles are applied to a base surface by dipping and fixed.
That is, the coated large particles to the substrate surface by a dipping method, characterized in that fixed.

本発明によれば、透光性凹凸基板を、例えば薄膜太陽電池用の基板として光入射側に用いることで、薄膜太陽電池の変換効率を向上させることができる。特に、本発明に係る透光性凹凸基板においては、急峻な凹凸を緩和させているため、当該基板を用いて形成される薄膜太陽電池のVocおよびFFを低下させることなく、太陽光の主波長域(400〜1200nm)で高い拡散透過率と全光線透過率が得られ、Jscを向上できる。 ADVANTAGE OF THE INVENTION According to this invention, the conversion efficiency of a thin film solar cell can be improved by using a translucent uneven substrate for a light-incidence side as a board | substrate for thin film solar cells, for example. In particular, in the light-transmitting uneven substrate according to the present invention, since the steep unevenness is relaxed, the main wavelength of sunlight is reduced without lowering Voc and FF of a thin film solar cell formed using the substrate. High diffuse transmittance and total light transmittance can be obtained in the region (400 to 1200 nm), and Jsc can be improved.

透光性凹凸基板及びシングル型薄膜太陽電池を示す模式的断面図である。It is typical sectional drawing which shows a translucent uneven substrate and a single type thin film solar cell. 透光性凹凸基板及びハイブリッド型薄膜太陽電池を示す模式的断面図である。It is typical sectional drawing which shows a translucent uneven substrate and a hybrid type thin film solar cell. レーザースクライブの模式図である。It is a schematic diagram of a laser scribe. 大きなシリカ微粒子を形成したガラス基板に小さなシリカ微粒子をディッピング塗布した基板のSEM画像である。It is a SEM image of the board | substrate which dipped and apply | coated the small silica particle to the glass substrate in which the large silica particle was formed. 小さな微粒子の付着量を変えて調節した透明電極製膜後の凹凸(Sq:二乗平均平方根)と、透明電極製膜前後の透過率の相関を示すグラフである。It is a graph which shows the correlation of the unevenness | corrugation (Sq: root mean square) after film formation of a transparent electrode adjusted by changing the adhesion amount of a small microparticle, and the transmittance | permeability before and after film formation of a transparent electrode. ガラス基板、微粒子、透明電極が順次積層した断面TEM像である。It is a cross-sectional TEM image in which a glass substrate, fine particles, and a transparent electrode are sequentially laminated.

本発明は透光性凹凸基板に関し、当該基板の一主面である下地面上に、少なくとも大きな微粒子と小さな微粒子の2種類の特定微粒子がバインダーで固定された下地層を形成しているものである。なお、本発明において上記下地面とは、引き続きその面側に透明電極や光電変換層などが製膜される側の基板の一主面を意味する。 The present invention relates to a light-transmitting concavo-convex substrate, in which a base layer in which at least two kinds of specific fine particles of large particles and small particles are fixed with a binder is formed on a base surface which is one main surface of the substrate. is there. In the present invention, the above-mentioned base surface means one main surface of the substrate on the side where a transparent electrode, a photoelectric conversion layer and the like are continuously formed on the surface side.

本発明の透光性凹凸基板の形成に用いることのできる基板としては、所謂透光性があれば特に限定されるものではないが、例えば、公知のガラス板や、透明樹脂から成る板状部材またはシート状部材などを好適に用いることができる。特に、透光性基板としてガラス基板を用いれば、それが高い透過率を有しかつ安価であるので好ましい。すなわち、本発明に係る透光性凹凸基板を薄膜太陽電池用の基板として用いる場合、当該基板は薄膜太陽電池の光入射側に位置するので、より多くの太陽光を透過させて光電変換層に光を吸収させるために、基板はできる限り透明であることが好ましい。 The substrate that can be used for forming the translucent uneven substrate of the present invention is not particularly limited as long as it has so-called translucency. For example, a known glass plate or a plate-like member made of a transparent resin is used. Or a sheet-like member etc. can be used conveniently. In particular, it is preferable to use a glass substrate as the translucent substrate because it has high transmittance and is inexpensive. That is, when the translucent uneven substrate according to the present invention is used as a substrate for a thin film solar cell, the substrate is located on the light incident side of the thin film solar cell, so that more sunlight is transmitted to the photoelectric conversion layer. In order to absorb light, the substrate is preferably as transparent as possible.

本発明の透光性凹凸基板の形成に用いることのできる微粒子は、例えば、シリカ(SiO2ともいう)、酸化チタン(TiO2ともいう)、酸化アルミニウム(Al23ともいう)、酸化ジルコニウム(ZrO2ともいう)、フッ化マグネシウム(MgF2ともいう)、を例示することができる。微粒子の屈折率の値としては、透光性の観点から、1.4〜2.5のものが好ましく、更には1.4〜2.0の範囲がより好ましい。微粒子は、好ましくは、ガラス基板上に形成されるため、ガラス基板と微粒子との界面の反射を低減できる観点から、ガラス基板と同じ材料であるシリカであることがより好ましい。 The fine particles that can be used for forming the translucent uneven substrate of the present invention include, for example, silica (also referred to as SiO 2 ), titanium oxide (also referred to as TiO 2 ), aluminum oxide (also referred to as Al 2 O 3 ), and zirconium oxide. (Also referred to as ZrO 2 ) and magnesium fluoride (also referred to as MgF 2 ). The refractive index value of the fine particles is preferably from 1.4 to 2.5, more preferably from 1.4 to 2.0, from the viewpoint of translucency. Since the fine particles are preferably formed on the glass substrate, silica, which is the same material as the glass substrate, is more preferable from the viewpoint of reducing reflection at the interface between the glass substrate and the fine particles.

前記大きな微粒子の平均粒径は、0.4μm以上1.5μm以下の範囲が好ましく、0.7μm以上1.2μm以下の範囲がより好ましい。一方、前記小さな微粒子の平均粒径は、大小の微粒子層上に形成する透明電極の結晶成長に適している観点から、50nm以上150nm以下の範囲が好ましく、70nm以上120nm以下の範囲がより好ましい。小さな微粒子の平均粒径が150nmよりも大きい場合、大きな微粒子で形成した凹凸による光散乱効果を打ち消すおそれがある。一方、小さな微粒子の平均粒径が50nmよりも小さい場合、微粒子間の相互作用が強くなり、微粒子の分散状況が悪化するおそれがあり、基板上へ下地層を形成する際にハンドリングの難易度が上がるといった問題が懸念される。前記の大小の微粒子の形状としては、できるだけ微細な凹凸を均一に形成するために、球状であることがより好ましい。 The average particle size of the large fine particles is preferably in the range of 0.4 μm to 1.5 μm, and more preferably in the range of 0.7 μm to 1.2 μm. On the other hand, the average particle diameter of the small fine particles is preferably in the range of 50 nm to 150 nm, more preferably in the range of 70 nm to 120 nm, from the viewpoint of being suitable for crystal growth of the transparent electrode formed on the large and small fine particle layer. When the average particle size of the small fine particles is larger than 150 nm, the light scattering effect due to the unevenness formed by the large fine particles may be canceled. On the other hand, when the average particle size of the small particles is smaller than 50 nm, the interaction between the particles becomes strong, and the dispersion state of the particles may be deteriorated, and handling difficulty may be increased when forming the underlayer on the substrate. There is concern about the problem of going up. The shape of the large and small fine particles is more preferably spherical in order to uniformly form as fine as possible unevenness.

