JP2000114562A - Photoelectric conversion element and manufacture thereof - Google Patents

Photoelectric conversion element and manufacture thereof

Info

Publication number
JP2000114562A
JP2000114562A JP10287872A JP28787298A JP2000114562A JP 2000114562 A JP2000114562 A JP 2000114562A JP 10287872 A JP10287872 A JP 10287872A JP 28787298 A JP28787298 A JP 28787298A JP 2000114562 A JP2000114562 A JP 2000114562A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
transparent conductive
conductive film
film
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10287872A
Other languages
Japanese (ja)
Inventor
Akemi Takano
暁己 高野
Masayoshi Murata
正義 村田
Shoji Morita
章二 森田
Yoshiaki Takeuchi
良昭 竹内
Tatsuyuki Nishimiya
立享 西宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10287872A priority Critical patent/JP2000114562A/en
Publication of JP2000114562A publication Critical patent/JP2000114562A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the short-circuit current without reducing open-circuit voltage or form factors by using a film without irregularities as a first transparent conductive film. SOLUTION: This photoelectric conversion element comprises a glass substrate 11, a first transparent conductive film 12 formed on one surface of the glass substrate 11, a photoelectric conversion film 13 formed on one.surface of the first transparent conductive film 12, a plurality of particulates 14 formed as nuclei on one surface of the photoelectric conversion film 13, a second transparent conductive film 15 formed to coat the particulates 14 on the photoelectric conversion film 13 with an irregular surface having these particulates 14, and a rear-surface metal electrode 16 formed on one surface of the second transparent conductive film 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に太陽電池や受
光器等に使用される光電変換素子及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photoelectric conversion element used particularly for a solar cell, a photodetector, and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、光電変換材料に非晶質Siなどの
薄膜を用いた光電変換装置では、図2に示すような光電
変換素子(特公昭60−34076)が用いられてい
る。
2. Description of the Related Art Conventionally, in a photoelectric conversion device using a thin film of amorphous Si or the like as a photoelectric conversion material, a photoelectric conversion element as shown in FIG. 2 (JP-B-60-34076) is used.

【0003】図中の符番1はガラス基板を示す。このガ
ラス基板1の片面には、透明導電膜2、非晶質シリコン
などの光電変換膜3を介して裏面電極4が形成されてい
る。前記非晶質シリコンは、例えばプラズマ化学蒸着法
により形成される。前記透明導電膜2の裏面側は、平均
粒径0.2〜0.9μmの凹凸面となっている。また、
前記裏面電極として第2の透明導電膜を用いることによ
り短絡電流が向上できる。
[0003] Reference numeral 1 in the figure denotes a glass substrate. On one surface of the glass substrate 1, a back electrode 4 is formed via a transparent conductive film 2 and a photoelectric conversion film 3 such as amorphous silicon. The amorphous silicon is formed by, for example, a plasma chemical vapor deposition method. The rear surface side of the transparent conductive film 2 is an uneven surface having an average particle size of 0.2 to 0.9 μm. Also,
The short-circuit current can be improved by using the second transparent conductive film as the back electrode.

【0004】こうした従来技術では、裏面電極として第
2の透明導電膜を用いることで短絡電流が増加すること
を示しているが、これは透明導電膜2の裏面が平均粒径
0.2〜0.9μmの凹凸面であることから、ガラス基
板1を通して入射した光が散乱することが必要であり、
これがなくては上述のような短絡電流の向上は得られな
い。
In such prior art, it has been shown that the use of the second transparent conductive film as the back surface electrode increases the short-circuit current. This is because the back surface of the transparent conductive film 2 has an average particle size of 0.2 to 0. Because of the irregular surface of 0.9 μm, it is necessary that light incident through the glass substrate 1 be scattered,
Without this, the improvement in short-circuit current as described above cannot be obtained.

【0005】また、凹凸表面形状を有する基板上にプラ
ズマCVD法等により成長する非晶質シリコン膜が、下
地の形状の影響を受けて凹凸のある成長最表面の形状を
有するために、非晶質シリコン膜と裏面電極4の境界に
凹凸を形成することになる。この裏面電極4の凹凸によ
りガラス基板1を通して入射し発電膜である非晶質シリ
コンにより吸収されずにその一部分が透過した光を乱反
射させることで発電膜である非晶質シリコン層での光の
吸収確率を高くすることができる。この効果により短絡
電流が向上する。
In addition, since an amorphous silicon film grown on a substrate having an uneven surface shape by a plasma CVD method or the like has an uneven uppermost surface shape under the influence of the shape of an underlayer, the amorphous silicon film is amorphous. As a result, irregularities are formed at the boundary between the porous silicon film and the back electrode 4. Due to the irregularities of the back electrode 4, light incident on the glass substrate 1 and not partially absorbed by the amorphous silicon serving as the power generation film but partially transmitted therethrough is irregularly reflected, whereby light in the amorphous silicon layer serving as the power generation film is reflected. The absorption probability can be increased. This effect improves the short-circuit current.

