JP2003253435A - Method of depositing rugged film and method of manufacturing photoelectric converter - Google Patents

Method of depositing rugged film and method of manufacturing photoelectric converter

Info

Publication number
JP2003253435A
JP2003253435A JP2002052764A JP2002052764A JP2003253435A JP 2003253435 A JP2003253435 A JP 2003253435A JP 2002052764 A JP2002052764 A JP 2002052764A JP 2002052764 A JP2002052764 A JP 2002052764A JP 2003253435 A JP2003253435 A JP 2003253435A
Authority
JP
Japan
Prior art keywords
film
particles
photoelectric conversion
substrate
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002052764A
Other languages
Japanese (ja)
Inventor
Akimi Takano
暁己 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002052764A priority Critical patent/JP2003253435A/en
Publication of JP2003253435A publication Critical patent/JP2003253435A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of depositing a rugged film by which the rugged film is formed under a low temperature condition. <P>SOLUTION: A source material of a 1st transparent conductive film 32 is evaporated by an evaporation system in a vacuum chamber where the temperature and the pressure of an atmosphere is set to a proper value, is grown into particles 32a having a proper size before the source material reaches a glass substrate 30 and is deposited on the substrate 30. After the deposition of the particles 32a, the source material is deposited on the substrate 30 to fill the gap among the particles 32a as particles (including molecules) having a size smaller than that of the particles 32a by lowering the temperature and the pressure. As a result, the 1st transparent conductive film 32 having ruggedness is deposited. A photoelectric converter is formed by successively stacking a photoelectric conversion film 33, a 2nd transparent conductive film 34 and a reflection film 35 on the 1st transparent conductive film 32. Because the particles 32a are grown before the particles 32a reach the substrate 30, it is unnecessary to make the temperature of the substrate 30 high. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,基板または半導体
素子上の凹凸膜の形成方法,光電変換素子の製造方法,
および光電変換素子に関する。
TECHNICAL FIELD The present invention relates to a method for forming a concavo-convex film on a substrate or a semiconductor element, a method for manufacturing a photoelectric conversion element,
And a photoelectric conversion element.

【0002】[0002]

【従来の技術】太陽電池,受光器等の光電変換素子で
は,素子に入射した光の利用効率を上げるために,素子
に凹凸を形成し,この凹凸によって光を散乱させ,光路
長を長くしたり,反射光を再度光電変換に利用したりす
ることが行われている。
2. Description of the Related Art In photoelectric conversion elements such as solar cells and photodetectors, in order to increase the efficiency of use of light incident on the element, unevenness is formed on the element and the unevenness scatters light to increase the optical path length. Alternatively, the reflected light is used again for photoelectric conversion.

【0003】従来,このような凹凸を素子に形成する方
法として,熱CVD法等の薄膜形成方法による結晶成長
を利用して,基板上に凹凸を有する膜(凹凸膜)を結晶
成長させる方法が用いられていた。
Conventionally, as a method of forming such unevenness on an element, there is a method of growing a film having unevenness (an uneven film) on a substrate by utilizing crystal growth by a thin film forming method such as a thermal CVD method. Was used.

【0004】[0004]

【発明が解決しようとする課題】したがって,従来の凹
凸膜の形成では,基板を高温(数百度〜千数百度等)に
する必要があり,このため,基板に使用される材料や基
板の種類には,高温に耐え得るものという制限があっ
た。
Therefore, in the conventional formation of the concavo-convex film, it is necessary to raise the temperature of the substrate (several hundred degrees to one thousand and several hundred degrees, etc.). Therefore, the material used for the substrate and the kind of the substrate are used. Was limited in its ability to withstand high temperatures.

【0005】また,凹凸膜の形成に高温が必要であるこ
とから,高温で性能が劣化する光電変換膜には,凹凸膜
(たとえば凹凸を有する透明導電膜)を形成することが
困難であった。同様にして,既に製作された光電変換素
子に凹凸膜を形成することができなかった。
Further, since a high temperature is required to form the uneven film, it is difficult to form an uneven film (for example, a transparent conductive film having unevenness) on the photoelectric conversion film whose performance deteriorates at high temperature. . Similarly, the uneven film could not be formed on the already manufactured photoelectric conversion element.

【0006】一方,高温にすることなく凹凸膜を形成す
る方法として,基板等の表面を機械により削ったり,エ
ッチングを使用したりする方法も考えられるが,このよ
うな方法では,CVD法,蒸着法,スパッタ法等が使用
される光電変換素子の製造プロセスとは別プロセスが必
要となり,コストおよび時間を要する。
On the other hand, as a method of forming the uneven film without raising the temperature, a method of mechanically scraping the surface of the substrate or using etching is conceivable. In such a method, the CVD method and the vapor deposition method are used. A process different from the manufacturing process of the photoelectric conversion element, which uses the sputtering method, the sputtering method, etc., is required, which requires cost and time.

【0007】また,光電変換素子の透明導電膜を凹凸膜
として形成する場合には,その成膜条件に適正な範囲が
あるため,従来の凹凸膜製造方法では,適正な凹凸特性
と電気,光特性を同時に満足することが困難であった。
Further, when the transparent conductive film of the photoelectric conversion element is formed as an uneven film, since the film forming conditions have an appropriate range, the conventional uneven film manufacturing method has an appropriate unevenness characteristic and electrical and optical characteristics. It was difficult to satisfy the characteristics at the same time.

【0008】本発明は,このような状況に鑑みなされた
ものであり,その目的は,低温条件下で凹凸膜の形成を
可能とする凹凸膜の製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing a concavo-convex film which enables the concavo-convex film to be formed under low temperature conditions.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に,本発明の第1の側面による凹凸膜形成方法は,凹凸
膜の核となる粒子をまず成長させ,成長後に基板等に付
着させ,その後,付着させた粒子間を該粒子より小さな
粒子(分子,原子状のものを含む。)により埋めること
によって凹凸膜を形成するものである。
In order to achieve the above object, in the method for forming a concavo-convex film according to the first aspect of the present invention, particles serving as the core of the concavo-convex film are first grown and then adhered to a substrate or the like after the growth. After that, the uneven film is formed by filling the space between the adhered particles with particles smaller than the particles (including molecular and atomic particles).

【0010】すなわち,本発明の第1の側面による凹凸
膜形成方法は,基板または半導体素子上に凹凸を有する
膜を形成する方法であって,前記凹凸を有する膜を形成
するための物質を第1の粒子に成長させる第1の工程
と,前記物質が第1の粒子に成長した後,該第1の粒子
を前記基板または前記半導体素子に付着させる第2の工
程と,前記第1の粒子よりも小さな,前記物質からなる
第2の粒子を,前記基板もしくは前記半導体素子,また
は,前記基板もしくは前記半導体素子に付着した前記第
1の粒子に付着させる第3の工程と,を有する。
That is, the method for forming a concavo-convex film according to the first aspect of the present invention is a method for forming a film having concavities and convexities on a substrate or a semiconductor element, wherein a material for forming the film having concavities and convexities is first formed. A first step of growing the first particles, a second step of adhering the first particles to the substrate or the semiconductor element after the substance has grown to the first particles, and the first particles A third step of adhering smaller second particles of the substance to the substrate or the semiconductor element or the first particles attached to the substrate or the semiconductor element.

【0011】ここで,第2の粒子には,分子,原子,こ
れらの分子または原子が複数個結合した粒子が含まれ,
また,これらの分子,原子,または分子もしくは原子が
複数個結合した粒子が電気を帯びたもの等も含まれる。
Here, the second particles include molecules, atoms, and particles in which a plurality of these molecules or atoms are combined,
Further, those molecules, atoms, or particles in which a plurality of molecules or atoms are bonded are electrically charged, and the like.

【0012】本発明の第1の側面によると,第1の粒子
の形成後,該第1の粒子が基板または半導体素子に付着
する。その後,第1の粒子よりも小さな第2の粒子が,
第1の粒子間を埋めるようにして基板等に付着,堆積
し,凹凸膜が形成される。このように,基板または半導
体素子上で粒子を成長させるわけではないので,基板等
の温度を高温にする必要はない。これにより,基板等の
選択範囲が広がり,また,高温で性能が劣化する光電変
換膜や光電変換膜を有する光電変換素子にも,性能を劣
化させることなく凹凸膜を形成することができる。
According to the first aspect of the present invention, after the formation of the first particles, the first particles adhere to the substrate or the semiconductor device. After that, a second particle smaller than the first particle
The unevenness film is formed by adhering and depositing on the substrate or the like so as to fill the spaces between the first particles. As described above, since particles are not grown on the substrate or the semiconductor element, it is not necessary to raise the temperature of the substrate or the like. Thereby, the selection range of the substrate and the like is widened, and the uneven film can be formed on the photoelectric conversion film or the photoelectric conversion element having the photoelectric conversion film whose performance is deteriorated at high temperature without deteriorating the performance.

【0013】また,本発明の第1の側面によると,光電
変換素子の製造プロセスと同じプロセスで凹凸膜を形成
することができる。
Further, according to the first aspect of the present invention, the uneven film can be formed by the same process as the manufacturing process of the photoelectric conversion element.

【0014】一実施の形態においては,前記第1の工程
は,前記物質を蒸発装置によって加熱することにより蒸
発させる工程と,前記蒸発装置と,該蒸発装置から離間
して配置された前記基板または前記半導体素子との間の
空間内で,前記蒸発した物質が衝突および結合すること
を利用して,前記物質を前記第1の粒子に成長させる工
程と,を有する。
In one embodiment, the first step is a step of evaporating by heating the substance by an evaporation device, the evaporation device, and the substrate arranged apart from the evaporation device. Growing the substance into the first particle by utilizing collision and binding of the vaporized substance in a space between the substance and the semiconductor device.

【0015】好ましくは,前記第3の工程を,前記物質
を前記蒸発装置によって加熱して蒸発させることにより
行い,前記第2の工程の後,前記蒸発装置の加熱温度お
よび雰囲気の圧力の双方または一方を減少させることに
より前記第3の工程を行う。これにより,同じ装置内
で,温度または圧力を変化させるだけで,凹凸膜を形成
することができる。
Preferably, the third step is carried out by heating and vaporizing the substance by the evaporator, and after the second step, both the heating temperature of the evaporator and the pressure of the atmosphere or The third step is performed by reducing one. Thus, the uneven film can be formed by simply changing the temperature or the pressure in the same device.

【0016】本発明の第2の側面による光電変換素子の
製造方法は,透光性を有する物質を第1の粒子に成長さ
せた後,該第1の粒子を透光性を有する基板の一方の面
に付着させ,その後,前記第1の粒子よりも小さな前記
物質からなる第2の粒子を前記基板の一方の面,また
は,前記基板の一方の面に付着した前記第1の粒子に付
着させて,透光性を有する凹凸膜を形成し,前記形成し
た凹凸膜の上に,透光性導電膜,光電変換膜,および導
電膜を順次積層して形成するものである。
In the method for manufacturing a photoelectric conversion element according to the second aspect of the present invention, a substance having a light-transmitting property is grown into first particles, and then the first particles are transferred to one of the substrates having a light-transmitting property. And then attach second particles smaller than the first particles and made of the substance to one surface of the substrate or the first particles attached to one surface of the substrate. Then, a light-transmitting uneven film is formed, and a light-transmitting conductive film, a photoelectric conversion film, and a conductive film are sequentially stacked on the formed uneven film.