なお、本発明において平均粒径とは、走査型電子顕微鏡(SEMともいう)画像で観察される各粒子の直径の平均であり±10%の誤差を含む。 In the present invention, the average particle diameter is an average of the diameters of each particle observed in a scanning electron microscope (also referred to as SEM) image and includes an error of ± 10%.

本願発明における透光性凹凸基板の下地層には、少なくとも大きな微粒子と小さな微粒子の2種類が含まれるが、例えば、その中間の大きさの平均粒径を有する微粒子など3種類以上が含まれていてもよい。その場合は、0.4μm以上1.5μm以下の範囲で最も平均粒径の大きな微粒子を本発明でいう“大きな微粒子”とし、50nm以上150nm以下の範囲で最も平均粒径の小さな微粒子を本発明でいう“小さな微粒子”とする.
前記大きな微粒子は、基板の粒子被覆率が、10%以上80%以下、更には20%以上60%以下であることが好ましい。なぜなら、この範囲外では基板上での表面凹凸形成効果が少なく、十分な拡散透過率を得ることができないからである。なお、本発明で言う粒子被覆率とは、基板表面に対する基板表面上に塗布された微粒子の占有面積である。算出方法としては、微粒子が塗布された基板表面を基板表面に対して垂直の方向から観察した画像にて算出できる。例えば、走査型電子顕微鏡(SEMともいう)で基板表面に対して垂直の方向から観察した画像において、画像解析ソフトであるイメージメトロロジー社製のSPIPで、バックグラウンドノイズを除去処理した後に、粒子部分に相当する白色部分を画像全体に占める割合から割り出すことがあげられる。
The underlayer of the light-transmitting uneven substrate according to the present invention includes at least two types of large particles and small particles, but includes, for example, three or more types of particles having an average particle size of an intermediate size. May be. In that case, the fine particles having the largest average particle size in the range of 0.4 μm or more and 1.5 μm or less are referred to as “large particles” in the present invention, and the fine particles having the smallest average particle size in the range of 50 nm to 150 nm are represented by the present invention. `` Small particles ''.
The large fine particles preferably have a substrate particle coverage of 10% to 80%, more preferably 20% to 60%. This is because outside this range, the effect of forming surface irregularities on the substrate is small, and sufficient diffuse transmittance cannot be obtained. The particle coverage referred to in the present invention is an area occupied by fine particles applied on the substrate surface with respect to the substrate surface. As a calculation method, it can be calculated from an image obtained by observing the substrate surface coated with fine particles from a direction perpendicular to the substrate surface. For example, in an image observed from a direction perpendicular to the substrate surface with a scanning electron microscope (also referred to as SEM), after removing background noise with SPIP manufactured by Image Metrology Co., Ltd., which is image analysis software, For example, the white portion corresponding to the portion is determined from the ratio of the entire image.

また、前記大きな微粒子は、急峻な凹凸に起因する諸問題を抑制する観点から、下地層中に単層で存在することが好ましい。例えばディッピング法を用いて大きな微粒子を被覆する場合には、大きな微粒子を含む溶液中における微粒子濃度(塗布溶液濃度)や基板引き上げ速度を調節することで、大きな微粒子の単層での製膜や被覆率の制御を容易に行うことができる。 The large fine particles are preferably present as a single layer in the underlayer from the viewpoint of suppressing various problems caused by steep irregularities. For example, when large particles are coated using the dipping method, film formation or coating with a single layer of large particles can be achieved by adjusting the particle concentration (coating solution concentration) in the solution containing the large particles and the substrate lifting speed. The rate can be easily controlled.

本発明においては、前記の小さな微粒子は、実質的に大きな微粒子の周囲に隣接して存在することが好ましい。これは、大きな微粒子によって形成される急峻な凹凸を小さな微粒子によって緩和し、急峻な凹凸に起因する諸問題を抑制することができるからである。例えば、本発明の透光性凹凸基板を薄膜太陽電池用基板として用いた場合、薄膜太陽電池のVoc、FFの低下を抑制する効果がある。なお、ここで大きな微粒子の周囲に“隣接”とは、大きな微粒子から100nm以内に小さな微粒子が存在することを意味する。また、小さな微粒子が‘‘実質的に’’大きな微粒子の周囲に隣接して存在するとは、大きな微粒子の周囲から大きな微粒子の粒径の20%以内の範囲に小さな微粒子が存在しないような、所謂単独で存在する大きな微粒子が全体の10%以下、好ましくは5%以下であることを意味する。 In the present invention, the small fine particles are preferably present adjacent to the periphery of the substantially large fine particles. This is because the steep unevenness formed by the large fine particles can be relaxed by the small fine particles, and various problems caused by the steep unevenness can be suppressed. For example, when the translucent uneven substrate of the present invention is used as a substrate for a thin film solar cell, there is an effect of suppressing a decrease in Voc and FF of the thin film solar cell. Here, “adjacent” around a large fine particle means that a small fine particle exists within 100 nm from the large fine particle. Further, the fact that small particles are present substantially adjacent to the periphery of the large fine particles is a so-called case in which there are no small particles in the range within 20% of the diameter of the large fine particles from the periphery of the large fine particles. It means that the large fine particles present alone are 10% or less of the whole, preferably 5% or less.

本発明においては、前記の大きな微粒子の上部に存在する小さな微粒子の量は、その他の部分に観察される小さな微粒子の量と比較して、20%以下であることが好ましく、5%以下であることがより好ましく、全く存在しないことが最も好ましい。これは、大きな微粒子の上部に小さな微粒子が存在すると、実質的に大きな微粒子の周囲に隣接して小さな微粒子が存在することによる凹凸の急峻さを緩和する効果が減少するためである。なお、本発明において、大きな微粒子の上部とは、基板表面からの大きな微粒子の高さを基準とした場合に、85%以上の高さにある表面を意味する。 In the present invention, the amount of small fine particles present above the large fine particles is preferably 20% or less, and preferably 5% or less, compared with the amount of small fine particles observed in other portions. More preferably, it is most preferable that none exist. This is because the effect of alleviating the steepness of irregularities due to the presence of small fine particles adjacent to the periphery of the large fine particles is reduced when the small fine particles are present above the large fine particles. In the present invention, the upper part of the large fine particles means a surface having a height of 85% or more when the height of the large fine particles from the substrate surface is used as a reference.

上記の下地層を形成する方法については、例えば、小さな微粒子をディッピング法によって塗布することで、大きな微粒子の周囲に小さな微粒子を隣接させることができ、またディッピング法における基板引き上げ速度や塗布溶液濃度などを調節することで大きな微粒子の上部に小さな微粒子を存在させないようにすることができる。 As for the above-described method for forming the underlayer, for example, small particles can be applied by dipping, so that the small particles can be adjacent to each other around the large particles. By adjusting the value, it is possible to prevent the small fine particles from existing on the large fine particles.

前記の大きな微粒子と小さな微粒子は、同一の材料から形成されることが好ましい。同一の材料であれば、光学特性が同じであるため、光散乱量の設計が容易になるからである。 The large fine particles and the small fine particles are preferably formed from the same material. This is because the optical properties are the same for the same material, so that the light scattering amount can be easily designed.