【0006】一方、非晶質シリコンなどの光電変換膜で
は、凹凸面の基板を用いた場合には場所による膜厚の不
均一が原因となって光電変換膜3内部での電界が不均一
になるため、開放電圧が低下する欠点がある。また、基
板の凹凸に起因する光電変換膜3の膜質の低下により光
電変換性能の形状因子や短絡電流が低下する欠点もあ
る。
On the other hand, in the case of a photoelectric conversion film made of amorphous silicon or the like, when a substrate having an uneven surface is used, the electric field inside the photoelectric conversion film 3 becomes uneven due to uneven film thickness depending on the location. Therefore, there is a disadvantage that the open-circuit voltage is reduced. In addition, there is a disadvantage that the shape factor of the photoelectric conversion performance and the short-circuit current are reduced due to the deterioration of the quality of the photoelectric conversion film 3 due to the unevenness of the substrate.

【0007】[0007]

【発明が解決しようとする課題】本発明はこうした事情
を考慮してなされたもので、透光性基板の片面側に、第
1の透明導電膜、光電変換膜、核となる複数の微粒子を
順次形成し、更にれら微粒子により凹凸面となった前記
光電変換膜の片面に微粒子を被覆するように形成された
第2の透明導電膜、裏面金属電極を順次形成した構成と
することにより、開放電圧や形状因子の低下を起こすこ
となく短絡電流を向上できる光電変換素子を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and a first transparent conductive film, a photoelectric conversion film, and a plurality of fine particles serving as nuclei are provided on one side of a light-transmitting substrate. By sequentially forming, a second transparent conductive film formed so as to cover the fine particles on one side of the photoelectric conversion film which has been made uneven by the fine particles, and a structure in which a back metal electrode is sequentially formed, It is an object of the present invention to provide a photoelectric conversion element capable of improving short-circuit current without lowering open-circuit voltage and form factor.

【0008】また、本発明は、複数の微粒子の形成と記
第2の透明導電膜の形成を蒸発源の加熱温度及び雰囲気
の酸素圧力を変えることにより制御して、連続的に形成
することにより、開放電圧や形状因子の低下を起こすこ
となく短絡電流を向上できる光電変換素子の製造方法を
提供することを目的とする。
Further, the present invention provides a method of controlling the formation of a plurality of fine particles and the formation of the second transparent conductive film by changing the heating temperature of the evaporation source and the oxygen pressure of the atmosphere to form the second transparent conductive film continuously. It is another object of the present invention to provide a method for manufacturing a photoelectric conversion element capable of improving a short-circuit current without lowering an open voltage or a form factor.

【0009】[0009]

【課題を解決するための手段】本願第1の発明は、透光
性基板と、この透光性基板の片面に形成された第1の透
明導電膜と、この第1の透明導電膜の片面に形成された
光電変換膜と、この光電変換膜の片面に形成された核と
なる複数の微粒子と、これらの微粒子により凹凸面とな
った前記光電変換膜の片面に微粒子を被覆するように形
成された第2の透明導電膜と、この第2の透明導電膜の
片面に形成された裏面金属電極とを具備することを特徴
とする光電変換素子である。
Means for Solving the Problems A first invention of the present application is directed to a light-transmitting substrate, a first transparent conductive film formed on one surface of the light-transmitting substrate, and one surface of the first transparent conductive film. Formed on the photoelectric conversion film, a plurality of fine particles serving as nuclei formed on one surface of the photoelectric conversion film, and formed so as to cover the fine particles on one surface of the photoelectric conversion film formed into an uneven surface by these fine particles. And a back metal electrode formed on one surface of the second transparent conductive film.

【0010】本願第2の発明は、透光性基板の片面に第
1の透明導電膜、光電変換膜、核となる複数の微粒子、
第2の透明導電膜及び裏面金属電極を順次形成してなる
光電変換素子を製造する方法において、前記微粒子の形
成と前記第2の透明導電膜の形成を蒸発源の加熱温度及
び雰囲気の酸素圧力を変えることにより制御し、連続的
に形成することを特徴とする光電変換素子の製造方法で
ある。
According to a second aspect of the present invention, a first transparent conductive film, a photoelectric conversion film, a plurality of fine particles serving as nuclei,
In a method for manufacturing a photoelectric conversion element in which a second transparent conductive film and a back metal electrode are sequentially formed, the formation of the fine particles and the formation of the second transparent conductive film are performed by heating a heating source of an evaporation source and an oxygen pressure of an atmosphere. This is a method for manufacturing a photoelectric conversion element, characterized in that the photoelectric conversion element is formed continuously by controlling by changing the thickness.

【0011】本発明において、前記微粒子の平均直径は
0.05〜1μmであり、表面被覆率が0.01〜1で
あることが好ましい。ここで、微粒子の平均直径が0.
05μm未満であると光電変換装置の変換効率が低くな
り、平均直径が1μmを越えると光電変換膜と第2の透
明導電膜との接触が技術的に困難になる。また、表面被
覆率を0.01〜1としたのも同様な理由からである。
In the present invention, the fine particles preferably have an average diameter of 0.05 to 1 μm and a surface coverage of 0.01 to 1. Here, the average diameter of the fine particles is 0.
If it is less than 05 μm, the conversion efficiency of the photoelectric conversion device will be low, and if the average diameter exceeds 1 μm, it will be technically difficult to make contact between the photoelectric conversion film and the second transparent conductive film. Further, the surface coverage was set to 0.01 to 1 for the same reason.