【0017】また,本発明の第2の側面による光電変換
素子の製造方法は,透光性を有する導電物質を第1の粒
子に成長させた後,該第1の粒子を透光性を有する基板
の一方の面に付着させ,その後,前記第1の粒子よりも
小さな前記導電物質からなる第2の粒子を前記基板の一
方の面,または,前記基板の一方の面に付着した前記第
1の粒子に付着させて,凹凸を有する透光性導電膜を形
成し,前記形成した凹凸を有する透光性導電膜の上に,
光電変換膜および導電膜を順次積層して形成するもので
ある。
In the method for manufacturing a photoelectric conversion element according to the second aspect of the present invention, a conductive material having a light-transmitting property is grown into first particles, and then the first particles have a light-transmitting property. The first particles adhered to one surface of the substrate and then the second particles of the conductive material smaller than the first particles adhered to one surface of the substrate or one surface of the substrate. To form a light-transmitting conductive film having unevenness on the particles, and on the formed light-transmitting conductive film having unevenness,
It is formed by sequentially stacking a photoelectric conversion film and a conductive film.

【0018】さらに,本発明の第2の側面による光電変
換素子の製造方法は,透光性を有する基板の一方の面
に,第1の透光性導電膜および光電変換膜を順次積層し
て形成し,透光性を有する導電物質を第1の粒子に成長
させた後,該第1の粒子を前記光電変換膜上に付着さ
せ,その後,前記第1の粒子よりも小さな前記導電物質
からなる第2の粒子を前記光電変換膜または前記光電変
換膜に付着した前記第1の粒子に付着させて,凹凸を有
する第2の透光性導電膜を形成するものである。
Further, in the method for manufacturing a photoelectric conversion element according to the second aspect of the present invention, the first transparent conductive film and the photoelectric conversion film are sequentially laminated on one surface of the substrate having a light transmitting property. After forming and growing a light-transmitting conductive material on the first particles, the first particles are attached to the photoelectric conversion film, and then the conductive material smaller than the first particles is used. The second particles are attached to the photoelectric conversion film or the first particles attached to the photoelectric conversion film to form a second translucent conductive film having irregularities.

【0019】ここで,「導電膜」は,透光性を有する導
電膜(透光性導電膜)であってもよいし,透光性を有し
ない導電膜であってもよい。また,導電膜が透光性導電
膜である場合には,該導電膜の上に反射膜がさらに積層
形成されてもよい。
Here, the "conductive film" may be a conductive film having a light-transmitting property (light-transmitting conductive film) or a conductive film having no light-transmitting property. When the conductive film is a translucent conductive film, a reflective film may be further laminated on the conductive film.

【0020】本発明の第2の側面によっても,低温の基
板上に凹凸膜を形成することができる。したがって,高
温で性能が劣化する光電変換膜上にも,性能を劣化させ
ることなく,凹凸膜を形成することができる。
According to the second aspect of the present invention, the uneven film can be formed on the substrate having a low temperature. Therefore, the concavo-convex film can be formed on the photoelectric conversion film whose performance deteriorates at high temperature without deteriorating the performance.

【0021】また,第1の粒子を成長させる雰囲気の温
度または圧力を調整することにより,第1の粒子の大き
さを制御でき,その結果,凹凸膜の凹凸の程度も制御で
きる。これにより,透明導電膜を凹凸膜として形成する
場合に,適正な凹凸特性と電気,光特性を同時に満足す
ることが可能となる。
The size of the first particles can be controlled by adjusting the temperature or pressure of the atmosphere in which the first particles are grown, and as a result, the degree of unevenness of the uneven film can also be controlled. As a result, when the transparent conductive film is formed as an uneven film, it is possible to satisfy appropriate unevenness characteristics and electrical and optical characteristics at the same time.

【0022】好ましくは,本発明の第2の側面による光
電変換素子製造方法は,前記第1の粒子の平均直径が,
入射光を入射方向とは異なる方向に反射可能な範囲の大
きさで,かつ,付着可能な範囲の大きさとなるように,
前記第1の粒子を成長させるものであり,具体的には,
前記第1の粒子を,その平均直径が0.05μmから1
μmまでの範囲に成長させるものである。
Preferably, in the method for producing a photoelectric conversion element according to the second aspect of the present invention, the average diameter of the first particles is
The size of the range in which the incident light can be reflected in a direction different from the incident direction, and the size of the range in which the incident light can be attached,
The first particles are grown, and specifically,
The first particles have an average diameter of 0.05 μm to 1
It grows up to the range of μm.

【0023】本発明の第3の側面による光電変換素子の
製造方法は,透光性基板の一方の面に,透光性導電膜,
光電変換膜,および導電膜を順次積層して形成し,前記
透光性導電膜,光電変換膜,および導電膜の形成の前も
しくは後,または中途において,光触媒作用を有する物
質からなる凹凸膜を前記基板の他方の面に形成するもの
である。
According to a third aspect of the present invention, there is provided a method of manufacturing a photoelectric conversion element, wherein a transparent conductive film is formed on one surface of a transparent substrate,
A photoelectric conversion film and a conductive film are sequentially laminated to form a concavo-convex film made of a substance having a photocatalytic action before, after, or during the formation of the translucent conductive film, the photoelectric conversion film, and the conductive film. It is formed on the other surface of the substrate.

【0024】本発明の第3の側面による光電変換素子
は,透光性基板と,前記透光性基板の一方の面に形成さ
れた透光性導電膜と,前記透光性導電膜の上に形成され
た光電変換膜と,前記光電変換膜の上に形成された導電
膜と,前記透光性基板の他方の面に形成された,光触媒
作用を有する物質からなる凹凸膜と,を有する。
The photoelectric conversion element according to the third aspect of the present invention is a translucent substrate, a translucent conductive film formed on one surface of the translucent substrate, and a translucent conductive film on the translucent conductive film. A photoelectric conversion film formed on the photoelectric conversion film, a conductive film formed on the photoelectric conversion film, and a concavo-convex film formed on the other surface of the translucent substrate and made of a substance having a photocatalytic action. .

【0025】本発明の第3の側面によると,光触媒作用
を有する物質からなる凹凸膜が基板の他方の面の汚れを
除去するので,光の入射量が汚れにより減少することが
防止される。また,光触媒作用を有する物質が凹凸膜と
して形成されるので,凹凸の程度を調整することによっ
て,凹凸部分を,光学的には膜材料と空気との混合物に
見せることができ,凹凸膜の実効的な屈折率を下げるこ
とができる。これにより,光触媒作用を有する物質から
なる凹凸膜による光の反射量を減少させ,光電変換膜へ
の光の入射量を増加させることができる。
According to the third aspect of the present invention, since the concavo-convex film made of a substance having a photocatalytic action removes stains on the other surface of the substrate, it is possible to prevent the incident amount of light from being reduced by the stains. In addition, since the substance having a photocatalytic action is formed as a concavo-convex film, the concavo-convex portion can be optically viewed as a mixture of the film material and air by adjusting the degree of the concavo-convex film. The refractive index can be lowered. As a result, the amount of light reflected by the concavo-convex film made of a substance having a photocatalytic action can be reduced and the amount of light incident on the photoelectric conversion film can be increased.

【0026】このような屈折率を下げる凹凸膜を得るた
めには,該凹凸膜の凹部と凸部との膜厚差が0.2μm
以下となるようにすることが好ましい。
In order to obtain such a concavo-convex film for lowering the refractive index, the film thickness difference between the concave and convex portions of the concavo-convex film is 0.2 μm.
The following is preferable.

【0027】透光性基板の温度を高温にすることなく,
光触媒作用を有する物質の凹凸膜を形成するには,前記
光触媒作用を有する物質からなる凹凸膜を,前記光触媒
作用を有する物質を第3の粒子に成長させた後,該第3
の粒子を前記透光性基板の他方の面に付着させ,その
後,前記第3の粒子よりも小さな前記光触媒作用を有す
る物質からなる第4の粒子を前記透光性基板の他方の面
または前記他方の面に付着した前記第3の粒子に付着さ
せて形成することが好ましい。
Without raising the temperature of the transparent substrate,
In order to form a concavo-convex film of a substance having a photocatalytic action, a concavo-convex film made of the substance having a photocatalytic action is grown on the third particles after the substance having a photocatalytic action is grown on the third particle.
Particles are attached to the other surface of the translucent substrate, and then fourth particles of a substance having the photocatalytic action smaller than the third particles are attached to the other surface of the translucent substrate or the It is preferably formed by adhering to the third particles attached to the other surface.

【0028】[0028]

【発明の実施の形態】<半導体製造装置(凹凸膜製造装
置)の構成>図1は,本発明の一実施の形態による半導
体製造装置(凹凸膜製造装置)10の概略構成図であ
る。図2は,本発明の一実施の形態による凹凸膜が形成
された基板20の断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION <Structure of Semiconductor Manufacturing Device (Concave / Concave Film Manufacturing Device)> FIG. 1 is a schematic structural diagram of a semiconductor manufacturing device (irregular film manufacturing device) 10 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the substrate 20 on which the uneven film is formed according to the embodiment of the present invention.

【0029】半導体製造装置10は,真空容器11,蒸
発装置12,RFアンテナ13,ガス供給路14,排気
口15,および排気ポンプ16を有する。
The semiconductor manufacturing apparatus 10 has a vacuum container 11, an evaporator 12, an RF antenna 13, a gas supply passage 14, an exhaust port 15, and an exhaust pump 16.

【0030】真空容器11の内部には,基板20が取り
付けられる。基板20として,たとえばガラス(二酸化
シリコン(SiO2))に加えて,軟化点が比較的低い
プラスチック,PET(ポリエチレンテレフタラート)
等を使用することができる。基板20は,蒸発装置12
から蒸発した物質が付着しやすいように,蒸発装置12
の鉛直上方に配置されることが好ましい。
A substrate 20 is attached inside the vacuum container 11. As the substrate 20, for example, in addition to glass (silicon dioxide (SiO 2 )), plastic having a relatively low softening point, PET (polyethylene terephthalate)
Etc. can be used. The substrate 20 is the evaporator 12
In order to make it easier for substances evaporated from the
Is preferably arranged vertically above.

【0031】この基板20には,図示しない加熱装置が
取り付けられ,この加熱装置によって,基板20は,後
述する所定の温度にされる。加熱装置として,輻射加
熱,接触式加熱等のものを用いることができる。
A heating device (not shown) is attached to the substrate 20, and the substrate 20 is brought to a predetermined temperature described later by the heating device. Radiant heating, contact heating, or the like can be used as the heating device.