本発明の透光性凹凸基板の製造方法は、基板の一主面である下地面にあらかじめ大きな微粒子を固定させておき、その後、小さな微粒子をディッピング法で塗布して、下地面に固定することが好ましい。これは、大きな微粒子が固定された基板を、溶媒と透光性バインダーそして小さな微粒子を有する溶液が入ったディッピング槽から引き上げた際に、基板に塗布された溶媒の蒸発が起こり、溶媒が大きな微粒子の周囲に最後まで残ることで、溶液中に存在する小さな微粒子が優先的に大きな微粒子の周囲に付着し固定される傾向があるためである。なお、ハンドリングの容易さの観点から、溶媒としては、例えばイソプロパノールやメチルエチルケトン等の有機溶媒が好ましく、透光性バインダーとしては、例えばエチルシリケート等のシリケート類が好ましい。 In the method for producing a translucent uneven substrate according to the present invention, large fine particles are fixed in advance to a base surface which is one main surface of the substrate, and then small particles are applied by dipping and fixed to the base surface. Is preferred. This is because when a substrate on which large fine particles are fixed is pulled out of a dipping tank containing a solvent, a light-transmitting binder, and a solution containing small fine particles, the solvent applied to the substrate evaporates, and the large particles of the solvent are present. This is because the small particles existing in the solution tend to adhere to and be fixed around the large particles preferentially. From the viewpoint of ease of handling, the solvent is preferably an organic solvent such as isopropanol or methyl ethyl ketone, and the translucent binder is preferably a silicate such as ethyl silicate.

小さな微粒子を大きな微粒子が固定されている基板の一主面である下地面の反対面に塗布することなく、大きな微粒子が固定されている下地面に塗布する場合は、例えば、塗布しない面にフィルム等でマスキングすることが好ましい。使用するマスキング材は溶媒に対して耐性があり、マスキング材を取り外したときに基板にマスキング材の粘着物質由来の異物が残留しなければ特に限定はないが、ハンドリングの観点から、カネロン化学工業株式会社製のBE705に代表される高密度ポリエチレンの保護シートが好ましい。 When applying small particles to the base surface on which large fine particles are fixed without applying to the surface opposite to the base surface, which is one main surface of the substrate on which large fine particles are fixed, It is preferable to mask with, for example. The masking material used is resistant to the solvent, and there is no particular limitation as long as no foreign material derived from the masking material's adhesive substance remains on the substrate when the masking material is removed. A high-density polyethylene protective sheet represented by company-made BE705 is preferred.

大きな微粒子を基板に付着させる方法は、基板との密着性の観点から、溶媒を含んだ透光性バインダー形成材料と共に微粒子を存在させた溶液を塗布する方法が望ましく、例えばディッピング法、スピンコート法、バーコート法、スプレー法、ダイコート法、ロールコート法、フローコート法などが挙げられる。なかでも、ディッピング槽からの基板の引き上げ速度を調節することで粒子被覆率を容易に調整できるディッピング法がより好ましい。なお、当該溶液中に含まれる溶媒や透光性バインダー形成材料は前記と同様のものが使用できる。 The method for adhering large fine particles to the substrate is preferably a method of applying a solution containing fine particles together with a translucent binder-forming material containing a solvent from the viewpoint of adhesion to the substrate. For example, a dipping method or a spin coating method. , Bar coating method, spray method, die coating method, roll coating method, flow coating method and the like. Especially, the dipping method which can adjust a particle | grain coverage easily by adjusting the pulling-up speed | rate of the board | substrate from a dipping tank is more preferable. In addition, the solvent similar to the above can be used for the solvent and translucent binder formation material which are contained in the said solution.

大きな微粒子を基板にディッピング法で付着させる場合は、塗布面(下地面)と反対側面をフィルム等でマスキングする必要があり、使用するマスキング材は溶媒に対して耐性があり、マスキング材を取り外したときに基板にマスキング材の粘着物質由来の異物が残留しなければ特に限定はない。前記と同様に、カネロン化学工業株式会社製のBE705に代表される保護シートが好ましい。 When adhering large fine particles to the substrate by dipping, it is necessary to mask the side opposite to the coating surface (base surface) with a film, etc., and the masking material used is resistant to solvents, and the masking material is removed. There is no particular limitation as long as no foreign substance derived from the adhesive material of the masking material remains on the substrate. Similarly to the above, a protective sheet represented by BE705 manufactured by Kaneron Chemical Industries, Ltd. is preferable.

例えば、大きな微粒子を基板表面に付着させる前に、表面付着炭素分やガラスヤケを除去し、大きな微粒子の固定密着力を向上するために基板を洗浄することが望ましい。ガラス基板を用いる場合の洗浄方法としては、例えば、プラズマ洗浄、アルカリ洗浄、セリコ洗浄等が上げられ、ガラス基板に表面に異物が残留せず、表面形状が変化しない観点から、セリコ洗浄が特に好ましい。なお、セリコ洗浄とは、水と酸化セリウムを主成分とする研磨スラリーを用いて研磨洗浄する方法である。 For example, before depositing large fine particles on the substrate surface, it is desirable to clean the substrate in order to remove surface-attached carbon and glass burns and improve the fixed adhesion of the large fine particles. As a cleaning method in the case of using a glass substrate, for example, plasma cleaning, alkali cleaning, celico cleaning, and the like can be raised. From the viewpoint that no foreign matter remains on the surface of the glass substrate and the surface shape does not change, celico cleaning is particularly preferable. . The celico cleaning is a method of polishing and cleaning using a polishing slurry mainly composed of water and cerium oxide.

基板の洗浄から大きな微粒子の塗布、さらに小さな微粒子のディッピング塗布までの工程は、基板洗浄効果が有効である時間内に行うことがより望ましく、クリーンルーム内の室温で2時間以内がより好ましい。 The steps from the cleaning of the substrate to the application of the large fine particles and the dipping application of the small fine particles are more preferably performed within a time during which the substrate cleaning effect is effective, and more preferably within 2 hours at room temperature in a clean room.

大きな微粒子をディッピング法でガラス基板に付着させる場合は、ガラス基板の片面にマスキングをし、もう片面を洗浄し、エアブローで乾燥させた後に、大きな微粒子をディッピング塗布する。その後、短期的に大きな微粒子をガラス基板に付着させるために加熱乾燥させることが好ましい。加熱乾燥後、十分にガラス基板が冷却した後に、小さな微粒子をディッピング塗布し、マスキング材を取り外した後に公知の方法で焼成を行い、微粒子を基板の下地面上に固定させればよい。 When adhering large fine particles to the glass substrate by dipping, masking is performed on one side of the glass substrate, the other side is washed and dried by air blow, and then the large fine particles are applied by dipping. Thereafter, it is preferable to heat and dry in order to attach large fine particles to the glass substrate in the short term. After heating and drying, after the glass substrate is sufficiently cooled, small particles are applied by dipping, and after removing the masking material, firing is performed by a known method to fix the particles on the lower ground of the substrate.

図1は、本発明の透光性凹凸基板を用いた実施形態の1つである薄膜太陽電池の模式的な断面図である。ガラス基板1上に、透光性バインダーを含む大小の微粒子層(下地層)2、透明電極層3、非晶質光電変換ユニット4、裏面電極層5を順に積層したシングル型薄膜太陽電池である。非晶質光電変換ユニット4は、一導電型層41、真性非晶質光電変換層42および逆導電型層43が含まれる。非晶質光電変換ユニット4は、例えばpin型の順にプラズマCVD法により各半導体層を積層して形成されうる。具体的には、例えば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型非晶質シリコン系層、光電変換層となる真性非晶質シリコン系層、および導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型非晶質シリコン系層をこの順に堆積すればよい。 FIG. 1 is a schematic cross-sectional view of a thin-film solar cell which is one embodiment using the translucent uneven substrate of the present invention. This is a single-type thin film solar cell in which a large and small fine particle layer (underlayer) 2 containing a light-transmitting binder, a transparent electrode layer 3, an amorphous photoelectric conversion unit 4, and a back electrode layer 5 are sequentially laminated on a glass substrate 1. . The amorphous photoelectric conversion unit 4 includes a one conductivity type layer 41, an intrinsic amorphous photoelectric conversion layer 42, and a reverse conductivity type layer 43. The amorphous photoelectric conversion unit 4 can be formed by laminating semiconductor layers by plasma CVD, for example, in the order of pin type. Specifically, for example, a p-type amorphous silicon-based layer doped with 0.01 atomic% or more of boron, which is a conductivity-determining impurity atom, an intrinsic amorphous silicon-based layer that becomes a photoelectric conversion layer, and a conductivity-type determination An n-type amorphous silicon-based layer doped with 0.01 atomic% or more of phosphorus, which is an impurity atom, may be deposited in this order.