【0012】本発明において、前記微粒子の材料として
は、例えばSnO2 又はZnO又はIn2 3 を主とし
た材料である透明導電性酸化膜、もしくはAlなどの金
属が挙げられる。
In the present invention, examples of the material of the fine particles include a transparent conductive oxide film mainly composed of SnO 2, ZnO or In 2 O 3 , or a metal such as Al.

【0013】本発明において、第2の透明導電膜の膜厚
は、微粒子の平均直径の0.5倍以上であることが好ま
しい。これは、第2の透明導電膜の膜厚が微粒子の平均
直径の0.5倍未満であると、微粒子が形成された光電
変換膜の片面での反射率が低くなるからである。
In the present invention, the thickness of the second transparent conductive film is preferably at least 0.5 times the average diameter of the fine particles. This is because if the thickness of the second transparent conductive film is less than 0.5 times the average diameter of the fine particles, the reflectance on one side of the photoelectric conversion film on which the fine particles are formed becomes low.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施例に係る光
電変換素子について説明する。まず、その構成について
図1を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a photoelectric conversion device according to one embodiment of the present invention will be described. First, the configuration will be described with reference to FIG.

【0015】図中の符番11は、厚さ1.1mmのガラス
基板(透光性基板)を示す。このガラス基板11の裏面に
は、酸化スズからなる厚さ800nmの第1の透明導電
膜12が被着されている。この透明導電膜12の裏面には、
p型,i型,n型の非晶質シリコン半導体からなる光電
変換膜13が形成されている。この光電変換膜13の裏面に
は、核となる微粒子14が被着されている。これらの微粒
子14を含む前記光電変換膜13の裏面には、酸化スズから
なる厚さ200nmの第2の透明導電膜15が形成されて
いる。この第2の透明導電膜15の裏面には、Alからな
る裏面金属電極16が形成されている。
Reference numeral 11 in the figure denotes a glass substrate (light-transmitting substrate) having a thickness of 1.1 mm. On the back surface of the glass substrate 11, a first transparent conductive film 12 made of tin oxide and having a thickness of 800 nm is applied. On the back surface of this transparent conductive film 12,
A photoelectric conversion film 13 made of a p-type, i-type, or n-type amorphous silicon semiconductor is formed. On the back surface of the photoelectric conversion film 13, fine particles 14 serving as nuclei are adhered. On the back surface of the photoelectric conversion film 13 including these fine particles 14, a 200 nm-thick second transparent conductive film 15 made of tin oxide is formed. On the back surface of the second transparent conductive film 15, a back surface metal electrode 16 made of Al is formed.

【0016】次に、こうした構成の光電変換素子の製造
方法について説明する。但し、この製造に際しては図3
に示す製造装置を用いた。図3において、符番21は真空
容器であり、この真空容器21内の底部側には加熱ヒータ
22を埋めこんだるつぼ23が配置されている。このるつぼ
22には酸素ガス導入管24が接続されている。前記るつぼ
22の真上には、開閉可能な蒸着用シャッター25、前記基
板11を支持する基板加熱ヒータ26が配置されている。更
に、前記るつぼ22と蒸着用シャッター25間には、高周波
放電を起こすためのRFアンテナ27が配置されている。
Next, a method for manufacturing a photoelectric conversion element having such a configuration will be described. However, in this production, FIG.
Was used. In FIG. 3, reference numeral 21 denotes a vacuum vessel.
A crucible 23 in which 22 is embedded is arranged. This crucible
An oxygen gas introduction pipe 24 is connected to 22. The crucible
Immediately above the substrate 22, an opening / closing evaporation shutter 25 and a substrate heater 26 supporting the substrate 11 are arranged. Further, between the crucible 22 and the vapor deposition shutter 25, an RF antenna 27 for generating a high-frequency discharge is disposed.

【0017】まず、前記ガラス基板11を500℃に加熱
したところに、Si2 6 とO2 を別々なノズルから基
板11上に噴射する熱CVD法により100nm堆積させ
た。つづいて、基板温度を450℃に加熱し、SnCl
4 、H2 O、HFを別々なノズルから基板11上に噴射す
る熱CVD法により基板11上に約800nm堆積させ
た。これにより、凹凸の小さい透明導電性基板を得た。
[0017] First, were heating the glass substrate 11 at 500 ° C., was 100nm deposited by a thermal CVD method for injecting Si 2 H 6 and O 2 from separate nozzles onto the substrate 11. Subsequently, the substrate temperature was increased to 450 ° C.
4 , H 2 O and HF were deposited on the substrate 11 by a thermal CVD method of spraying them onto the substrate 11 from separate nozzles to a thickness of about 800 nm. Thus, a transparent conductive substrate having small irregularities was obtained.