【0032】蒸発装置12は,図示しない蒸発坩堝(る
つぼ)および蒸発坩堝の加熱装置を有する。蒸発坩堝の
加熱装置としては,抵抗加熱装置,プラズマ加熱装置,
電子線加熱装置等を使用することができるが,凹凸膜の
核となる粒子を形成するために蒸発坩堝およびその周囲
が高圧下に置かれることから,抵抗加熱装置(たとえば
電気ヒータ等)が好ましい。この抵抗加熱装置は,たと
えば蒸発坩堝と一体にされている。
The evaporation device 12 has an evaporation crucible (crucible) and a heating device for the evaporation crucible, which are not shown. As a heating device for the evaporation crucible, a resistance heating device, a plasma heating device,
An electron beam heating device or the like can be used, but a resistance heating device (for example, an electric heater or the like) is preferable because the evaporation crucible and its surroundings are placed under high pressure in order to form particles that form the core of the uneven film. . This resistance heating device is, for example, integrated with an evaporation crucible.

【0033】RFアンテナ13は,蒸発装置12と基板
20との間に配置される。RFアンテナ13は,たとえ
ば,リング状またはスパイラル状の形状を有する。この
RFアンテナ13には,図示しない高周波信号発生器か
ら高周波(たとえば13.56MHz)の電気信号が与
えられ,これにより,RFアンテナ13は,その周囲に
プラズマを発生させる。このプラズマを発生させること
により,凹凸膜の特性(透光性,密着性等)を向上させ
ることができる。
The RF antenna 13 is arranged between the evaporator 12 and the substrate 20. The RF antenna 13 has, for example, a ring shape or a spiral shape. A high-frequency (for example, 13.56 MHz) electric signal is applied to the RF antenna 13 from a high-frequency signal generator (not shown), whereby the RF antenna 13 generates plasma around it. By generating this plasma, the characteristics (translucency, adhesion, etc.) of the uneven film can be improved.

【0034】ガス供給路14は,図示しないガス供給源
からガスを供給するための通路である。供給されるガス
は,たとえば,蒸発装置12内の物質を酸化させるため
の酸素ガス(O2)である。また,酸素ガスの濃度を調
整するために,アルゴン(Ar),キセノン(Xe)等
の不活性ガスが混合されてもよい。ガスの流量は,図示
しないガス供給装置によって調整される。ガス供給路1
4の出口は,蒸発装置12による蒸発物質の酸化効率を
高めるために,蒸発装置12の近傍に配置されることが
好ましい。
The gas supply passage 14 is a passage for supplying gas from a gas supply source (not shown). The supplied gas is, for example, oxygen gas (O 2 ) for oxidizing the substance in the evaporator 12. Further, an inert gas such as argon (Ar) or xenon (Xe) may be mixed in order to adjust the concentration of oxygen gas. The gas flow rate is adjusted by a gas supply device (not shown). Gas supply path 1
The outlet of No. 4 is preferably arranged in the vicinity of the evaporator 12 in order to enhance the efficiency of oxidizing the evaporated substance by the evaporator 12.

【0035】排気装置16は,真空容器11内のガスを
排気口15から吸い出し,排出するものである。この排
気装置16は,真空容器11の内部圧力を検出するセン
サ(図示略)を有し,このセンサによって検出された内
部圧力に基づいて,真空容器11内の圧力が目的の圧力
となるように,排出ガスの量を調整する。なお,酸化物
の基板20への付着を妨げないように,排気口15は,
基板20に対して,蒸発装置12を挟んで反対の位置に
配置されることが好ましい。
The exhaust device 16 sucks the gas in the vacuum container 11 through the exhaust port 15 and exhausts it. The evacuation device 16 has a sensor (not shown) that detects the internal pressure of the vacuum container 11 so that the internal pressure of the vacuum container 11 becomes a target pressure based on the internal pressure detected by the sensor. , Adjust the amount of exhaust gas. The exhaust port 15 is provided so as not to prevent the oxide from adhering to the substrate 20.
It is preferable that the substrate 20 is arranged at the opposite position with the evaporator 12 interposed therebetween.

【0036】<凹凸膜の製造方法>半導体製造装置10
を使用して,二酸化スズ(SnO2)による凹凸膜の製造
方法について説明する。
<Manufacturing Method of Uneven Film> Semiconductor manufacturing apparatus 10
A method of manufacturing the uneven film made of tin dioxide (SnO 2 ) will be described with reference to FIG.

【0037】基板20として,ガラス基板を使用する。
蒸発装置24の蒸発坩堝に一酸化スズ(SnO)を入
れ,蒸発坩堝の温度を約1200℃に調整する。真空容
器11内の圧力は約5Paとする。ガス供給路14から
供給する酸素ガスの圧力は約100Paとする。基板2
0の温度は基板表面の水分の蒸発を促進するために約1
00℃とする。
A glass substrate is used as the substrate 20.
Tin monoxide (SnO) is put into the evaporation crucible of the evaporation device 24, and the temperature of the evaporation crucible is adjusted to about 1200 ° C. The pressure in the vacuum container 11 is about 5 Pa. The pressure of the oxygen gas supplied from the gas supply passage 14 is about 100 Pa. Board 2
A temperature of 0 is about 1 to promote evaporation of water on the substrate surface.
Set to 00 ° C.

【0038】蒸発坩堝から蒸発した一酸化スズの粒子
は,酸素ガスと反応して二酸化スズ(SnO2)になる
とともに,基板20に到達するまでに多数回の衝突を繰
り返して微粒子を形成する。二酸化スズの微粒子は,こ
の条件下で約50nm〜100nm程度の大きさに成長
する。形成された微粒子は,基板20の表面に到達して
付着する(図2の微粒子21a)。
The tin monoxide particles evaporated from the evaporation crucible react with oxygen gas to become tin dioxide (SnO 2 ), and repeatedly collide many times before reaching the substrate 20 to form fine particles. Tin dioxide fine particles grow to a size of about 50 nm to 100 nm under this condition. The formed fine particles reach and adhere to the surface of the substrate 20 (fine particles 21a in FIG. 2).

【0039】この状態を20秒程度継続した後,付着し
た微粒子21a間を埋め,凹凸膜21を形成するため
に,数分間で蒸発坩堝の温度を600℃,真空容器11
内の圧力を0.1Paに低下させる。これにより,二酸
化スズの蒸発量が減少するとともに,蒸発物質の衝突回
数が減少するので,二酸化スズは,微粒子21aよりも
小さな粒子または分子の状態で基板20の表面に到達
し,基板20の微粒子21a間に堆積する。その結果,
滑らかで,しかも,微粒子21aの直径程度の凹凸を有
する凹凸膜21が得られる。このときの凹凸膜21の平
均膜厚は約100nm〜150nm,ヘイズ率43%を
得ることができた。
After this state is continued for about 20 seconds, the temperature of the evaporation crucible is set to 600 ° C. and the vacuum container 11 is filled in several minutes in order to fill the space between the adhered fine particles 21a and form the uneven film 21.
The internal pressure is reduced to 0.1 Pa. As a result, the evaporation amount of tin dioxide is reduced and the number of collisions of the evaporated material is reduced, so that tin dioxide reaches the surface of the substrate 20 in the state of particles or molecules smaller than the fine particles 21a, and the fine particles of the substrate 20. It is deposited between 21a. as a result,
The uneven film 21 that is smooth and has unevenness of about the diameter of the fine particles 21a is obtained. At this time, the average film thickness of the uneven film 21 was about 100 nm to 150 nm, and the haze ratio of 43% could be obtained.

【0040】真空容器21内の圧力および蒸発装置24
の加熱温度の双方または一方を制御することにより,微
粒子の大きさを適宜変更でき,その結果,凹凸膜21の
凹凸の変化も調整することができる。また,RFアンテ
ナ13によりプラズマを発生させることによって,微粒
子の反応を促進するとともに,微粒子を帯電させ基板2
0に強く付着させることも可能となる。
Pressure in the vacuum vessel 21 and evaporation device 24
By controlling both or one of the heating temperatures, the size of the fine particles can be changed appropriately, and as a result, the change in the unevenness of the uneven film 21 can also be adjusted. In addition, the plasma is generated by the RF antenna 13 to accelerate the reaction of the fine particles and charge the fine particles to the substrate 2
It is also possible to strongly adhere to 0.

【0041】なお,微粒子21aを成長および付着させ
る時の蒸発坩堝の温度を1200℃としたが,この温度
は,700℃から2000℃の範囲,好ましくは100
0℃から1200℃の範囲でもよい。また,RFアンテ
ナ13の高周波電力は1W以上であればよいが,10W
から200Wの範囲が好ましい。成膜時間は,20秒と
したが,微粒子の表面被覆率の経過によって変化する。
The temperature of the evaporation crucible at the time of growing and adhering the fine particles 21a was 1200 ° C., but this temperature is in the range of 700 ° C. to 2000 ° C., preferably 100 ° C.
It may be in the range of 0 ° C to 1200 ° C. Further, the high frequency power of the RF antenna 13 may be 1 W or more, but 10 W
To 200 W is preferred. The film formation time was 20 seconds, but it changes depending on the progress of the surface coverage of the fine particles.

【0042】微粒子の形成後,凹凸膜21を形成すると
きの蒸発坩堝の温度を600℃としたが,この温度は,
500℃から1000℃の範囲,好ましくは570℃か
ら680℃の範囲でもよい。
After forming the fine particles, the temperature of the evaporation crucible when forming the uneven film 21 was set to 600 ° C.
It may be in the range of 500 ° C to 1000 ° C, preferably in the range of 570 ° C to 680 ° C.

【0043】基板20の温度は,使用される物質によっ
ては,100℃よりも低温にすることもできる。このよ
うに,本実施の形態によると,基板20の温度を低温に
設定できるので,基板20に使用する材料や基板の種類
の選択範囲が広がる。また,後述する光電変換素子の製
造と同じプロセスによって,凹凸膜21を形成できるの
で,凹凸膜の形成に要するコストおよび時間を削減する
ことができる。
The temperature of the substrate 20 may be lower than 100 ° C. depending on the material used. As described above, according to the present embodiment, the temperature of the substrate 20 can be set to a low temperature, so that the selection range of the material used for the substrate 20 and the type of the substrate is widened. Further, since the uneven film 21 can be formed by the same process as the manufacturing of the photoelectric conversion element described later, the cost and time required for forming the uneven film can be reduced.

【0044】<光電変換素子の製造方法>基板に形成さ
れた凹凸膜上に光電変換膜(発電膜)等を積層し,光電
変換素子(たとえば太陽電池,受光素子等)を形成する
ことができる。図3は,本発明の一実施の形態による光
電変換素子3の構成を示す断面図である。
<Method for Manufacturing Photoelectric Conversion Element> A photoelectric conversion element (for example, solar cell, light receiving element, etc.) can be formed by laminating a photoelectric conversion film (power generation film) or the like on the uneven film formed on the substrate. . FIG. 3 is a sectional view showing the configuration of the photoelectric conversion element 3 according to the embodiment of the present invention.