大小の微粒子層2上の透明電極層3の材料としては、例えば、SnO2、ZnO、ITO等が挙げられ、より好ましくはZnOである。なぜなら、ZnOは耐プラズマ性が高く、低圧熱CVD法やスパッタ法といった低温での形成が可能なことから、低コストで高性能な薄膜太陽電池の製造が期待できるからである。 Examples of the material of the transparent electrode layer 3 on the large and small fine particle layer 2 include SnO 2 , ZnO, ITO, and the like, and more preferably ZnO. This is because ZnO has high plasma resistance and can be formed at a low temperature such as a low-pressure thermal CVD method or a sputtering method, so that it can be expected to produce a high-performance thin-film solar cell at a low cost.

例えば、透明電極層に低圧熱CVD法で形成されるZnOを用いた場合、下地であるガラス基板の温度である基体温度が150℃以上、圧力5〜1000Pa、原料ガスとしてジエチル亜鉛(DEZともいう)、水、ドーピングガス、および希釈ガスで形成されうる。 For example, when ZnO formed by low-pressure thermal CVD is used for the transparent electrode layer, the substrate temperature, which is the temperature of the underlying glass substrate, is 150 ° C. or higher, the pressure is 5-1000 Pa, and the source gas is diethyl zinc (also referred to as DEZ). ), Water, doping gas, and dilution gas.

裏面電極層5としては、例えば、Al、Ag、Au、Cu、PtおよびCrから選ばれる少なくとも一つの材料を、少なくとも一層の金属薄膜としてスパッタ法または蒸着法により形成することができる。また、1以上の光電変換ユニットとの間に、ITO、SnO2、ZnO等の導電性酸化物層を裏面電極層5の一部として形成することもできる。この導電性酸化物層は、1以上の光電変換ユニットと裏面電極層5との間の密着性を高めるとともに、裏面電極層5の光反射率を高め、さらに、光電変換ユニットの化学変化を防止する機能を有する。 As the back electrode layer 5, for example, at least one material selected from Al, Ag, Au, Cu, Pt, and Cr can be formed as at least one metal thin film by sputtering or vapor deposition. In addition, a conductive oxide layer such as ITO, SnO 2 , or ZnO can be formed as a part of the back electrode layer 5 between one or more photoelectric conversion units. This conductive oxide layer increases the adhesion between one or more photoelectric conversion units and the back electrode layer 5, increases the light reflectance of the back electrode layer 5, and further prevents chemical changes in the photoelectric conversion unit. It has the function to do.

図2は、本発明の透光性凹凸基板を用いた実施形態の1つである薄膜太陽電池の模式的な断面図である。ガラス基板1上に、透光性バインダーを含む大小の微粒子層2、透明電極層3、非晶質光電変換ユニット4、結晶質光電変換ユニット6、裏面電極層5を順に積層したタンデム型薄膜太陽電池である。 FIG. 2 is a schematic cross-sectional view of a thin film solar cell which is one embodiment using the translucent uneven substrate of the present invention. A tandem-type thin-film solar in which a large and small fine particle layer 2 containing a translucent binder, a transparent electrode layer 3, an amorphous photoelectric conversion unit 4, a crystalline photoelectric conversion unit 6, and a back electrode layer 5 are sequentially laminated on a glass substrate 1. It is a battery.

結晶質光電変換ユニット6には、一導電型層61、結晶質真性光電変換層62および逆導電型層63が含まれる。結晶質光電変換ユニット6としては、太陽光の主波長域(400〜1200nm)に吸収を有するものが好ましく、例えば結晶質シリコン系薄膜を結晶質真性光電変換層とした結晶質シリコン系光電変換ユニット6としてもよい。また、「シリコン系」の材料には、シリコンに加え、シリコンカーバイドやシリコンゲルマニウムなど、シリコンを含むシリコン合金半導体材料も含まれうる。なお、変換効率の高い薄膜太陽電池を得るために、非晶質光電変換ユニットと結晶質光電変換ユニットの間に、中間透明反射層を形成してもよい。 The crystalline photoelectric conversion unit 6 includes a one conductivity type layer 61, a crystalline intrinsic photoelectric conversion layer 62, and a reverse conductivity type layer 63. The crystalline photoelectric conversion unit 6 preferably has absorption in the main wavelength range of sunlight (400 to 1200 nm). For example, a crystalline silicon photoelectric conversion unit using a crystalline silicon thin film as a crystalline intrinsic photoelectric conversion layer. It may be 6. In addition to silicon, “silicon-based” materials can also include silicon alloy semiconductor materials containing silicon, such as silicon carbide and silicon germanium. In order to obtain a thin film solar cell with high conversion efficiency, an intermediate transparent reflection layer may be formed between the amorphous photoelectric conversion unit and the crystalline photoelectric conversion unit.

また、高電圧で高出力を生じ得る大面積の薄膜太陽電池を製造する場合、基板上に形成された薄膜光電変換装置の複数個を配線で直列接続するのではなく、歩留まりをよくするために大きな基板上に形成された薄膜光電変換ユニット層を複数のセルに分割し、それらのセルをパターニングによって直列接続して集積化するのが一般的であり、例えば図3のような集積構造とするのが好ましい。集積化には、レーザースクライブを用いるのが簡便でよい。 In addition, when manufacturing a large-area thin film solar cell capable of generating high output at a high voltage, in order to improve the yield, rather than connecting a plurality of thin film photoelectric conversion devices formed on a substrate in series with wiring. In general, a thin film photoelectric conversion unit layer formed on a large substrate is divided into a plurality of cells, and these cells are integrated in series by patterning, for example, an integrated structure as shown in FIG. Is preferred. For integration, it is convenient to use a laser scribe.

また、本発明に係る透光性凹凸基板は、例えばタッチパネル用基板や光検出器用基板など、薄膜太陽電池用以外のその他の用途にも適宜用いることができる。 Moreover, the translucent uneven substrate which concerns on this invention can be suitably used also for other uses other than for thin film solar cells, such as a board | substrate for touch panels, a board | substrate for photodetectors, for example.

以下、本発明を実施例に基づいて詳細に説明するが、本発明はその趣旨を超えない限り、以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to a following example, unless the meaning is exceeded.