【0018】次に、RFアンテナ27を用いた周波数1
3.56MHzの高周波放電による気相成長法により、
p型層,i型層,n型層よりなる非晶質シリコン半導体
層を形成した。ここで、p型層を形成するには、SiH
4 とB2 6 、H2 を原料として用いた。さらに必要で
あればCH4 を加えて用いる。n型層を形成するには、
SiH4 とPH3 ,H2 を原料に用いた。i型層を形成
するには、SiH4 を原料に用い、さらに必要であれば
2 を追加して用いる。
Next, the frequency 1 using the RF antenna 27
By the vapor phase growth method using 3.56 MHz high frequency discharge,
An amorphous silicon semiconductor layer including a p-type layer, an i-type layer, and an n-type layer was formed. Here, to form the p-type layer, SiH
4 , B 2 H 6 , and H 2 were used as raw materials. Further, if necessary, CH 4 is used. To form an n-type layer,
SiH 4 , PH 3 and H 2 were used as raw materials. To form an i-type layer, SiH 4 is used as a raw material, and H 2 is additionally used if necessary.

【0019】次に、真空容器21内に非晶質シリコン層ま
で積層した基板11をるつぼ23の上方400mmにセット
し真空に排気し、基板を基板加熱用ヒータ26により15
0℃に加熱した。そして、加熱ヒータ22によりるつぼ23
内のSnO原料を1500℃に加熱した。蒸着用シャッ
ター25を開ける前に酸素ガス導入管26から酸素ガスを1
0mTorrの圧力に制御して導入し、さらに13.5
6MHzの高周波によりプラズマを励起した。これによ
り、平均粒径100nmの粒子状のSnO2 が発電膜上
に堆積した。
Next, the substrate 11 laminated up to the amorphous silicon layer in the vacuum vessel 21 is set at 400 mm above the crucible 23 and evacuated to a vacuum.
Heated to 0 ° C. Then, the crucible 23 is heated by the heater 22.
The SnO material inside was heated to 1500 ° C. Before opening the vapor deposition shutter 25, supply 1 oxygen gas from the oxygen gas introduction pipe 26.
The pressure was controlled at 0 mTorr and introduced.
The plasma was excited by a high frequency of 6 MHz. As a result, particulate SnO 2 having an average particle diameter of 100 nm was deposited on the power generation film.

【0020】次に、蒸着用シャッター25を開いた20秒
後にるつぼ23の温度を600℃に下げると共に酸素圧力
を0.1mTorrに調整した。これにより均一な膜を
成膜できるようになった。そして、連続的な膜が200
nmになったところで蒸着用シャッター25を閉じた。本
手順により非晶質シリコン膜の上には、ヘイズ率43%
の凹凸を有する第2の透明導電膜15が形成された。つづ
いて、蒸着装置よりAlを500nm蒸着して裏面金属
電極16を形成し、光電変換素子を製造した。
Next, 20 seconds after the shutter 25 was opened, the temperature of the crucible 23 was lowered to 600 ° C. and the oxygen pressure was adjusted to 0.1 mTorr. As a result, a uniform film can be formed. And a continuous film is 200
When the thickness reached nm, the vapor deposition shutter 25 was closed. According to this procedure, the haze ratio is 43% on the amorphous silicon film.
The second transparent conductive film 15 having the unevenness was formed. Subsequently, Al was vapor-deposited to a thickness of 500 nm from a vapor deposition apparatus to form a back metal electrode 16, thereby producing a photoelectric conversion element.

【0021】図1の構成の光電変換素子において、ガラ
ス基板11(図面の上方)から入射した光は光電変換膜13
により電気に変換され、第1の透明導電膜12と,微粒子
14及び第2の透明導電膜15からなる第2の透明導電膜及
び裏面金属電極16を通じて、図示されていない電力出力
端子より電力を出力する。入射した光電変換膜で吸収さ
れなかった光の一部は、主に光電変換膜13と第2の透明
導電膜15の界面及び第2の透明導電膜15と裏面金属電極
16の界面で反射され、再び光電変換膜により電気に変換
される。
In the photoelectric conversion device having the structure shown in FIG. 1, light incident from the glass substrate 11 (upper part of the drawing)
Is converted into electricity by the first transparent conductive film 12 and the fine particles.
Power is output from a power output terminal (not shown) through the second transparent conductive film composed of 14 and the second transparent conductive film 15 and the back metal electrode 16. Part of the light that has not been absorbed by the photoelectric conversion film is mainly emitted at the interface between the photoelectric conversion film 13 and the second transparent conductive film 15 and between the second transparent conductive film 15 and the back metal electrode.
The light is reflected at the interface of No. 16 and converted again into electricity by the photoelectric conversion film.