【0045】この光電変換素子3は,基板30,ならび
に基板30上に順次積層された凹凸膜31,第1の透明
導電膜(透光性導電膜)32,光電変換膜(発電膜)3
3,第2の透明導電膜(透光性導電膜)34,および反
射膜(裏面電極膜)35を有する。なお,図3では,図
を分かり易くするために,各膜厚の縮尺を同じにはして
いない。
The photoelectric conversion element 3 includes a substrate 30, an uneven film 31 sequentially laminated on the substrate 30, a first transparent conductive film (translucent conductive film) 32, a photoelectric conversion film (power generation film) 3
3, a second transparent conductive film (translucent conductive film) 34, and a reflective film (back electrode film) 35. In FIG. 3, the scales of the film thicknesses are not the same in order to make the diagram easy to understand.

【0046】基板30は,光を透過する平坦なガラス基
板(ソーダガラスなど)である。凹凸膜31は,二酸化
シリコンを原料に形成されている。凹凸膜31の平均膜
厚は,好ましくは微粒子31aの平均直径の0.5倍以
上であり,たとえば100nm〜150nmである。
The substrate 30 is a flat glass substrate (soda glass or the like) that transmits light. The uneven film 31 is made of silicon dioxide as a raw material. The average film thickness of the uneven film 31 is preferably 0.5 times or more the average diameter of the fine particles 31a, and is, for example, 100 nm to 150 nm.

【0047】凹凸膜31は,上述した図2の凹凸膜21
と同様にして,半導体製造装置10により基板30上に
形成される。ただし,凹凸膜31が二酸化シリコンによ
り形成されるので,蒸発装置12(蒸発坩堝)には,た
とえばSiO2の顆粒が入れられ,蒸発坩堝の温度は約15
00℃に設定される。なお,符号31aは,凹凸膜31
の核となる二酸化シリコンの微粒子(凹凸膜31と一体
化される)である。
The uneven film 31 is the uneven film 21 of FIG.
In the same manner as above, it is formed on the substrate 30 by the semiconductor manufacturing apparatus 10. However, since the concavo-convex film 31 is formed of silicon dioxide, the evaporation device 12 (evaporation crucible) contains, for example, SiO 2 granules, and the temperature of the evaporation crucible is about 15
Set to 00 ° C. The reference numeral 31a indicates the uneven film 31.
Of silicon dioxide, which is the nucleus of (a unitary with the uneven film 31).

【0048】この凹凸膜31が形成された後,第1の透
明導電膜32,光電変換膜(発電膜)33,第2の透明
導電膜34,および反射膜35が順次形成される。その
形成方法は以下の通りである。
After the uneven film 31 is formed, the first transparent conductive film 32, the photoelectric conversion film (power generation film) 33, the second transparent conductive film 34, and the reflective film 35 are sequentially formed. The forming method is as follows.

【0049】まず,凹凸膜31が形成された基板30の
温度を450℃に加熱する。そして,四塩化スズ(Sn
Cl4),水(H2O),およびフッ化水素(HF)を別
々のノズルから基板30上に噴射する熱CVD法によ
り,二酸化スズからなる第1の透明導電膜32を凹凸膜
31上に約800nm堆積する。第1の導電膜32は凹
凸膜31上に堆積するので,凹凸膜31の凹凸を反映し
た滑らかな凹凸を有する第1の透明導電膜32が得られ
る。
First, the temperature of the substrate 30 on which the uneven film 31 is formed is heated to 450.degree. And tin tetrachloride (Sn
Cl 4 ), water (H 2 O), and hydrogen fluoride (HF) are sprayed onto the substrate 30 from different nozzles by a thermal CVD method to form a first transparent conductive film 32 made of tin dioxide on the uneven film 31. About 800 nm. Since the first conductive film 32 is deposited on the uneven film 31, the first transparent conductive film 32 having smooth unevenness that reflects the unevenness of the uneven film 31 can be obtained.

【0050】次に,RFアンテナを用いた周波数13.
56MHzの高周波放電による気相成長法により,p型
層,i型層,およびn型層からなる光電変換膜(非晶質
シリコン半導体層)33を形成する。この光電変換膜3
3の膜厚(すなわちp型層,i型層,およびn型層の合
計の膜厚)は,たとえば約0.3μmである。
Next, the frequency 13.
A photoelectric conversion film (amorphous silicon semiconductor layer) 33 including a p-type layer, an i-type layer and an n-type layer is formed by a vapor phase growth method using a high frequency discharge of 56 MHz. This photoelectric conversion film 3
The film thickness of 3 (that is, the total film thickness of the p-type layer, the i-type layer, and the n-type layer) is, for example, about 0.3 μm.

【0051】ここで,p型層の形成には,モノシラン
(SiH4),ジボラン(B26),および水素(H2
を原料ガスとして用いた。さらに必要であればメタン
(CH4)を加えることもできる。n型層の形成には,
モノシラン,フォスフィン(PH 3),および水素を原
料ガスとして用いた。i型層の形成には,モノシランを
原料ガスとして用いた。さらに必要であれば水素を加え
ることができる。
Here, monosilane is used to form the p-type layer.
(SiHFour), Diborane (B2H6), And hydrogen (H2)
Was used as the source gas. Methane if needed
(CHFour) Can also be added. To form the n-type layer,
Monosilane, phosphine (PH 3), And hydrogen
Used as feed gas. Monosilane was used to form the i-type layer.
It was used as a raw material gas. If necessary, add hydrogen
You can

【0052】続いて,第2の透明導電膜34(膜厚約
0.1μm)を,スパッタ法等を用いて形成する。最後
に,反射膜35として,たとえばアルミニウム(Al)
膜を,蒸着法等を用いて約0.5μmの膜厚で形成す
る。これにより,光電変換素子3が形成される。
Then, a second transparent conductive film 34 (film thickness of about 0.1 μm) is formed by using the sputtering method or the like. Finally, as the reflection film 35, for example, aluminum (Al) is used.
A film is formed with a film thickness of about 0.5 μm by using a vapor deposition method or the like. As a result, the photoelectric conversion element 3 is formed.

【0053】このようにして,凹凸膜31上に順次膜3
2〜35を形成するので,膜32〜35はいずれも滑ら
かな凹凸膜として形成される。これにより,基板30の
上方から入射した光は,基板および凹凸膜31を通過し
て,凹凸膜31と第1の透明導電膜32との境界,およ
び,第1の透明導電膜32と光電変換膜33との境界で
散乱され,ランダムな方向の光として光電変換膜33に
入射し,電気に変換される。
In this way, the film 3 is sequentially formed on the uneven film 31.
Since the films 2 to 35 are formed, the films 32 to 35 are all formed as smooth uneven films. As a result, the light incident from above the substrate 30 passes through the substrate and the uneven film 31, and the boundary between the uneven film 31 and the first transparent conductive film 32, and the first transparent conductive film 32 and the photoelectric conversion film. The light is scattered at the boundary with the film 33, enters the photoelectric conversion film 33 as light in random directions, and is converted into electricity.

【0054】また,光電変換膜33で吸収されなかった
光(すなわち電気に変換されなかった光)は,光電変換
膜33と第2の透明導電膜34との境界,および,第2
の透明導電膜34と反射膜35との境界で反射され,再
びランダムな方向の光として光電変換膜33に入射し,
電気に変換される。この電気は,第1の透明導電膜32
と,第2の透明導電膜34(および反射膜35)とを通
じて,図示しない電力出力端子へ出力される。このよう
にして,入射光は,各膜の境界によって散乱または反射
され,光電変換膜33に入射するので,光電変換膜33
における光の利用効率が向上する。
The light that is not absorbed by the photoelectric conversion film 33 (that is, the light that is not converted into electricity) is generated at the boundary between the photoelectric conversion film 33 and the second transparent conductive film 34, and at the second
Is reflected at the boundary between the transparent conductive film 34 and the reflective film 35 and again enters the photoelectric conversion film 33 as light in random directions,
Converted to electricity. This electricity is generated by the first transparent conductive film 32.
, And the second transparent conductive film 34 (and the reflective film 35), to a power output terminal (not shown). In this way, the incident light is scattered or reflected by the boundary of each film and enters the photoelectric conversion film 33, so that the photoelectric conversion film 33
The utilization efficiency of light in is improved.

【0055】なお,各膜32〜35の各製造方法は一例
であり,他の製造方法を用いることもできる。たとえ
ば,第1の透明導電膜32は,スパッタ法によっても形
成することができる。
The method of manufacturing each of the films 32 to 35 is an example, and other manufacturing methods can be used. For example, the first transparent conductive film 32 can also be formed by a sputtering method.

【0056】また,第1の導電膜32の形成において,
凹凸膜31を有する基板30を450℃にしているが,
第1の導電膜32の形成に他の製造方法(たとえばスパ
ッタ法等)を用いることにより,これより低い100℃
程度またはそれ以下の温度で第1の導電膜32を形成す
ることもできる。したがって,基板30に低軟化点を有
する樹脂(PET等)等の物質が使用されている場合で
あっても,光電変換素子3を製造することができる。
In the formation of the first conductive film 32,
The substrate 30 having the uneven film 31 is set to 450 ° C.,
By using another manufacturing method (for example, a sputtering method) for forming the first conductive film 32, the temperature is lower than 100 ° C.
The first conductive film 32 can also be formed at a temperature of about the same or lower. Therefore, the photoelectric conversion element 3 can be manufactured even when a material such as resin (PET or the like) having a low softening point is used for the substrate 30.

【0057】さらに,反射膜35が設けられない場合も
あり,また,反射膜35を導電膜として兼用する場合に
は,第2の透明導電膜34が設けられない場合もある。
以下に述べる光電変換素子4および6についても同様で
ある。
Further, the reflection film 35 may not be provided, and when the reflection film 35 is also used as a conductive film, the second transparent conductive film 34 may not be provided.
The same applies to photoelectric conversion elements 4 and 6 described below.

【0058】<透明導電膜を凹凸膜とした光電変換素子
>光電変換素子を構成する第1の透明導電膜そのものを
凹凸膜として形成することもできる。図4は,第1の透
明導電膜が凹凸膜として形成された光電変換素子4の構
成を示す断面図である。図3の光電変換素子3と同じ構
成要素には同じ符号を付している。
<Photoelectric Conversion Element Using Transparent Conductive Film as Concavo-Convex Film> The first transparent conductive film itself forming the photoelectric conversion element may be formed as an uneven film. FIG. 4 is a cross-sectional view showing the configuration of the photoelectric conversion element 4 in which the first transparent conductive film is formed as an uneven film. The same components as those of the photoelectric conversion element 3 in FIG. 3 are designated by the same reference numerals.