(実施例1)
厚さ4mmの旭硝子株式会社製の白板ガラス基板の片面にカネロン化学工業株式会社製のBE705フィルムを用いてマスキングし、もう片面をセリコ洗浄してガラス表面を親水性にした後、シリカ微粒子6重量%濃度、引き上げ速度100mm/minの条件におけるディッピング法で、平均粒径1080nmのシリカ微粒子を粒子被覆率20%で塗布した。なお、シリカ微粒子の数平均粒径はSEM画像から求めた。ディッピングにおける塗布液の成分は、シリカ微粒子の他にイソプロパノール、水、エチルシリケート40加水分解物(平均4量体のテトラエトキシシラン加水分解部分縮合物)、濃塩酸である。なお、各成分の重量はシリカ微粒子780g、イソプロパノール12kg、水690g、エチルシリケート40加水分解物240g、濃塩酸24gである。
Example 1
One side of a 4 mm thick white glass substrate manufactured by Asahi Glass Co., Ltd. is masked with a BE705 film manufactured by Kaneron Chemical Industries, Ltd., and the other surface is washed with celico to make the glass surface hydrophilic, and then 6 weights of silica fine particles Silica fine particles having an average particle diameter of 1080 nm were applied at a particle coverage of 20% by dipping under the conditions of% concentration and pulling speed of 100 mm / min. The number average particle diameter of the silica fine particles was determined from the SEM image. The components of the coating solution for dipping are isopropanol, water, ethylsilicate 40 hydrolyzate (average tetramer tetraethoxysilane hydrolyzed partial condensate) and concentrated hydrochloric acid in addition to silica fine particles. The weight of each component is 780 g of silica fine particles, 12 kg of isopropanol, 690 g of water, 240 g of ethyl silicate 40 hydrolyzate, and 24 g of concentrated hydrochloric acid.

80℃の雰囲気下で30分加熱乾燥を行った後、当該基板を、平均粒径80nmのシリカ微粒子を1.5重量%濃度で含む塗布液中に浸漬し、引き上げ速度275mm/minにて、大きな微粒子と同様に小さなシリカ微粒子を再度ディッピング塗布した。なお、上記塗布液成分は、イソプロパノール12kg、水690g、エチルシリケート40加水分解物240g、濃塩酸24gである。その後、マスキング材を外した後、200℃で2時間加熱し、微粒子を基板に固定した。 After heating and drying in an atmosphere of 80 ° C. for 30 minutes, the substrate was immersed in a coating solution containing silica fine particles having an average particle size of 80 nm at a concentration of 1.5% by weight, and the pulling rate was 275 mm / min. Small silica particles as well as large particles were dipped again. The coating solution components are 12 kg isopropanol, 690 g water, 240 g ethyl silicate 40 hydrolyzate, and 24 g concentrated hydrochloric acid. Then, after removing the masking material, it was heated at 200 ° C. for 2 hours to fix the fine particles to the substrate.

得られた透光性凹凸基板の表面をSEMで観察したところ、図4に示すように、平均粒径1080nmの大きなシリカ微粒子の周囲に隣接し、平均粒径80nmのシリカ微粒子が実質的に堆積されて固定されていた。また、平均粒径1080nmの大きなシリカ微粒子の上部に付着した小さなシリカ微粒子は、その他の部分と比較して1%以内であった。 When the surface of the obtained light-transmitting concavo-convex substrate was observed with an SEM, as shown in FIG. 4, adjacent to the periphery of large silica fine particles having an average particle diameter of 1080 nm, silica fine particles having an average particle diameter of 80 nm were substantially deposited. Has been fixed. Moreover, the small silica fine particles adhering to the upper part of the large silica fine particles having an average particle diameter of 1080 nm were within 1% as compared with other portions.

(実施例2〜4および比較例1)
実施例1と同様にして、粒子被覆率20%で平均粒径1080nmの大きなシリカ微粒子を塗布した厚さ4mmのガラス基板に、ディッピング法の引き上げ速度を275mm/min、1000mm/min、とそれぞれ変えて平均粒径80nmの小さなシリカ微粒子をディッピング塗布したサンプルを2点作製(実施例2、3)し、さらに引き上げ速度1000mm/minでディッピング塗布を2度繰り返したサンプルを1点(実施例4)作製した。なお、ディッピング塗布を繰り返す際には、1度目と2度目のディッピング塗布の間に80℃の雰囲気下で30分の加熱乾燥を行った。さらに、比較例1として平均粒径80nmシリカ微粒子を塗布しなかったサンプルも1点作製した。これら4点のサンプルの微粒子層に水を滴下し、カバーガラスをかけて、カバーガラスとは反対の面のガラス基板側から波長400〜1200nmまでの平均透過率を測定した。なお、本方法のような液体を凹凸部に滴下して測定した透過率を、以後浸液透過率と記載する。
(Examples 2 to 4 and Comparative Example 1)
In the same manner as in Example 1, the pulling speed of the dipping method was changed to 275 mm / min and 1000 mm / min on a 4 mm thick glass substrate coated with large silica fine particles having a particle coverage of 20% and an average particle size of 1080 nm, respectively. Two samples prepared by dipping small silica particles having an average particle size of 80 nm were prepared (Examples 2 and 3), and one sample obtained by repeating dipping coating twice at a lifting speed of 1000 mm / min (Example 4). Produced. When dipping coating was repeated, heating and drying were performed for 30 minutes in an atmosphere at 80 ° C. between the first and second dipping coating. Further, as a comparative example 1, one sample was prepared in which silica fine particles having an average particle diameter of 80 nm were not applied. Water was dropped onto the fine particle layers of these four samples, a cover glass was applied, and the average transmittance from a glass substrate side on the surface opposite to the cover glass to a wavelength of 400 to 1200 nm was measured. In addition, the transmittance | permeability measured by dripping the liquid like this method on an uneven | corrugated | grooved part is hereafter described as immersion liquid transmittance | permeability.

実施例2〜4および比較例1の4点のサンプルに、堆積温度160℃、原料ガスとしてジエチル亜鉛(DEZ)および水、ドーパントガスとしてジボランガスを用いて、それぞれの大小微粒子塗布ガラス基板に低圧熱CVD法で透明導電膜を製膜した。透明導電膜のシート抵抗は、いずれも18Ω/□程度であった。実施例2〜4、比較例1のサンプルについて、レーザー顕微鏡で面内粗さSq(二乗平均平方根)を測定し、屈折率1.7のヨウ化メチレン溶液を用いて浸液透過率を測定した。 In each of the four samples of Examples 2 to 4 and Comparative Example 1, a deposition temperature of 160 ° C., diethyl zinc (DEZ) and water as source gases, and diborane gas as a dopant gas were used. A transparent conductive film was formed by the CVD method. The sheet resistance of the transparent conductive film was about 18Ω / □. For the samples of Examples 2 to 4 and Comparative Example 1, in-plane roughness Sq (root mean square) was measured with a laser microscope, and immersion liquid transmittance was measured using a methylene iodide solution having a refractive index of 1.7. .

図5は、浸液透過率を縦軸とし、透明電極製膜後の面内粗さ(Sq)を横軸にとったときのプロットで、白丸は透明電極製膜前、黒丸は透明電極製膜後を示す。なお、平均粒径80nmのシリカ微粒子の塗布量を増やす(平均粒径80nmの微粒子ディッピング塗布における引き上げ速度を上げる)と、平均粒径1080nmの微粒子で形成された凹凸を緩和することにより、Sqは減少する。図5より、白丸で示される透明電極製膜前の浸液透過率では、Sqによって顕著な違いは観察されないが、黒丸で示される透明電極製膜後の浸液透過率では、Sqの減少によって浸液透過率の増加が観察される。 FIG. 5 is a plot when the immersion liquid permeability is taken as the vertical axis and the in-plane roughness (Sq) after forming the transparent electrode is taken along the horizontal axis. The white circle is before the transparent electrode is formed, and the black circle is made of the transparent electrode. The post-membrane is shown. By increasing the coating amount of silica fine particles with an average particle size of 80 nm (increasing the pulling speed in fine particle dipping coating with an average particle size of 80 nm), Sq is reduced by relaxing the irregularities formed with the fine particles with an average particle size of 1080 nm. Decrease. From FIG. 5, in the immersion liquid permeability before film formation of the transparent electrode indicated by white circles, no significant difference is observed depending on Sq. However, in the immersion liquid permeability after film formation of the transparent electrode indicated by black circles, the decrease in Sq An increase in immersion liquid permeability is observed.