【0022】従来の光電変換素子ではその変換効率を向
上させるために、裏面凹凸形状を有するところに光電変
換膜を形成する方法であったが、本発明では表面凹凸形
状が小さい基板を用いることで従来の方法における課題
であった光電変換膜の膜質低下による光電変換効率の低
下及び膜質の不均一による開放電圧、形状因子の低下に
よる光電変換効率の低下を解決できる。
In a conventional photoelectric conversion element, a method of forming a photoelectric conversion film in a place having a concave and convex shape on the back side is used in order to improve the conversion efficiency. However, in the present invention, a substrate having a small concave and convex shape on the surface is used. It is possible to solve the problems of the conventional method, that is, the decrease in photoelectric conversion efficiency due to the deterioration of the film quality of the photoelectric conversion film, and the decrease in the photoelectric conversion efficiency due to the decrease in the open voltage and the form factor due to the unevenness of the film quality.

【0023】一方、光電変換膜では波長特性として長波
長の光は吸収係数が低く、光電変換効率が小さいため
に、吸収されずに第2の透明導電膜15側に透過する。透
過した光は光電変換膜13と第2の透明導電膜15又は微粒
子の界面において屈折率の違いから一部が反射するが、
多くは界面を透過して微粒子14を含む第2の透明導電膜
15に透過する。第2の透明導電膜15は透明な材料から構
成されているから、透過した光は第2の透明導電膜15と
裏面金属電極16の界面で反射される。このとき、第2の
透明導電膜15は膜中に微粒子14を含有するため、その表
面形状は微粒子の直径程度の凹凸を有する。そのため、
第2の透明導電膜15と裏面金属電極16の界面で反射され
た光は高い確率で入射光とは異なる方向に反射される。
On the other hand, in the photoelectric conversion film, light having a long wavelength as a wavelength characteristic has a low absorption coefficient and a small photoelectric conversion efficiency, so that it is transmitted through the second transparent conductive film 15 without being absorbed. The transmitted light is partially reflected at the interface between the photoelectric conversion film 13 and the second transparent conductive film 15 or the fine particles due to a difference in refractive index.
A second transparent conductive film, often containing fine particles 14, passing through the interface
Transmit to 15 Since the second transparent conductive film 15 is made of a transparent material, the transmitted light is reflected at the interface between the second transparent conductive film 15 and the back metal electrode 16. At this time, since the second transparent conductive film 15 contains the fine particles 14 in the film, the surface shape has irregularities about the diameter of the fine particles. for that reason,
The light reflected at the interface between the second transparent conductive film 15 and the back metal electrode 16 is reflected in a direction different from the incident light with a high probability.

【0024】従って、例えば垂直に入射した光は裏面の
第2の透明導電膜15と微粒子14の界面で斜めに反射さ
れ、光電変換膜13に再度入射することになる。そのた
め、光路長が長くなるとともに、特定の角度以上に斜め
に反射された光は、光電変換膜13と第1の透明導電膜12
の界面で光電変換膜13の光電変換膜側から入射した光に
対する全反射条件となり、再度光電変換膜中に反射され
る。従って、さらに光路が長くなり光電変換膜に吸収さ
れ電力に変換される確率が高くなり、短絡電流を向上す
る。
Therefore, for example, the vertically incident light is obliquely reflected at the interface between the second transparent conductive film 15 and the fine particles 14 on the back surface, and reenters the photoelectric conversion film 13. Therefore, the light path length becomes longer and the light obliquely reflected at a certain angle or more is reflected by the photoelectric conversion film 13 and the first transparent conductive film 12.
At the interface, the condition for total reflection of light incident from the photoelectric conversion film side of the photoelectric conversion film 13 is satisfied, and the light is reflected back into the photoelectric conversion film. Therefore, the optical path is further lengthened, the probability of being absorbed by the photoelectric conversion film and being converted into electric power is increased, and the short-circuit current is improved.

【0025】このとき、裏面の凹凸の大きさは波長に対
して適当に大きくなければ斜めの反射率が低くなるた
め、微粒子の直径としては非晶質シリコンを用いた光電
変換装置の変換効率が高くなる波長である500nmの
光学膜厚として0.5倍以上である125nm以上ある
ことが最も望ましいが、50nm以上であればよい。そ
の一方で、微粒子の直径が大きくなり過ぎると、光電変
換膜と微粒子を含有する第2の透明導電膜15との接触が
技術的に困難となるため、1μm以下が適当である。ま
た、同様な理由により、微粒子の表面被覆率は0.01
〜1の範囲が望ましい。
At this time, if the size of the irregularities on the back surface is not appropriately large with respect to the wavelength, the oblique reflectance will be low, and the conversion efficiency of the photoelectric conversion device using amorphous silicon will be small as the diameter of the fine particles. Most preferably, the optical film thickness of 500 nm, which is a higher wavelength, is 125 nm or more, which is 0.5 times or more, but may be 50 nm or more. On the other hand, if the diameter of the fine particles is too large, it becomes technically difficult to make contact between the photoelectric conversion film and the second transparent conductive film 15 containing the fine particles. For the same reason, the surface coverage of the fine particles is 0.01%.
The range of ~ 1 is desirable.