【0059】この光電変換素子4は,基板30,第1の
透明導電膜32,光電変換膜(発電膜)33,第2の透
明導電膜34,および反射膜35を有する。なお,図4
においても,各膜厚の縮尺は同じではない。
The photoelectric conversion element 4 has a substrate 30, a first transparent conductive film 32, a photoelectric conversion film (power generation film) 33, a second transparent conductive film 34, and a reflective film 35. Fig. 4
However, the scale of each film thickness is not the same.

【0060】上述した凹凸膜21と同じ製造方法によっ
て,基板30に,二酸化スズの微粒子32a(第1の透
明導電膜32と一体化される)を含む第1の透明導電膜
32を形成する。第1の透明導電膜32の平均膜厚は,
上述したように好ましくは微粒子32aの平均直径の
0.5倍以上であり,ここでは約1μmにされる。
The first transparent conductive film 32 containing fine particles 32a of tin dioxide (which is integrated with the first transparent conductive film 32) is formed on the substrate 30 by the same manufacturing method as that for the uneven film 21 described above. The average thickness of the first transparent conductive film 32 is
As described above, the average diameter of the fine particles 32a is preferably 0.5 times or more, and is about 1 μm here.

【0061】その後,上記と同様の方法により,光電変
換膜(非晶質シリコン半導体層)33,第2の透明導電
膜34,および反射膜35を形成する。これにより,光
電変換素子4が形成される。
After that, the photoelectric conversion film (amorphous silicon semiconductor layer) 33, the second transparent conductive film 34, and the reflective film 35 are formed by the same method as described above. As a result, the photoelectric conversion element 4 is formed.

【0062】この光電変換素子4によっても,前述した
光電変換素子3と同様に,光電変換膜33における光の
利用効率が向上する。また,光電変換素子4では,第1
の導電膜31が凹凸膜としても兼用されるので,光電変
換素子の製造プロセスを簡略化し,製造コストおよび時
間を削減することができる。
The photoelectric conversion element 4 also improves the light utilization efficiency in the photoelectric conversion film 33, similarly to the photoelectric conversion element 3 described above. In the photoelectric conversion element 4, the first
Since the conductive film 31 is also used as an uneven film, the manufacturing process of the photoelectric conversion element can be simplified, and the manufacturing cost and time can be reduced.

【0063】さらに,従来の凹凸膜の形成方法では,従
来の技術の欄で述べたように,基板を高温にする必要が
あった。このため,高温の基板上において,適切な凹凸
を有し,しかも,透明導電膜の必要条件である低い電気
抵抗で,かつ,高い光透過性を有する膜を実現すること
は困難であった。しかし,本実施の形態によると,基板
30が比較的低温の状態でも透明導電膜を凹凸膜として
形成できるので,適切な凹凸を有し,しかも,低い電気
抵抗で,かつ,高い光透過性を有する透明導電膜を形成
することができる。
Further, in the conventional method of forming a concavo-convex film, it was necessary to raise the temperature of the substrate as described in the section of the conventional technique. Therefore, it is difficult to realize a film having appropriate unevenness on a high temperature substrate, having a low electric resistance which is a necessary condition for a transparent conductive film, and having a high light transmittance. However, according to the present embodiment, since the transparent conductive film can be formed as a concavo-convex film even when the substrate 30 is at a relatively low temperature, it has appropriate concavities and convexities, low electrical resistance, and high light transmittance. It is possible to form a transparent conductive film having the same.

【0064】<裏面の透明導電膜を凹凸膜とした光電変
換素子>裏面に形成される第2の透明導電膜を凹凸膜と
して形成することもできる。図5は,第2の透明導電膜
が凹凸膜として形成された光電変換素子5の構成を示す
断面図である。図3の光電変換素子3と同じ構成要素に
は同じ符号を付している。
<Photoelectric conversion element using a transparent conductive film on the back surface as an uneven film> The second transparent conductive film formed on the back surface can also be formed as an uneven film. FIG. 5 is a cross-sectional view showing the configuration of the photoelectric conversion element 5 in which the second transparent conductive film is formed as an uneven film. The same components as those of the photoelectric conversion element 3 in FIG. 3 are designated by the same reference numerals.

【0065】この光電変換素子5は,基板30,第1の
透明導電膜32,光電変換膜(発電膜)33,第2の透
明導電膜34,および反射膜35を有する。なお,図5
においても,各膜厚の縮尺は同じではない。
The photoelectric conversion element 5 has a substrate 30, a first transparent conductive film 32, a photoelectric conversion film (power generation film) 33, a second transparent conductive film 34, and a reflective film 35. Fig. 5
However, the scale of each film thickness is not the same.

【0066】基板30に,上述した光電変換素子3(図
3)と同様の方法によって第1の透明導電膜32および
光電変換膜33を順次形成する。次に,上述した図2の
凹凸膜21と同様の方法によって,微粒子34a(第2
の透明導電膜34と一体化される)を含む第2の透明導
電膜34を二酸化スズにより凹凸膜として約0.1μm
の平均膜厚で形成する。その後,蒸着法等により反射膜
35を形成する。これにより,光電変換素子5が形成さ
れる。
The first transparent conductive film 32 and the photoelectric conversion film 33 are sequentially formed on the substrate 30 by the same method as that of the photoelectric conversion element 3 (FIG. 3) described above. Next, by the same method as that for the uneven film 21 of FIG.
The second transparent conductive film 34, which is integrated with the transparent conductive film 34) of
The average film thickness is formed. After that, the reflection film 35 is formed by a vapor deposition method or the like. As a result, the photoelectric conversion element 5 is formed.

【0067】このように,基板を比較的低温にした状態
で,凹凸膜を形成することができる。したがって,光電
変換膜33の形成後に凹凸膜を形成しても,光電変換膜
33の性能が劣化しない。
In this way, the uneven film can be formed while the substrate is kept at a relatively low temperature. Therefore, even if the uneven film is formed after the photoelectric conversion film 33 is formed, the performance of the photoelectric conversion film 33 is not deteriorated.

【0068】この光電変換素子5では,基板30(図面
の上方)から入射した光が,第1の透明導電膜32を透
過して,光電変換膜33により電気に変換される。ま
た,入射した光のうち,光電変換膜33により吸収され
なかった光は,主に光電変換膜33と第2の透明導電膜
34との界面,および,第2の透明導電膜34と反射膜
35との界面で反射され,再び光電変換膜33に入射し
て,電気に変換される。この電気は,第1の透明導電膜
32と,第2の透明導電膜34(および反射膜35)と
を通じて,図示しない電力出力端子へ出力される。
In this photoelectric conversion element 5, light incident from the substrate 30 (above the drawing) is transmitted through the first transparent conductive film 32 and converted into electricity by the photoelectric conversion film 33. Of the incident light, the light not absorbed by the photoelectric conversion film 33 mainly includes the interface between the photoelectric conversion film 33 and the second transparent conductive film 34, and the second transparent conductive film 34 and the reflective film. The light is reflected at the interface with 35 and again enters the photoelectric conversion film 33 to be converted into electricity. This electricity is output to a power output terminal (not shown) through the first transparent conductive film 32 and the second transparent conductive film 34 (and the reflective film 35).

【0069】光電変換素子5では,光電変換膜33の裏
面(上部)に凹凸膜(第2の透明導電膜34)が形成さ
れるので,光電変換膜33そのものは,表面凹凸形状の
小さい平坦な基板30(および第1の透明導電膜32)
上に形成することができる。したがって,光電変換膜3
3の膜質を均一なものとすることができる。その結果,
凹凸膜上に光電変換膜33を形成した場合(すなわち光
電変換膜33そのものが凹凸形状を有する場合)に生じ
得る光電変換膜の膜質低下による光電変換効率の低下,
膜質の不均一による開放電圧の低下,形状因子の低下に
よる光電変換効率の低下等を防止できる。
In the photoelectric conversion element 5, since the concavo-convex film (second transparent conductive film 34) is formed on the back surface (upper part) of the photoelectric conversion film 33, the photoelectric conversion film 33 itself has a flat surface with a small concavo-convex shape. Substrate 30 (and first transparent conductive film 32)
Can be formed on. Therefore, the photoelectric conversion film 3
The film quality of No. 3 can be made uniform. as a result,
When the photoelectric conversion film 33 is formed on the concavo-convex film (that is, when the photoelectric conversion film 33 itself has a concavo-convex shape), the photoelectric conversion efficiency is deteriorated due to deterioration of the film quality of the photoelectric conversion film,
It is possible to prevent a decrease in open circuit voltage due to non-uniformity of film quality and a decrease in photoelectric conversion efficiency due to a decrease in form factor.

【0070】光電変換膜32は,長波長の光の吸収係数
が低いという波長特性を有する。したがって,長波長の
光は,光電変換膜33によって吸収されずに第2の透明
導電膜34側に透過する。透過した光は,光電変換膜3
3と第2の透明導電膜34との界面において,両膜の屈
折率の違いから一部が反射するが,多くは界面を透過し
て第2の透明導電膜34を透過する。透過した光は,第
2の透明導電膜34と反射膜35との界面で反射され
る。このとき,第2の透明導電膜34は,膜中に微粒子
34aを含有するため,その表面形状は微粒子34aの
直径程度の凹凸を有する。そのため,第2の透明導電膜
34と反射膜35との界面で反射された光は,高い確率
で入射光とは異なる方向に反射される。
The photoelectric conversion film 32 has a wavelength characteristic that the absorption coefficient of long-wavelength light is low. Therefore, long-wavelength light is not absorbed by the photoelectric conversion film 33 and is transmitted to the second transparent conductive film 34 side. The transmitted light is photoelectric conversion film 3
Part of the light is reflected at the interface between the third transparent conductive film 34 and the third transparent conductive film 34, but most of the light is transmitted through the interface and the second transparent conductive film 34. The transmitted light is reflected at the interface between the second transparent conductive film 34 and the reflective film 35. At this time, since the second transparent conductive film 34 contains the fine particles 34a in the film, the surface shape thereof has unevenness of about the diameter of the fine particles 34a. Therefore, the light reflected at the interface between the second transparent conductive film 34 and the reflective film 35 is highly likely reflected in a direction different from the incident light.

【0071】したがって,たとえば垂直に入射した光
は,第2の透明導電膜34と反射膜35との界面で斜め
に反射され,光電変換膜33に再度入射し,光電変換膜
33内における光路長が長くなる。また,所定の角度以
上に斜めに反射された光は,光電変換膜33と第1の透
明導電膜32との界面において,光電変換膜33側から
入射した光に対する全反射条件となり,再度光電変換膜
33内に反射される。これにより,光路長がさらに長く
なる。その結果,光が光電変換膜33に吸収され電力に
変換される確率が高くなり,短絡電流が向上する。
Therefore, for example, the vertically incident light is obliquely reflected at the interface between the second transparent conductive film 34 and the reflective film 35 and re-enters the photoelectric conversion film 33, and the optical path length in the photoelectric conversion film 33 is increased. Becomes longer. Further, the light reflected obliquely at a predetermined angle or more becomes a total reflection condition for the light incident from the photoelectric conversion film 33 side at the interface between the photoelectric conversion film 33 and the first transparent conductive film 32, and the photoelectric conversion is performed again. It is reflected in the film 33. This further increases the optical path length. As a result, the probability that light is absorbed by the photoelectric conversion film 33 and converted into electric power is increased, and the short-circuit current is improved.