(参考例1)
また、図6はガラス基板上に大きな微粒子である平均粒径450nmの微粒子のみを塗布し、ZnOの透明導電膜を製膜した断面透過型電子顕微鏡(TEMともいう)画像であり、微粒子間に空洞を確認できる。平均粒径450nmのシリカ微粒子200gを使用し、シリカ微粒子の重量パーセント濃度1.5%、その他の成分としてイソプロパノール12kg、水690g、エチルシリケート40加水分解物(平均4量体のテトラエトキシシラン加水分解部分縮合物)240g、塩酸24gを含む塗布液に、引き上げ速度700mm/minの条件で、比較例1と同様にディップし、透明導電膜を製膜したサンプルである。
(Reference Example 1)
FIG. 6 is a cross-sectional transmission electron microscope (also called TEM) image in which only a fine particle having an average particle diameter of 450 nm, which is a large fine particle, is coated on a glass substrate and a transparent conductive film of ZnO is formed. A cavity can be confirmed. Using 200 g of silica fine particles having an average particle diameter of 450 nm, a weight percent concentration of silica fine particles of 1.5%, isopropanol 12 kg, water 690 g, ethyl silicate 40 hydrolyzate (average tetramer tetraethoxysilane hydrolysis) (Partial condensate) A sample obtained by dipping a coating liquid containing 240 g and hydrochloric acid 24 g under the conditions of a pulling rate of 700 mm / min in the same manner as in Comparative Example 1 to form a transparent conductive film.

図5および図6より、大きな微粒子の間に小さな微粒子を埋めることで、大きな微粒子間にできる透明電極製膜後の空洞を小さな微粒子で埋めることができ、これにより浸液透過率が向上したと考えられる。 From FIG. 5 and FIG. 6, it is possible to fill the cavity after forming the transparent electrode between the large particles by filling the small particles between the large particles with the small particles, which improves the immersion liquid permeability. Conceivable.

(実施例5〜7および比較例2)
実施例5〜7および比較例2として、図1に示されているようなシングル型薄膜太陽電池を作成した。実施例2〜4および比較例1で作製した4つの透明電極基板それぞれに厚さ10nmのp型微結晶シリコン層と厚さ15nmのp型非晶質シリコンカーバイト層との積層からなるp型層、厚さ350nmのi型非晶質シリコン光電変換層及び厚さ15nmのn型微結晶シリコン層を順次プラズマCVD法により積層して光電変換ユニットを形成した。その後、5×5個ある1cm角の金属製マスクを製膜したシリコンに貼り付け、厚さ90nmのAlドープZnO層と厚さ200nmのAg層をスパッタ法にて順次堆積した。金属製マスクを取り外した後に、スパッタ製膜された1cm角部分の周囲を半田で透明電極層まで貫通させ、1cm角のセルを作成した。こうして得られたシングル型薄膜太陽電池セルにAM1.5の光を100mW/cm2の光量で照射して出力特性を測定した。得られた出力特性結果を表1に示す。
(Examples 5 to 7 and Comparative Example 2)
As Examples 5 to 7 and Comparative Example 2, single-type thin film solar cells as shown in FIG. Each of the four transparent electrode substrates produced in Examples 2 to 4 and Comparative Example 1 is a p-type comprising a stack of a p-type microcrystalline silicon layer having a thickness of 10 nm and a p-type amorphous silicon carbide layer having a thickness of 15 nm. A photoelectric conversion unit was formed by sequentially stacking an i-type amorphous silicon photoelectric conversion layer having a thickness of 350 nm and an n-type microcrystalline silicon layer having a thickness of 15 nm by a plasma CVD method. Thereafter, 5 × 5 1 cm square metal masks were attached to the deposited silicon, and an Al-doped ZnO layer having a thickness of 90 nm and an Ag layer having a thickness of 200 nm were sequentially deposited by sputtering. After removing the metal mask, the periphery of the 1 cm square portion formed by sputtering was penetrated to the transparent electrode layer with solder to form a 1 cm square cell. The single-type thin film solar cell thus obtained was irradiated with AM1.5 light at a light quantity of 100 mW / cm 2 to measure the output characteristics. The obtained output characteristic results are shown in Table 1.

薄膜太陽電池の各物性値は面内粗さSq=0.4のサンプル(比較例2)の各物性を1としたときの相対値である。大きなシリカ微粒子付き基板に小さなシリカ微粒子をディッピングすることで、大きなシリカ微粒子のみを付着させた基板(比較例2)と比較してVoc、FFの増加が確認できる。またJscの増加は、微粒子塗布ガラス基板に透明電極層としてZnOを製膜した際に、大きな微粒子間でZnOが製膜されなかった箇所(空洞)を小さな微粒子が埋めて浸液透過率が上がったためであると考えられる。 Each physical property value of the thin-film solar cell is a relative value when each physical property of the sample (Comparative Example 2) having the in-plane roughness Sq = 0.4 is 1. By dipping small silica fine particles on a substrate with large silica fine particles, an increase in Voc and FF can be confirmed as compared with a substrate on which only large silica fine particles are adhered (Comparative Example 2). In addition, the increase in Jsc is caused by the fact that when ZnO is formed as a transparent electrode layer on a glass substrate coated with fine particles, the portion where no ZnO is formed between the large fine particles (cavities) is filled with small fine particles and the immersion liquid permeability is increased. This is probably because

(実施例9および比較例3)
実施例9および比較例3として、図2に示されているようなガラス基板の光入射面に反射防止層(ARコート)を有するハイブリッド型の薄膜太陽電池を作製した。すなわち、本実験例9、比較例3においては、ガラス基板1上に、大小のシリカ微粒子層(下地層)2、透明電極層3、非晶質シリコン光電変換ユニット4、結晶質シリコン光電変換ユニット6、および裏面電極層5を順次形成することによってハイブリッド型薄膜太陽電池を作製し、レーザースクライブを利用して、ハイブリッド型薄膜太陽電池モジュールを作成した。なお、レーザースクライブは図3に示されるように実施した。
(Example 9 and Comparative Example 3)
As Example 9 and Comparative Example 3, a hybrid thin film solar cell having an antireflection layer (AR coating) on the light incident surface of a glass substrate as shown in FIG. 2 was produced. That is, in Experimental Example 9 and Comparative Example 3, a large and small silica fine particle layer (underlayer) 2, a transparent electrode layer 3, an amorphous silicon photoelectric conversion unit 4, and a crystalline silicon photoelectric conversion unit are formed on a glass substrate 1. 6 and the back surface electrode layer 5 were sequentially formed to produce a hybrid thin film solar cell, and a hybrid thin film solar cell module was produced using laser scribing. Laser scribing was performed as shown in FIG.