【0026】なお、上記光学膜厚「125nm」は、次
のようにして求めた。即ち、微粒子の直径をDとする
と、D=λ/2nとなる。但し、λ:波長、n:屈折
率。ここで、λ=500nm、n=2とすると、D=5
00/2×2=125nmとなる。
The optical thickness "125 nm" was obtained as follows. That is, assuming that the diameter of the fine particles is D, D = λ / 2n. Here, λ: wavelength, n: refractive index. Here, if λ = 500 nm and n = 2, D = 5
00/2 × 2 = 125 nm.

【0027】従って、微粒子を成膜するときのSnOの
加熱温度としては700℃から2000℃の範囲であれ
ばよいが、望ましくは1000℃から1200℃の範囲
が良い。酸素の圧力は1mTorrから10Torrの
範囲であればよいが、望ましくは5mTorrから10
0mTorrの範囲である。また、高周波電力は1W以
上であればよいが、10Wから200Wの範囲が望まし
い。更に、成膜時間は微粒子の表面被覆率により適当に
定める。
Accordingly, the heating temperature of SnO for forming fine particles may be in the range of 700 ° C. to 2000 ° C., and preferably in the range of 1000 ° C. to 1200 ° C. The pressure of oxygen may be in the range of 1 mTorr to 10 Torr, but is preferably 5 mTorr to 10 Torr.
The range is 0 mTorr. The high-frequency power may be 1 W or more, but is preferably in the range of 10 W to 200 W. Further, the film formation time is appropriately determined depending on the surface coverage of the fine particles.

【0028】微粒子形成後のSnOの加熱温度は500
℃から1000℃の範囲であればよいが、570℃から
680℃の範囲が望ましい。その時の酸素圧力は1To
rr以下であればよいが、50Wから400Wの範囲が
望ましい。また、微粒子に入射した光は、微粒子14を包
含する第2の透明導電膜15との界面において反射され
る。このとき、微粒子14と第2の透明導電膜15の組成が
異なればそれらの界面での反射が起こり、上記と同様に
斜めの反射率が高くなる。その結果、短絡電流に向上が
得られる。
The heating temperature of SnO after the formation of fine particles is 500
The temperature may be in the range of ℃ to 1000 ° C, but preferably in the range of 570 ° C to 680 ° C. The oxygen pressure at that time is 1 To
rr or less, but preferably in the range of 50W to 400W. Light incident on the fine particles is reflected at the interface with the second transparent conductive film 15 including the fine particles 14. At this time, if the compositions of the fine particles 14 and the second transparent conductive film 15 are different, reflection occurs at the interface between them, and the oblique reflectance increases as described above. As a result, the short-circuit current is improved.

【0029】なお、上記実施例では、微粒子としてSn
2 、ZnO、In2 3 が主とした構成材料である透
明導電性酸化物を用いた場合について述べたが、これに
限らず、AlやAg、Auなどの金属を用いても良い。
また、この場合にも微粒子の粒径は上記と同様に光の散
乱性能のために50nm以上が望ましい。
In the above embodiment, Sn was used as the fine particles.
Although a case has been described where a transparent conductive oxide mainly composed of O 2 , ZnO, and In 2 O 3 is used, the invention is not limited to this, and a metal such as Al, Ag, or Au may be used.
Also in this case, the particle diameter of the fine particles is desirably 50 nm or more for the light scattering performance in the same manner as described above.

【0030】また、上記実施例では微粒子を光電変換膜
に付着させた後、第2の透明導電膜を連続的に被着する
手順を示したが、別々の手順として実施してもよい。ま
た、第2の透明導電膜を形成した後に微粒子を形成して
もよく、一部の第2の透明導電膜を形成した後に微粒子
を形成し、再び残りの第2の透明導電膜を形成してもよ
く、更に第2の透明導電膜と微粒子を同時に形成しても
良く、さらにはこれらを組合わせても繰り返し形成して
も良い。このうち、第2の透明導電膜を形成した後に、
第2の透明導電膜と微粒子を同時に形成し、その後第2
の透明導電膜を形成する手順が最も望ましい。本手順に
より、微粒子を含有する第2の透明導電膜と光電変換膜
及び裏面金属電極との密着性が高くなり、電気的な抵抗
を小さくできる。このとき、第2の透明導電膜の膜厚
は、内部に含有する微粒子の直径の1倍以上であること
が望ましい。
Further, in the above-described embodiment, the procedure in which fine particles are adhered to the photoelectric conversion film and then the second transparent conductive film is continuously applied is described. Alternatively, the fine particles may be formed after forming the second transparent conductive film. The fine particles may be formed after forming a part of the second transparent conductive film, and the remaining second transparent conductive film may be formed again. Alternatively, the second transparent conductive film and the fine particles may be simultaneously formed, or these may be combined or repeatedly formed. After forming the second transparent conductive film,
The second transparent conductive film and the fine particles are formed at the same time.
Is most desirable. According to this procedure, the adhesion between the second transparent conductive film containing fine particles, the photoelectric conversion film, and the back metal electrode is increased, and the electrical resistance can be reduced. At this time, the thickness of the second transparent conductive film is desirably at least one time the diameter of the fine particles contained therein.