【0072】ここで,裏面に形成された第2の透明導電
膜34の凹凸は,入射光の波長に対して適当に大きくな
ければ斜めの反射率が低くなる。このため,微粒子34
aの平均直径Dは,50nm以上であればよいが,好ま
しくは,光電変換膜33(ここでは非晶質シリコン)の
光電変換効率が高くなる光の波長λ=500nmに対し
て,光学膜厚として0.5倍以上である。すなわち,n
を第2の透明導電膜34の屈折率とすると,直径Dは,
λ÷(2n)=500÷(2×2)=125nm以上で
あることが好ましい。
Here, the unevenness of the second transparent conductive film 34 formed on the back surface has a low oblique reflectance unless it is appropriately large with respect to the wavelength of the incident light. Therefore, the fine particles 34
The average diameter D of a may be 50 nm or more, but it is preferable that the optical thickness of the photoelectric conversion film 33 (amorphous silicon in this case) is higher than the optical wavelength of λ = 500 nm. Is 0.5 times or more. That is, n
Is the refractive index of the second transparent conductive film 34, the diameter D is
It is preferable that λ / (2n) = 500 / (2 × 2) = 125 nm or more.

【0073】一方,微粒子34aの直径が大きくなり過
ぎると,光電変換膜33と第2の透明導電膜34との接
触が技術的に困難となるため,平均直径Dは1μm以下
が適当である。したがって,50nm≦D≦1μmであ
り,好ましくは,125nm≦D≦1μmである。
On the other hand, if the diameter of the fine particles 34a becomes too large, it becomes technically difficult to contact the photoelectric conversion film 33 and the second transparent conductive film 34. Therefore, the average diameter D is preferably 1 μm or less. Therefore, 50 nm ≦ D ≦ 1 μm, preferably 125 nm ≦ D ≦ 1 μm.

【0074】また,同様な理由により,微粒子34aの
表面被覆率は0.01〜1の範囲が望ましい。
For the same reason, the surface coverage of the fine particles 34a is preferably in the range of 0.01-1.

【0075】これら平均直径Dの範囲および表面被覆率
の範囲は,上述した光電変換素子3および4にも適用す
ることができる。
The range of the average diameter D and the range of the surface coverage can be applied to the photoelectric conversion elements 3 and 4 described above.

【0076】<結晶性光電変換素子への適用>これまで
述べた実施の形態では,光電変換膜33を非晶質半導体
膜として形成したが,光電変換膜33を結晶性材料(単
結晶,多結晶,微結晶)により形成することもできる。
<Application to Crystalline Photoelectric Conversion Element> In the above-described embodiments, the photoelectric conversion film 33 is formed as an amorphous semiconductor film. However, the photoelectric conversion film 33 is made of a crystalline material (single crystal, polycrystal). It can also be formed by crystals or microcrystals.

【0077】すなわち,結晶性材料は,太陽光の吸収係
数の小さいが,上述のように凹凸膜を形成した光電変換
素子3〜5,特に光電変換素子5は,光の閉じ込め効果
が顕著であるので,結晶性材料を用いた光電変換素子に
おいても光電変換効率を向上させることができる。
That is, although the crystalline material has a small absorption coefficient of sunlight, the photoelectric conversion elements 3 to 5 and the photoelectric conversion element 5, particularly the photoelectric conversion element 5 having the uneven film formed as described above, have a remarkable light confining effect. Therefore, the photoelectric conversion efficiency can be improved even in the photoelectric conversion element using the crystalline material.

【0078】<光触媒膜付き光電変換素子>二酸化チタ
ン(TiO2),酸化ニッケル(NiOx)(特に二酸化
ニッケル(NiO2)等は光触媒作用を有する材料を光
電変換素子の表面(光入射面)に塗布することもでき
る。
<Photoelectric Conversion Device with Photocatalyst Film> Titanium dioxide (TiO 2 ), nickel oxide (NiO x ), etc. (especially nickel dioxide (NiO 2 )) is a material having a photocatalytic action on the surface of the photoelectric conversion device (light incident surface). It can also be applied to.

【0079】図6は,二酸化チタン膜を凹凸膜として基
板に付着させた光電変換素子6の構成を示す断面図であ
る。図3の光電変換素子3と同じ構成要素には同じ符号
を付している。
FIG. 6 is a sectional view showing the structure of a photoelectric conversion element 6 in which a titanium dioxide film is attached to a substrate as an uneven film. The same components as those of the photoelectric conversion element 3 in FIG. 3 are designated by the same reference numerals.

【0080】この光電変換素子6は,二酸化チタンの凹
凸膜40,基板30,第1の透明導電膜32,光電変換
膜33,第2の透明導電膜34,および反射膜35を有
する。
The photoelectric conversion element 6 has an uneven film 40 of titanium dioxide, a substrate 30, a first transparent conductive film 32, a photoelectric conversion film 33, a second transparent conductive film 34, and a reflective film 35.

【0081】二酸化チタンの凹凸膜40は,上述した凹
凸膜21(図3参照)と同様の方法によって,基板30
の表面(光が入射する側の面)に形成される。ただし,
二酸化チタンを使用するので,蒸発坩堝の温度は,酸化
スズよりも高温の約2200℃程度に設定される。凹凸
膜40の膜厚は,たとえば0.05μm〜0.5μmの
範囲にされる。また,凹凸膜40の凸部と凹部との膜厚
差は0.01μm〜0.2μmにされる。膜厚差をこの
ような範囲にする理由については後述する。なお,符号
40aは,二酸化チタンの微粒子(凹凸膜40と一体化
される)を示している。
The titanium dioxide concavo-convex film 40 is formed on the substrate 30 by the same method as the concavo-convex film 21 (see FIG. 3).
Is formed on the surface (the surface on the side on which light is incident). However,
Since titanium dioxide is used, the temperature of the evaporation crucible is set to about 2200 ° C., which is higher than that of tin oxide. The thickness of the uneven film 40 is, for example, in the range of 0.05 μm to 0.5 μm. Further, the film thickness difference between the convex portion and the concave portion of the uneven film 40 is set to 0.01 μm to 0.2 μm. The reason why the film thickness difference is within such a range will be described later. Reference numeral 40a indicates fine particles of titanium dioxide (integrated with the uneven film 40).

【0082】第1の透明導電膜32および光電変換膜3
3は,上述した光電変換素子5と同じ方法により,基板
30の平坦な裏面に平坦な膜として形成される。また,
第2の透明導電膜34および反射膜35も,光電変換膜
33の上に平坦な膜として,上述した光電変換素子5と
同じ方法により形成される。
First transparent conductive film 32 and photoelectric conversion film 3
3 is formed as a flat film on the flat back surface of the substrate 30 by the same method as the photoelectric conversion element 5 described above. Also,
The second transparent conductive film 34 and the reflective film 35 are also formed as a flat film on the photoelectric conversion film 33 by the same method as that of the photoelectric conversion element 5 described above.

【0083】凹凸膜40の形成は,第1の透明導電膜3
2,光電変換膜33,第2の透明導電膜34,および反
射膜35の形成の前または後のいずれにおいても行うこ
とができるし,第1の透明導電膜32,光電変換膜3
3,第2の透明導電膜34,および反射膜35の形成途
中において行うこともできる。たとえば,第1の透明導
電膜32の形成後,光電変換膜33の形成前に行うこと
もできる。
The uneven film 40 is formed by forming the first transparent conductive film 3
2, before or after the formation of the photoelectric conversion film 33, the second transparent conductive film 34, and the reflective film 35, the first transparent conductive film 32, the photoelectric conversion film 3
It can also be performed during the formation of the third transparent conductive film 34 and the reflective film 35. For example, it can be performed after the formation of the first transparent conductive film 32 and before the formation of the photoelectric conversion film 33.

【0084】二酸化チタンや酸化ニッケル等の光触媒作
用を有する物質に紫外線を照射すると,最表層にあるチ
タン(Ti)原子やニッケル(Ni)原子が励起され
る。これにより,光触媒作用として,たとえば有機物の
酸化分解,水の分解による親水性の向上等の効果があ
る。このため,光電変換素子6の表面(基板30の表
面)の汚れを除去することができる。これにより,光電
変換膜33への光の入射量の減少を防止できる。
When a substance having a photocatalytic action such as titanium dioxide or nickel oxide is irradiated with ultraviolet rays, titanium (Ti) atoms and nickel (Ni) atoms in the outermost layer are excited. As a result, as a photocatalytic action, there are effects such as oxidative decomposition of organic matter and improvement of hydrophilicity due to decomposition of water. Therefore, the dirt on the surface of the photoelectric conversion element 6 (the surface of the substrate 30) can be removed. This can prevent a decrease in the amount of light incident on the photoelectric conversion film 33.

【0085】また,このような光触媒作用を有する物質
は,光学的には屈折率が高いので(たとえば屈折率n=
3),光の反射率が高くなるが,上述した凹凸膜40の
凸部と凹部との膜厚差を0.2μm以下とすることによ
り,二酸化チタン膜40の凹凸部分は光学的には空気
(屈折率n=1)と膜材料(n=3)の混合物となり,
実効的な屈折率を低下させることができる。
Further, such a substance having a photocatalytic action has an optically high refractive index (for example, a refractive index n =
3) The light reflectance is high, but the unevenness of the titanium dioxide film 40 is optically reduced by setting the film thickness difference between the convex and concave portions of the uneven film 40 to 0.2 μm or less. It becomes a mixture of (refractive index n = 1) and film material (n = 3),
It is possible to reduce the effective refractive index.

【0086】すなわち,可視光の波長域を0.3μm〜
0.8μm,空気と膜材料との光学的な混合物の実効屈
折率nをn=(1+3)÷2=2とすると,膜厚差h≦
0.8μm÷(2n)=0.2μmであれば,凹凸膜4
0は空気と膜材料の混合物となり,実効的な屈折率が低
下する。なお,膜厚差の下限値0.01μmは,凹凸膜
40の表面に塵埃等が付着しにくくするためである。
That is, the wavelength range of visible light is 0.3 μm
If the effective refractive index n of the optical mixture of 0.8 μm of air and the film material is n = (1 + 3) / 2 = 2, the film thickness difference h ≦
If 0.8 μm ÷ (2n) = 0.2 μm, the uneven film 4
0 is a mixture of air and the film material, and the effective refractive index decreases. The lower limit of the film thickness difference of 0.01 μm is for making it difficult for dust and the like to adhere to the surface of the uneven film 40.