実施例1と同様にして、厚さ4mmのガラス基板の片面にカネロン化学工業株式会社製のBE705フィルムを貼ってマスキングをし、もう片面をセリコ洗浄した後に、ディッピング法で平均粒径1080nmの大きなシリカ微粒子を粒子被覆率20%で片面に塗布した。マスキング材を取り外し、80℃の雰囲気下で30分加熱乾燥した後、当該基板を、平均粒径80nmの小さなシリカ微粒子を1.5重量%パーセント濃度で含む塗布液に浸漬し、引き上げ速度275mm/minの条件でディッピング塗布した。ガラス基板の両面に平均粒径80nmの微粒子を塗布し、200℃で2時間加熱した。このようにして基板の光入射面にARコートを形成させた。その後、堆積温度160℃、原料ガスとしてジエチル亜鉛(DEZ)、水の原料ガス、ドーパントガスとしてジボランガスを用いて、大小微粒子塗布ガラス基板に低圧熱CVD法で透明電極層3を製膜した。透明電極層3のシート抵抗は、18Ω/□程度であった。 In the same manner as in Example 1, a BE705 film made by Kaneron Chemical Industry Co., Ltd. was applied to one side of a 4 mm thick glass substrate, masked, and the other side was washed with serico, and then a large average particle size of 1080 nm was obtained by dipping. Silica fine particles were applied on one side with a particle coverage of 20%. After removing the masking material and heating and drying in an atmosphere of 80 ° C. for 30 minutes, the substrate was immersed in a coating solution containing 1.5% by weight of small silica fine particles having an average particle diameter of 80 nm, and the lifting speed was 275 mm / Dipping was applied under the condition of min. Fine particles having an average particle diameter of 80 nm were applied to both surfaces of the glass substrate and heated at 200 ° C. for 2 hours. In this way, an AR coat was formed on the light incident surface of the substrate. Thereafter, the transparent electrode layer 3 was formed on a large and small fine particle coated glass substrate by a low pressure thermal CVD method using a deposition temperature of 160 ° C., a source gas of diethyl zinc (DEZ), a water source gas, and diborane gas as a dopant gas. The sheet resistance of the transparent electrode layer 3 was about 18Ω / □.

得られた透明電極層は波長1064nmのYAG(イットリウム・アルミニウム・ガーネット)レーザーを用いて、透明電極層3に分離溝101を形成し、その後に透明電極層のついた基板の洗浄と乾燥を行なった。 The obtained transparent electrode layer uses a YAG (yttrium, aluminum, garnet) laser with a wavelength of 1064 nm to form a separation groove 101 in the transparent electrode layer 3, and thereafter, the substrate with the transparent electrode layer is washed and dried. It was.

そのレーザー加工された透明電極層上に厚さ10nmのp型微結晶シリコン層と厚さ15nmのp型非晶質シリコンカーバイト層との積層からなるp型層、厚さ300nmのi型非晶質シリコン光電変換層及び厚さ15nmのn型微結晶シリコン層を順次プラズマCVD法で積層して前方光電変換ユニットを形成した。さらに厚さ15nmのp型微結晶シリコン層、厚さ3.0μmのi型結晶質シリコン光電変換層、および厚さ15nmのn型微結晶シリコン層を順次プラズマCVD法で積層して後方光電変換ユニット7を形成した。 A p-type layer composed of a p-type microcrystalline silicon layer having a thickness of 10 nm and a p-type amorphous silicon carbide layer having a thickness of 15 nm is formed on the laser-processed transparent electrode layer, and an i-type non-layer having a thickness of 300 nm. A crystalline silicon photoelectric conversion layer and a 15-nm-thick n-type microcrystalline silicon layer were sequentially laminated by a plasma CVD method to form a front photoelectric conversion unit. Further, a p-type microcrystalline silicon layer having a thickness of 15 nm, an i-type crystalline silicon photoelectric conversion layer having a thickness of 3.0 μm, and an n-type microcrystalline silicon layer having a thickness of 15 nm are sequentially stacked by plasma CVD to perform backward photoelectric conversion. Unit 7 was formed.

その後、YAGレーザーの第二高調波(波長:532nm)を用いて、前方光電変換ユニット4、後方光電変換ユニット6を貫通する接続溝102を形成した。接続溝102の形成後においては、後方光電変換ユニット6上の裏面電極層5として、厚さ90nmのAlドープZnO層と厚さ200nmのAg層をスパッタ法にて順次堆積した。このとき、接続溝102は、その裏面電極層によって埋め込まれた。 Then, the connection groove | channel 102 which penetrates the front photoelectric conversion unit 4 and the back photoelectric conversion unit 6 was formed using the 2nd harmonic (wavelength: 532 nm) of a YAG laser. After the connection groove 102 was formed, an Al-doped ZnO layer having a thickness of 90 nm and an Ag layer having a thickness of 200 nm were sequentially deposited as the back electrode layer 5 on the rear photoelectric conversion unit 6 by a sputtering method. At this time, the connection groove 102 was filled with the back electrode layer.

最後に、YAGレーザーの第二高調波を用いて、前方光電変換ユニット4、中間透過反射層、後方光電変換ユニット6、および裏面電極層5を貫通する分離溝103を形成した。こうして得られた実験例9の薄膜光電変換モジュールにAM1.5の光を100mW/cm2の光量で照射して出力特性を測定した。 Finally, a separation groove 103 penetrating the front photoelectric conversion unit 4, the intermediate transmission reflection layer, the rear photoelectric conversion unit 6, and the back electrode layer 5 was formed using the second harmonic of the YAG laser. The thin film photoelectric conversion module of Experimental Example 9 obtained in this way was irradiated with AM 1.5 light at a light amount of 100 mW / cm 2 to measure the output characteristics.

また比較例3として、平均粒径1080nmのシリカ微粒子のみが下地層に粒子被覆率20%で塗布され、光入射面のみに平均粒径80nmのシリカ微粒子のARコートを実施例9と同様の方法で形成した。透明電極層以下の工程が実施例9と同様の方法にて、薄膜太陽電池モジュールを製造し、同様に評価した結果を表2に示す。 Further, as Comparative Example 3, only silica fine particles having an average particle diameter of 1080 nm were applied to the underlayer at a particle coverage of 20%, and AR coating of silica fine particles having an average particle diameter of 80 nm was applied only to the light incident surface in the same manner as in Example 9. Formed with. Table 2 shows the results of manufacturing the thin-film solar cell module in the same manner as in Example 9 in the steps following the transparent electrode layer, and evaluating the same.

表2より、平均粒径80nmのシリカ微粒子を平均粒径1080nmの微粒子の間に埋めることで、Voc、FF、Jsc及びEffが増加することが確認される。 From Table 2, it is confirmed that Voc, FF, Jsc and Eff are increased by filling silica fine particles having an average particle diameter of 80 nm between fine particles having an average particle diameter of 1080 nm.

以上に説明した通り、本発明の透光性凹凸基板は、急峻な凹凸を緩和させているため、薄膜太陽電池用基板として用いた場合に、Voc、FFを低下させることなく、太陽光の主波長域(400〜1200nm)で高い拡散透過率と全光線透過率が得られ、優れた変換効率が得られる。 As described above, since the light-transmitting uneven substrate of the present invention relieves steep unevenness, when used as a substrate for a thin film solar cell, the main light of sunlight is not reduced without lowering Voc and FF. High diffuse transmittance and total light transmittance are obtained in the wavelength range (400 to 1200 nm), and excellent conversion efficiency is obtained.