【0031】[0031]

【発明の効果】以上詳述したように本発明によれば、透
明導電膜として凹凸のない表面のものを用いて開放電圧
や形状因子の低下を起こすことなく短絡電流を向上でき
る光電変換素子及びその製造方法を提供できる。
As described above in detail, according to the present invention, a photoelectric conversion element capable of improving a short-circuit current without lowering the open-circuit voltage and the form factor by using a transparent conductive film having a surface without unevenness is provided. The manufacturing method can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る光電変換素子の断面
図。
FIG. 1 is a sectional view of a photoelectric conversion element according to one embodiment of the present invention.

【図2】従来の光電変換素子の断面図。FIG. 2 is a cross-sectional view of a conventional photoelectric conversion element.

【図3】光電変換素子を製造するための装置の説明図。FIG. 3 is an explanatory view of an apparatus for manufacturing a photoelectric conversion element.

【符号の説明】[Explanation of symbols]

11…ガラス基板、 12…第1の透明導電膜、 13…光電変換膜、 14…微粒子、 15…第2の透明導電膜、 16…裏面金属電極、 21…真空容器、 23…るつぼ、 25…蒸着用シャッター、 26…基板加熱用ヒータ、 27…RFアンテナ。 11: glass substrate, 12: first transparent conductive film, 13: photoelectric conversion film, 14: fine particles, 15: second transparent conductive film, 16: back metal electrode, 21: vacuum vessel, 23: crucible, 25 ... Shutter for evaporation, 26: heater for substrate heating, 27: RF antenna.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 章二 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 竹内 良昭 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 西宮 立享 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 Fターム(参考) 5F051 DA20 FA02 FA06 FA15 FA18 FA19 FA23 FA30 GA03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shoji Morita 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sansei Heavy Industries Co., Ltd. Nagasaki Research Institute (72) Inventor Yoshiaki Takeuchi 5-chome, Fukahori-cho, Nagasaki-shi, Nagasaki No. 717 No. 1 in Nagasaki Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Tatsuyoshi Nishimiya 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki F-term in Nagasaki Research Laboratory, Mitsubishi Heavy Industries, Ltd. 5F051 DA20 FA02 FA06 FA06 FA15 FA18 FA19 FA23 FA30 GA03

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透光性基板と、この透光性基板の片面に
形成された第1の透明導電膜と、この第1の透明導電膜
の片面に形成された光電変換膜と、この光電変換膜の片
面に形成された核となる複数の微粒子と、これらの微粒
子により凹凸面となった前記光電変換膜の片面に微粒子
を被覆するように形成された第2の透明導電膜と、この
第2の透明導電膜の片面に形成された裏面金属電極とを
具備することを特徴とする光電変換素子。
A light-transmitting substrate; a first transparent conductive film formed on one surface of the light-transmitting substrate; a photoelectric conversion film formed on one surface of the first transparent conductive film; A plurality of fine particles serving as nuclei formed on one surface of the conversion film, and a second transparent conductive film formed so as to cover the fine particles on one surface of the photoelectric conversion film formed into an uneven surface by these fine particles; And a back metal electrode formed on one surface of the second transparent conductive film.
【請求項2】 前記微粒子の平均直径が0.05〜1μ
mであり、表面被覆率が0.01〜1であることを特徴
とする請求項1記載の光電変換素子。
2. The fine particles have an average diameter of 0.05 to 1 μm.
The photoelectric conversion element according to claim 1, wherein m is 1 and the surface coverage is 0.01 to 1.
【請求項3】 第2の透明導電膜の膜厚が、微粒子の平
均直径の0.5倍以上であることを特徴とする請求項1
記載の光電変換素子。
3. The film thickness of the second transparent conductive film is at least 0.5 times the average diameter of the fine particles.
The photoelectric conversion device according to any one of the preceding claims.
【請求項4】 透光性基板の片面に第1の透明導電膜、
光電変換膜、核となる複数の微粒子、第2の透明導電膜
及び裏面金属電極を順次形成してなる光電変換素子を製
造する方法において、 前記微粒子の形成と前記第2の透明導電膜の形成を蒸発
源の加熱温度及び雰囲気の酸素圧力を変えることにより
制御し、連続的に形成することを特徴とする光電変換素
子の製造方法。
4. A first transparent conductive film on one side of a translucent substrate,
In a method of manufacturing a photoelectric conversion element in which a photoelectric conversion film, a plurality of fine particles serving as a nucleus, a second transparent conductive film, and a back metal electrode are sequentially formed, the formation of the fine particles and the formation of the second transparent conductive film And controlling the temperature by changing the heating temperature of the evaporation source and the oxygen pressure of the atmosphere to form the photoelectric conversion element continuously.
JP10287872A 1998-10-09 1998-10-09 Photoelectric conversion element and manufacture thereof Pending JP2000114562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10287872A JP2000114562A (en) 1998-10-09 1998-10-09 Photoelectric conversion element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10287872A JP2000114562A (en) 1998-10-09 1998-10-09 Photoelectric conversion element and manufacture thereof

Publications (1)