【0087】さらに,本実施の形態による凹凸膜の形成
方法によると,低い基板温度で凹凸膜を形成できるの
で,融点の比較的低いガラス基板30やPET等の基板
の表面にも,光触媒作用を有する凹凸膜を形成すること
ができる。
Further, according to the method for forming a concavo-convex film according to the present embodiment, the concavo-convex film can be formed at a low substrate temperature, so that the photocatalytic action can be exerted also on the surface of the glass substrate 30 or PET having a relatively low melting point. The uneven film having can be formed.

【0088】本実施の形態による凹凸膜の形成では,基
板温度を低温に設定できるので,光電変換膜が既に形成
された光電変換素子にも,光電変換膜の性能を劣化させ
ることなく,光触媒作用を有する凹凸膜を形成すること
ができる。したがって,上述した光電変換素子3から5
の基板30の光入射面にも,凹凸膜40を形成すること
ができる。また,同様の理由により,反射膜の上にさら
に樹脂製の保護膜等が形成された光電変換素子に対して
もこの凹凸膜40を形成することができる。既に屋外等
で使用されている光電変換素子に対しても形成可能であ
る。
In the formation of the concavo-convex film according to the present embodiment, the substrate temperature can be set to a low temperature, so that even a photoelectric conversion element on which a photoelectric conversion film has already been formed does not deteriorate the performance of the photoelectric conversion film and has a photocatalytic action. It is possible to form an uneven film having Therefore, the photoelectric conversion elements 3 to 5 described above
The uneven film 40 can be formed on the light incident surface of the substrate 30. Further, for the same reason, the concavo-convex film 40 can be formed on the photoelectric conversion element in which the resin protective film or the like is further formed on the reflective film. It can be formed even for a photoelectric conversion element already used outdoors.

【0089】なお,これまで述べた実施の形態では,凹
凸膜または第1もしくは第2の透明電極膜を二酸化スズ
または二酸化シリコンにより形成しているが,これ以外
に,酸化亜鉛(ZnO),酸化インジウムスズ(IT
O),酸化インジウム(In23)等によっても形成す
ることができる。
In the above-described embodiments, the uneven film or the first or second transparent electrode film is made of tin dioxide or silicon dioxide, but in addition to this, zinc oxide (ZnO), oxide Indium tin (IT
O), indium oxide (In 2 O 3 ) or the like.

【0090】[0090]

【発明の効果】本発明によると,基板の温度が低くても
凹凸膜を形成することができる。これにより,基板の選
択範囲が広がる。また,既に光電変換膜等の機能膜が形
成された半導体素子に対しても凹凸膜を形成することが
できる。
According to the present invention, the uneven film can be formed even when the temperature of the substrate is low. This expands the selection range of the substrate. Further, the concavo-convex film can be formed also on the semiconductor element on which the functional film such as the photoelectric conversion film has already been formed.

【0091】本発明によると,光電変換素子の製造プロ
セスと同じプロセスで凹凸膜を形成することができる。
According to the present invention, the uneven film can be formed by the same process as the manufacturing process of the photoelectric conversion element.

【0092】本発明によると,光触媒作用を有する物質
からなる凹凸膜を光電変換膜に設けることにより,光電
変換膜表面の汚れを除去できるとともに,光触媒作用を
有する物質の実質的な屈折率を小さくすることができ
る。これにより,光電変換素子への光の入射量を増加さ
せることができる。
According to the present invention, by providing the photoelectric conversion film with the concavo-convex film made of a substance having a photocatalytic action, dirt on the surface of the photoelectric conversion film can be removed, and the substantial refractive index of the substance having a photocatalytic action can be reduced. can do. As a result, the amount of light incident on the photoelectric conversion element can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態による半導体製造装置の
概略構成図である。
FIG. 1 is a schematic configuration diagram of a semiconductor manufacturing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施の形態による凹凸膜が形成され
た基板の断面図である。
FIG. 2 is a cross-sectional view of a substrate on which a concavo-convex film is formed according to an embodiment of the present invention.

【図3】本発明の一実施の形態による光電変換素子の構
成を示す断面図である。
FIG. 3 is a sectional view showing a configuration of a photoelectric conversion element according to an embodiment of the present invention.

【図4】第1の透明導電膜が凹凸膜として形成された光
電変換素子の構成を示す断面図である。
FIG. 4 is a cross-sectional view showing a configuration of a photoelectric conversion element in which a first transparent conductive film is formed as an uneven film.

【図5】第2の透明導電膜が凹凸膜として形成された光
電変換素子の構成を示す断面図である。
FIG. 5 is a cross-sectional view showing a configuration of a photoelectric conversion element in which a second transparent conductive film is formed as an uneven film.

【図6】二酸化チタン膜を凹凸膜として基板に付着させ
た光電変換素子6の構成を示す断面図である。
FIG. 6 is a cross-sectional view showing a configuration of a photoelectric conversion element 6 in which a titanium dioxide film is attached to a substrate as an uneven film.

【符号の説明】[Explanation of symbols]

10 半導体製造装置 3,4,5 光電変換素子 20,30 基板 21,31 凹凸膜 21a,31a,34a,40a 微粒子 32 第1の透明導電膜 33 光電変換膜(発電膜) 34 第2の透明導電膜 35 反射膜 40 二酸化チタンの凹凸膜 10 Semiconductor manufacturing equipment 3,4,5 photoelectric conversion element 20, 30 substrate 21,31 Concavo-convex film 21a, 31a, 34a, 40a Fine particles 32 First transparent conductive film 33 Photoelectric conversion film (power generation film) 34 Second transparent conductive film 35 Reflective film 40 Titanium dioxide uneven film

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G069 AA02 BA04A BA04B BA13A BA13B BA22A BA48A BB04A BC68A CA01 CA11 EA07 EA11 EB03 EB15Y 4K029 AA09 AA24 BB00 BB02 BC03 BC09 BD00 BD01 CA01 EA00 EA03 4M104 BB36 DD34 GG05 5F051 AA05 BA13 CA13 CA15 FA02 FA16 FA19 GA03 GA14 HA20 5F088 BA20 CA02 CA04 CA10 DA17 DA20 HA20    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G069 AA02 BA04A BA04B BA13A                       BA13B BA22A BA48A BB04A                       BC68A CA01 CA11 EA07                       EA11 EB03 EB15Y                 4K029 AA09 AA24 BB00 BB02 BC03                       BC09 BD00 BD01 CA01 EA00                       EA03                 4M104 BB36 DD34 GG05                 5F051 AA05 BA13 CA13 CA15 FA02                       FA16 FA19 GA03 GA14 HA20                 5F088 BA20 CA02 CA04 CA10 DA17                       DA20 HA20