1 ガラス基板
2 大小の微粒子層(下地層)
3 透明電極層
4 非晶質光電変換ユニット
41 一導電型層
42 真性光電変換層
43 逆導電型層
5 裏面電極層
6 結晶質光電変換ユニット
61 一導電型層
62 真性光電変換層
63 逆導電型層
101 分離溝
102 接続溝
103 分離溝
1 Glass substrate 2 Large and small particle layer (underlayer)
DESCRIPTION OF SYMBOLS 3 Transparent electrode layer 4 Amorphous photoelectric conversion unit 41 One conductivity type layer 42 Intrinsic photoelectric conversion layer 43 Reverse conductivity type layer 5 Back surface electrode layer 6 Crystalline photoelectric conversion unit 61 One conductivity type layer 62 Intrinsic photoelectric conversion layer 63 Reverse conductivity type Layer 101 Separation groove 102 Connection groove 103 Separation groove

Claims (5)

少なくとも大きな微粒子と小さな微粒子の2種類を含有し、各微粒子がバインダーで基板の一主面である下地面上に固定されている下地層を有する透光性凹凸基板上に透明電極層が積層された透明電極基板であって、
前記下地層上に前記透明電極層が積層された透明電極基板において、
前記大きな微粒子の平均粒径は0.4μm以上1.5μm以下であり、かつ、大きな微粒子は基板の粒子被覆率が10%以上80%以下となるように下地層中に単層で存在し、
前記小さな微粒子の平均粒径は50nm以上150nm以下であり、かつ小さな微粒子は実質的に前記大きな微粒子の周囲に隣接して存在し、
さらに、前記大きな微粒子の上部に存在する前記小さな微粒子の量は、その他の部分に存在する小さな微粒子の量に対して20%以下であることを特徴とする、透明電極基板
A transparent electrode layer is laminated on a translucent uneven substrate containing at least two kinds of large fine particles and small fine particles, each fine particle being fixed on a base surface which is one main surface of the substrate with a binder. Transparent electrode substrate ,
In the transparent electrode substrate in which the transparent electrode layer is laminated on the base layer,
The average particle size of the large fine particles is 0.4 μm or more and 1.5 μm or less, and the large fine particles are present in a single layer in the underlayer so that the particle coverage of the substrate is 10% or more and 80% or less,
The average particle size of the small particles is 50 nm or more and 150 nm or less, and the small particles are substantially adjacent to the periphery of the large particles;
Further, the transparent electrode substrate is characterized in that the amount of the small particles present above the large particles is 20% or less with respect to the amount of the small particles present in other portions.
前記透光性凹凸基板は、前記の大きな微粒子と小さな微粒子が同一の材料からなることを特徴とする、請求項1に記載の透明電極基板The transparent electrode substrate according to claim 1, wherein the translucent uneven substrate is made of the same material as the large fine particles and the small fine particles. 前記透光性凹凸基板は、前記小さな微粒子が前記下地面とは反対側の基板の一主面にも固定されており、前記下地面とは反対側の基板の一主面における反射率が2%以下であることを特徴とする、請求項1または2に記載の透明電極基板 In the translucent uneven substrate, the small fine particles are also fixed to one main surface of the substrate opposite to the base surface, and the reflectance of the main surface of the substrate opposite to the base surface is 2 The transparent electrode substrate according to claim 1, wherein the transparent electrode substrate is% or less. 請求項1乃至3のいずれかに記載の透明電極基板の製造方法であって、前記透光性凹凸基板を形成する際に、下地面に大きな微粒子を固定した後、小さな微粒子を含有する溶液中に当該基板をディッピングして小さな微粒子を固定することを特徴とする、透明電極基板の製造方法。 The method for producing a transparent electrode substrate according to any one of claims 1 to 3, wherein in forming the light-transmitting uneven substrate, after fixing large fine particles to a base surface, in a solution containing small fine particles. A method for producing a transparent electrode substrate , wherein the substrate is dipped to fix small particles. 前記透光性凹凸基板を形成する際に、前記大きな微粒子をディッピング法で下地面に塗布し、固定することを特徴とする、請求項4に記載の透明電極基板の製造方法。 The method for producing a transparent electrode substrate according to claim 4 , wherein when forming the translucent uneven substrate, the large fine particles are applied to a base surface by dipping and fixed.
JP2011122649A 2011-05-31 2011-05-31 Transparent electrode substrate and manufacturing method thereof Active JP5650057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011122649A JP5650057B2 (en) 2011-05-31 2011-05-31 Transparent electrode substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011122649A JP5650057B2 (en) 2011-05-31 2011-05-31 Transparent electrode substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012253089A JP2012253089A (en) 2012-12-20
JP5650057B2 true JP5650057B2 (en) 2015-01-07

Family

ID=47525661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011122649A Active JP5650057B2 (en) 2011-05-31 2011-05-31 Transparent electrode substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5650057B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6048920B2 (en) * 2012-02-23 2016-12-21 国立大学法人島根大学 Light scattering film, method for producing the same, and solar cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332711A (en) * 2000-03-02 2006-12-07 Nippon Sheet Glass Co Ltd Photoelectric conversion device
JP3706835B2 (en) * 2002-02-19 2005-10-19 株式会社カネカ Thin film photoelectric converter
JP2003253435A (en) * 2002-02-28 2003-09-10 Mitsubishi Heavy Ind Ltd Method of depositing rugged film and method of manufacturing photoelectric converter
CA2547466C (en) * 2003-11-28 2012-12-11 Teijin Limited Transparent conductive laminate and transparent touch panel comprising the same
KR100954309B1 (en) * 2005-09-12 2010-04-21 닛토덴코 가부시키가이샤 Transparent conductive film, electrode sheet for use in touch panel, and touch panel
JP5069790B2 (en) * 2008-05-23 2012-11-07 株式会社カネカ Thin film photoelectric conversion device substrate, thin film photoelectric conversion device including the same, and method for manufacturing thin film photoelectric conversion device substrate

Also Published As

Publication number Publication date
JP2012253089A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP5069790B2 (en) Thin film photoelectric conversion device substrate, thin film photoelectric conversion device including the same, and method for manufacturing thin film photoelectric conversion device substrate
JP5600660B2 (en) Thin film solar cell substrate and method for manufacturing thin film solar cell
US20090194157A1 (en) Front electrode having etched surface for use in photovoltaic device and method of making same
JP5243697B2 (en) Transparent conductive film for photoelectric conversion device and manufacturing method thereof
JP2005311292A (en) Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same
JP3706835B2 (en) Thin film photoelectric converter
US20130092230A1 (en) Substrate comprising a transparent conductive oxide film and its manufacturing process
JP2012522395A (en) Photovoltaic power generation apparatus and manufacturing method thereof
Yang et al. Modulated surface textured glass as substrate for high efficiency microcrystalline silicon solar cells
JP4713819B2 (en) Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device using the same
JPWO2006046397A1 (en) Substrate for thin film photoelectric conversion device and integrated thin film photoelectric conversion device using the same
Boccard et al. Low‐refractive‐index nanoparticle interlayers to reduce parasitic absorption in metallic rear reflectors of solar cells
JP5270889B2 (en) Method for manufacturing thin film photoelectric conversion device
Yu et al. Cost-effective and self-textured gallium-doped zinc oxide front contacts for hydrogenated amorphous silicon thin-film solar cells
JP5650057B2 (en) Transparent electrode substrate and manufacturing method thereof
WO2011136177A1 (en) Thin film solar cell and method for manufacturing same, and base with transparent conductive film and method for producing same
JP5469298B2 (en) Transparent conductive film for photoelectric conversion device and method for producing the same
JP5490031B2 (en) Photovoltaic device and photovoltaic module
JP5144949B2 (en) Substrate for thin film photoelectric conversion device and method for manufacturing thin film photoelectric conversion device including the same
Oyama et al. Requirements for TCO substrate in Si-based thin film solar cells-toward tandem
Park et al. Influence on the haze effect of Si thin-film solar cell on multi-surface textures of periodic honeycomb glass
Lluscà et al. Aluminium induced texturing of glass substrates with improved light management for thin film solar cells
JP5548400B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP5563850B2 (en) Photoelectric conversion device and manufacturing method thereof
JP5613296B2 (en) Transparent conductive film for photoelectric conversion device, photoelectric conversion device, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140922

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141112

R150 Certificate of patent or registration of utility model

Ref document number: 5650057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250