Publication Number Publication Date
JP2000114562A true JP2000114562A (en) 2000-04-21

Family

ID=17722843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10287872A Pending JP2000114562A (en) 1998-10-09 1998-10-09 Photoelectric conversion element and manufacture thereof

Country Status (1)

Country Link
JP (1) JP2000114562A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128478A (en) * 2004-10-29 2006-05-18 Mitsubishi Heavy Ind Ltd Photoelectric converter
JP2008506249A (en) * 2004-07-07 2008-02-28 サン−ゴバン グラス フランス Solar cell and solar module
JP2008270562A (en) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd Multi-junction type solar cell
JP2009099643A (en) * 2007-10-15 2009-05-07 Mitsubishi Electric Corp Thin-film solar cell element, and its manufacturing method
WO2010004811A1 (en) * 2008-07-07 2010-01-14 三菱電機株式会社 Thin film solar cell and manufacturing method thereof
US8129611B2 (en) 2004-12-10 2012-03-06 Mitsubishi Heavy Industries, Ltd. Light-scattering film and optical device using the same
JP2014013712A (en) * 2012-07-05 2014-01-23 Udc Ireland Ltd Organic electroluminescent element, surface light source, and lighting system
KR101786092B1 (en) * 2011-06-13 2017-10-16 엘지이노텍 주식회사 Solar cell and manufacturing method of the same
JP2018011058A (en) * 2016-07-13 2018-01-18 エルジー エレクトロニクス インコーポレイティド Tandem solar cell, tandem solar cell module including the same, and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506249A (en) * 2004-07-07 2008-02-28 サン−ゴバン グラス フランス Solar cell and solar module
JP2006128478A (en) * 2004-10-29 2006-05-18 Mitsubishi Heavy Ind Ltd Photoelectric converter
US8129611B2 (en) 2004-12-10 2012-03-06 Mitsubishi Heavy Industries, Ltd. Light-scattering film and optical device using the same
JP2008270562A (en) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd Multi-junction type solar cell
JP2009099643A (en) * 2007-10-15 2009-05-07 Mitsubishi Electric Corp Thin-film solar cell element, and its manufacturing method
JP4619388B2 (en) * 2007-10-15 2011-01-26 三菱電機株式会社 Thin film solar cell element and manufacturing method thereof
WO2010004811A1 (en) * 2008-07-07 2010-01-14 三菱電機株式会社 Thin film solar cell and manufacturing method thereof
JP5127925B2 (en) * 2008-07-07 2013-01-23 三菱電機株式会社 Thin film solar cell and manufacturing method thereof
KR101786092B1 (en) * 2011-06-13 2017-10-16 엘지이노텍 주식회사 Solar cell and manufacturing method of the same
JP2014013712A (en) * 2012-07-05 2014-01-23 Udc Ireland Ltd Organic electroluminescent element, surface light source, and lighting system
JP2018011058A (en) * 2016-07-13 2018-01-18 エルジー エレクトロニクス インコーポレイティド Tandem solar cell, tandem solar cell module including the same, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5069790B2 (en) Thin film photoelectric conversion device substrate, thin film photoelectric conversion device including the same, and method for manufacturing thin film photoelectric conversion device substrate
US7994420B2 (en) Photovoltaic solar cell and solar module
AU777360B2 (en) Method of producing a thin-film photovoltaic device
JP2002057359A (en) Laminated solar battery
US5418019A (en) Method for low temperature plasma enhanced chemical vapor deposition (PECVD) of an oxide and nitride antireflection coating on silicon
EP1443527A1 (en) SUBSTRATE WITH TRANSPARENT CONDUCTIVE OXIDE FILM AND PRODUCTION METHOD THEREFOR, AND PHOTOELECTRIC CONVERSION ELEMENT
JP5243697B2 (en) Transparent conductive film for photoelectric conversion device and manufacturing method thereof
JPH10117006A (en) Thin-film photoelectric conversion device
JPH07297421A (en) Manufacture of thin film semiconductor solar battery
Araújo et al. Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells
JP2003179241A (en) Thin film solar cell
JPS6091626A (en) Method of producing amorphous silicon pin semiconductor device
JPH07326783A (en) Formation of photovoltatic element and thin film manufacturing device used therefor
JP2000114562A (en) Photoelectric conversion element and manufacture thereof
JP2001210845A (en) Method of manufacturing thin film photoelectric conversion device
JP4789131B2 (en) Solar cell and method for manufacturing solar cell
JP2000058892A (en) Silicon based thin film photoelectric converter
JPH06204536A (en) Manufacture of solar cell and sputtering apparatus therefor
JPH11195801A (en) Photovoltaic element
JP2003282902A (en) Thin film solar cell
CN103779430A (en) Conductive antireflection film of crystalline silicon solar cell and crystalline silicon solar cell
JPH04218977A (en) Photovoltaic device and fabrication thereof
JP2003253435A (en) Method of depositing rugged film and method of manufacturing photoelectric converter
JPH10313125A (en) Formation of thin film
JPH0818084A (en) Method and apparatus for manufacturing solar cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011211