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 基板または半導体素子上に凹凸を有する
膜を形成する方法であって,前記凹凸を有する膜を形成
するための物質を第1の粒子に成長させる第1の工程
と,前記物質が第1の粒子に成長した後,該第1の粒子
を前記基板または前記半導体素子に付着させる第2の工
程と,前記第1の粒子よりも小さな,前記物質からなる
第2の粒子を,前記基板もしくは前記半導体素子,また
は,前記基板もしくは前記半導体素子に付着した前記第
1の粒子に付着させる第3の工程と,を有する凹凸膜形
成方法。
1. A method of forming a film having unevenness on a substrate or a semiconductor device, comprising: a first step of growing a substance for forming the film having the unevenness into first particles; After growing into first particles, the second step of attaching the first particles to the substrate or the semiconductor element, and the second particles smaller than the first particles and made of the substance, And a third step of adhering to the substrate or the semiconductor element, or the first particles attached to the substrate or the semiconductor element.
【請求項2】 請求項1において,前記第1の工程は,
前記物質を蒸発装置によって加熱することにより蒸発さ
せる工程と,前記蒸発装置と,該蒸発装置から離間して
配置された前記基板または前記半導体素子との間の空間
内で,前記蒸発した物質が衝突および結合することを利
用して,前記物質を前記第1の粒子に成長させる工程
と,を有する凹凸膜形成方法。
2. The method according to claim 1, wherein the first step is
The vaporized substance collides in the space between the vaporizing device and the vaporizing device and the vaporizing device and the substrate or the semiconductor element arranged apart from the vaporizing device. And a step of growing the substance into the first particles by utilizing the bonding.
【請求項3】 請求項2において,前記第3の工程を,
前記物質を前記蒸発装置によって加熱して蒸発させるこ
とにより行い,前記第2の工程の後,前記蒸発装置の加
熱温度および雰囲気の圧力の双方または一方を減少させ
ることにより前記第3の工程を行う,凹凸膜形成方法。
3. The method according to claim 2, wherein the third step is
The second step is performed by heating the substance to evaporate the substance, and then the third step is performed by reducing the heating temperature of the vaporizer and / or the pressure of the atmosphere. , Method of forming uneven film.
【請求項4】 透光性を有する物質を第1の粒子に成長
させた後,該第1の粒子を透光性を有する基板の一方の
面に付着させ,その後,前記第1の粒子よりも小さな前
記物質からなる第2の粒子を前記基板の一方の面,また
は,前記基板の一方の面に付着した前記第1の粒子に付
着させて,透光性を有する凹凸膜を形成し,前記形成し
た凹凸膜の上に,透光性導電膜,光電変換膜,および導
電膜を順次積層して形成する,光電変換素子の製造方
法。
4. A substance having a light-transmitting property is grown on the first particles, and then the first particles are attached to one surface of a substrate having a light-transmitting property. A second particle made of the very small substance is attached to one surface of the substrate or the first particle attached to one surface of the substrate to form a translucent uneven film, A method of manufacturing a photoelectric conversion element, comprising forming a translucent conductive film, a photoelectric conversion film, and a conductive film on the formed uneven film in this order.
【請求項5】 請求項4において,前記透光性を有する
物質が,前記基板の物質と同じであることを特徴とする
光電変換素子の製造方法。
5. The method of manufacturing a photoelectric conversion element according to claim 4, wherein the light-transmitting substance is the same as the substance of the substrate.
【請求項6】 透光性を有する導電物質を第1の粒子に
成長させた後,該第1の粒子を透光性を有する基板の一
方の面に付着させ,その後,前記第1の粒子よりも小さ
な前記導電物質からなる第2の粒子を前記基板の一方の
面,または,前記基板の一方の面に付着した前記第1の
粒子に付着させて,凹凸を有する透光性導電膜を形成
し,前記形成した凹凸を有する透光性導電膜の上に,光
電変換膜および導電膜を順次積層して形成する,光電変
換素子の製造方法。
6. A light-transmitting conductive material is grown on the first particles, the first particles are attached to one surface of the light-transmitting substrate, and then the first particles are formed. Second particles smaller in size than the conductive material are attached to one surface of the substrate or the first particles attached to one surface of the substrate to form a translucent conductive film having irregularities. A method for manufacturing a photoelectric conversion element, which comprises forming and forming a photoelectric conversion film and a conductive film on the translucent conductive film having the unevenness formed in this order.
【請求項7】 透光性を有する基板の一方の面に,第1
の透光性導電膜および光電変換膜を順次積層して形成
し,透光性を有する導電物質を第1の粒子に成長させた
後,該第1の粒子を前記光電変換膜上に付着させ,その
後,前記第1の粒子よりも小さな前記導電物質からなる
第2の粒子を前記光電変換膜または前記光電変換膜に付
着した前記第1の粒子に付着させて,凹凸を有する第2
の透光性導電膜を形成する,光電変換素子の製造方法。
7. A first substrate is provided on one surface of a transparent substrate.
Of the transparent conductive film and the photoelectric conversion film are sequentially stacked, the conductive material having a light-transmitting property is grown on the first particles, and then the first particles are attached onto the photoelectric conversion film. After that, the second particles having the unevenness are formed by attaching the second particles, which are smaller than the first particles and made of the conductive material, to the photoelectric conversion film or the first particles attached to the photoelectric conversion film.
A method for manufacturing a photoelectric conversion element, wherein the transparent conductive film is formed.
【請求項8】 請求項7において,前記第2の透光性導
電膜の上に,前記第2の透光性導電膜の側から入射した
光を反射する反射膜をさらに形成する,光電変換素子の
製造方法。
8. The photoelectric conversion according to claim 7, further comprising a reflective film formed on the second transparent conductive film, the reflective film reflecting light incident from the second transparent conductive film side. Device manufacturing method.
【請求項9】 請求項4から8のいずれか1項におい
て,前記第1の粒子の平均直径が,入射光を入射方向と
は異なる方向に反射可能な範囲の大きさで,かつ,付着
可能な範囲の大きさとなるように,前記第1の粒子を成
長させる,光電変換素子の製造方法。
9. The average particle diameter according to claim 4, wherein the average diameter of the first particles is within a range in which incident light can be reflected in a direction different from the incident direction and can be attached. A method for manufacturing a photoelectric conversion element, in which the first particles are grown to have a size in a range.
【請求項10】 請求項4から9のいずれか1項におい
て,前記第1の粒子を,その平均直径が0.05μmか
ら1μmまでの範囲に成長させる,光電変換素子の製造
方法。
10. The method for manufacturing a photoelectric conversion element according to claim 4, wherein the first particles are grown to have an average diameter of 0.05 μm to 1 μm.
【請求項11】 請求項4から10のいずれか1項にお
いて,前記第1の粒子の表面被覆率が0.01から1の
範囲となるように,前記第1の粒子を付着させる,光電
変換素子の製造方法。
11. The photoelectric conversion according to claim 4, wherein the first particles are attached so that the surface coverage of the first particles is in the range of 0.01 to 1. Device manufacturing method.
【請求項12】 請求項4から11のいずれか1項にお
いて,前記基板の他方の面に,光触媒作用を有する物質
からなる凹凸膜を形成する,光電変換素子の製造方法。
12. The method for manufacturing a photoelectric conversion element according to claim 4, wherein an uneven film made of a substance having a photocatalytic action is formed on the other surface of the substrate.
【請求項13】 透光性基板の一方の面に,透光性導電
膜,光電変換膜,および導電膜を順次積層して形成し,
前記透光性導電膜,光電変換膜,および導電膜の形成の
前もしくは後,または中途において,光触媒作用を有す
る物質からなる凹凸膜を前記基板の他方の面に形成す
る,光電変換素子の製造方法。
13. A transparent conductive film, a photoelectric conversion film, and a conductive film are sequentially laminated on one surface of a transparent substrate,
Manufacture of a photoelectric conversion element, in which a translucent conductive film, a photoelectric conversion film, and an uneven film made of a substance having a photocatalytic action are formed on the other surface of the substrate before, after, or during the formation of the conductive film. Method.
【請求項14】 請求項12または13において,前記
光触媒作用を有する物質からなる凹凸膜を,前記光触媒
作用を有する物質を第3の粒子に成長させた後,該第3
の粒子を前記透光性基板の他方の面に付着させ,その
後,前記第3の粒子よりも小さな前記光触媒作用を有す
る物質からなる第4の粒子を前記透光性基板の他方の面
または前記他方の面に付着した前記第3の粒子に付着さ
せて形成する,光電変換素子の製造方法。
14. The uneven film formed of the substance having a photocatalytic action according to claim 12 or 13, after growing the substance having a photocatalytic action into third particles,
Particles are attached to the other surface of the translucent substrate, and then fourth particles of a substance having the photocatalytic action smaller than the third particles are attached to the other surface of the translucent substrate or the A method of manufacturing a photoelectric conversion element, which is formed by adhering to the third particles attached to the other surface.
【請求項15】 請求項12から14のいずれか1項に
おいて,前記光触媒作用を有する物質からなる凹凸膜
を,該凹凸膜の凹部と凸部との膜厚差が0.2μm以下
となるように形成する,光電変換素子の製造方法。
15. The uneven film made of a substance having a photocatalytic action according to claim 12, wherein the film thickness difference between the concave portion and the convex portion of the uneven film is 0.2 μm or less. A method for manufacturing a photoelectric conversion element, which is formed in step 1.
【請求項16】 透光性基板と,前記透光性基板の一方
の面に形成された透光性導電膜と,前記透光性導電膜の
上に形成された光電変換膜と,前記光電変換膜の上に形
成された導電膜と,前記透光性基板の他方の面に形成さ
れた,光触媒作用を有する物質からなる凹凸膜と,を有
する光電変換素子。
16. A transparent substrate, a transparent conductive film formed on one surface of the transparent substrate, a photoelectric conversion film formed on the transparent conductive film, and the photoelectric conversion film. A photoelectric conversion device comprising: a conductive film formed on a conversion film; and a concavo-convex film formed on the other surface of the translucent substrate and made of a substance having a photocatalytic action.
JP2002052764A 2002-02-28 2002-02-28 Method of depositing rugged film and method of manufacturing photoelectric converter Withdrawn JP2003253435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002052764A JP2003253435A (en) 2002-02-28 2002-02-28 Method of depositing rugged film and method of manufacturing photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002052764A JP2003253435A (en) 2002-02-28 2002-02-28 Method of depositing rugged film and method of manufacturing photoelectric converter

Publications (1)

Publication Number Publication Date
JP2003253435A true JP2003253435A (en) 2003-09-10

Family

ID=28664374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002052764A Withdrawn JP2003253435A (en) 2002-02-28 2002-02-28 Method of depositing rugged film and method of manufacturing photoelectric converter

Country Status (1)

Country Link
JP (1) JP2003253435A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347490A (en) * 2004-06-02 2005-12-15 Asahi Glass Co Ltd Substrate with transparent conductive oxide film, its manufacturing method and photoelectric transfer element
JP2009015077A (en) * 2007-07-05 2009-01-22 Hoya Corp Finder optical system for single-lens reflex camera, and single-lens reflex camera
WO2010117548A2 (en) * 2009-04-06 2010-10-14 Applied Materials, Inc. High quality tco-silicon interface contact structure for high efficiency thin film silicon solar cells
JP2012253089A (en) * 2011-05-31 2012-12-20 Kaneka Corp Translucent irregular base plate, and manufacturing method therefor
US8895842B2 (en) 2008-08-29 2014-11-25 Applied Materials, Inc. High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells
EP1732139A4 (en) * 2004-03-25 2015-10-21 Kaneka Corp Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
WO2016032277A1 (en) * 2014-08-28 2016-03-03 주식회사 포스코 Substrate for electronic device, manufacturing method therefor, and thin film-type solar cell including same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1732139A4 (en) * 2004-03-25 2015-10-21 Kaneka Corp Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
JP2005347490A (en) * 2004-06-02 2005-12-15 Asahi Glass Co Ltd Substrate with transparent conductive oxide film, its manufacturing method and photoelectric transfer element
JP2009015077A (en) * 2007-07-05 2009-01-22 Hoya Corp Finder optical system for single-lens reflex camera, and single-lens reflex camera
US8895842B2 (en) 2008-08-29 2014-11-25 Applied Materials, Inc. High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells
WO2010117548A2 (en) * 2009-04-06 2010-10-14 Applied Materials, Inc. High quality tco-silicon interface contact structure for high efficiency thin film silicon solar cells
WO2010117548A3 (en) * 2009-04-06 2011-01-13 Applied Materials, Inc. High quality tco-silicon interface contact structure for high efficiency thin film silicon solar cells
CN102356474A (en) * 2009-04-06 2012-02-15 应用材料公司 High quality tco-silicon interface contact structure for high efficiency thin film silicon solar cells
JP2012253089A (en) * 2011-05-31 2012-12-20 Kaneka Corp Translucent irregular base plate, and manufacturing method therefor
WO2016032277A1 (en) * 2014-08-28 2016-03-03 주식회사 포스코 Substrate for electronic device, manufacturing method therefor, and thin film-type solar cell including same

Similar Documents

Publication Publication Date Title
US6100466A (en) Method of forming microcrystalline silicon film, photovoltaic element, and method of producing same
JP5069790B2 (en) Thin film photoelectric conversion device substrate, thin film photoelectric conversion device including the same, and method for manufacturing thin film photoelectric conversion device substrate
CN103107228B (en) Photoelectric conversion device
JP2000277439A (en) Plasma cvd method for crystalline silicon thin-film and manufacture of silicon thin-film photoelectric conversion device
JP2001053307A (en) Substrate for photoelectric conversion device and manufacture thereof and photoelectric conversion device using the same
JP2000252500A (en) Silicon thin-film photoelectric conversion device
JP2002134772A (en) Silicon based thin film and photovoltaic element
JP4713819B2 (en) Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device using the same
JP2003253435A (en) Method of depositing rugged film and method of manufacturing photoelectric converter
TWI381537B (en) Solar cell device and method for fabricatign the same
JP4789131B2 (en) Solar cell and method for manufacturing solar cell
JP4067589B2 (en) Thin film solar cell fabrication method
JP2001210845A (en) Method of manufacturing thin film photoelectric conversion device
JP2000058892A (en) Silicon based thin film photoelectric converter
JP2000174310A (en) Manufacture of silicon-based thin-film photoelectric conversion device
JP2003282902A (en) Thin film solar cell
JP2000114562A (en) Photoelectric conversion element and manufacture thereof
JPH11195801A (en) Photovoltaic element
JP2001176334A (en) Transparent conductive film and its manufacturing method
JPH0438147B2 (en)
JP2001015787A (en) Substrate with transparent conductive film, manufacturing method therefor, and solar battery
JPH10313125A (en) Formation of thin film
JP2008235687A (en) Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device
JP2726323B2 (en) Thin-film solar cell fabrication method
US20130199610A1 (en) Process for Producing a Transparent Electrode, Method of Manufacturing a Photovoltaic Cell Array

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510