JP2001015787A - Substrate with transparent conductive film, manufacturing method therefor, and solar battery - Google Patents

Substrate with transparent conductive film, manufacturing method therefor, and solar battery

Info

Publication number
JP2001015787A
JP2001015787A JP2000109804A JP2000109804A JP2001015787A JP 2001015787 A JP2001015787 A JP 2001015787A JP 2000109804 A JP2000109804 A JP 2000109804A JP 2000109804 A JP2000109804 A JP 2000109804A JP 2001015787 A JP2001015787 A JP 2001015787A
Authority
JP
Japan
Prior art keywords
transparent conductive
film
conductive film
substrate
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000109804A
Other languages
Japanese (ja)
Inventor
Akira Mitsui
彰 光井
Kazuo Sato
一夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000109804A priority Critical patent/JP2001015787A/en
Publication of JP2001015787A publication Critical patent/JP2001015787A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To manufacture a substrate with a transparent conductive film, having an uneven surface structure that can be manufactured using a sputtering method and is rich in productivity by laminating a zinc-oxide system transparent conductive film which is in contact with a titanium oxide film formed on a substrate. SOLUTION: A titanium oxide film is nearly a flat film without special, large uneven structures. The titanium oxide film affects the crystal growth of the zinc-oxide system transparent conductive film laminated on it, hence crystal growth is accelerated, and a zinc oxide crystal of large crystal grains is grown. The surface of the zinc-oxide system transparent conductive film becomes uneven due to the crystal grains. The crystal is orientated nearly vertical with respect to the substrate surface, and the crystal orientation is aligned, thus obtaining a recess and projection in nearly aligned shape. The zinc-oxide system transparent conductive film has roof-shaped uneven shape and is suited for the surface electrode of a solar battery and has high optical confinement effect. As a result, reliability of a solar cell using the substrate with the zinc-oxide system transparent conductive film is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透明導電膜付き基
体とその製造方法および太陽電池に関する。
The present invention relates to a substrate with a transparent conductive film, a method for producing the same, and a solar cell.

【0002】[0002]

【従来の技術】非晶質シリコン太陽電池用透明導電膜と
して、酸化スズ系の膜(例えば、FドープSnO2)ま
たは酸化インジウム系の膜(例えば、SnドープIn2
3)が実用化されている。一方、近年、安価な材料で
ある酸化亜鉛系の膜が注目されている。非晶質シリコン
太陽電池用透明導電膜は、高い透明性、高い導電性、さ
らに太陽光を有効利用するための表面凹凸構造を有する
ことが好ましいとされている。表面凹凸構造による光閉
じ込め効果により、太陽電池の変換効率を向上できる。
2. Description of the Related Art As a transparent conductive film for an amorphous silicon solar cell, a tin oxide-based film (for example, F-doped SnO 2 ) or an indium oxide-based film (for example, Sn-doped In 2
O 3 ) has been put to practical use. On the other hand, in recent years, zinc oxide-based films, which are inexpensive materials, have attracted attention. It is said that the transparent conductive film for an amorphous silicon solar cell preferably has high transparency, high conductivity, and a surface unevenness structure for effectively utilizing sunlight. The conversion efficiency of the solar cell can be improved by the light confinement effect by the surface uneven structure.

【0003】一般に、非晶質シリコン太陽電池において
は、ガラス基板上の透明電極に凹凸をもたせ、光を基板
側(透明電極とは反対側)から入射する構造として、光
閉じ込め効果を発現させている。凹凸膜の形成法として
は、酸化スズ系の膜では、四塩化スズ(SnCl4)や
テトラメチルスズ(Sn(CH34)を原料とし、熱C
VD法やスプレー法により形成される。また、酸化亜鉛
系の膜では、ジエチル亜鉛(Zn(C252)と水を
原料としたMOCVD(有機金属化学蒸着法)法が開発
されている(The Technical Digest of the 5th Interna
tional Photovoltaic Science and Engineering Confer
ence(1990)1032)。
In general, an amorphous silicon solar cell has a structure in which a transparent electrode on a glass substrate is provided with irregularities and light is incident from the substrate side (the side opposite to the transparent electrode) to exhibit a light confinement effect. I have. As a method of forming the uneven film, a tin oxide-based film is formed by using tin tetrachloride (SnCl 4 ) or tetramethyltin (Sn (CH 3 ) 4 ) as a raw material,
It is formed by a VD method or a spray method. For a zinc oxide-based film, an MOCVD (organic metal chemical vapor deposition) method using diethyl zinc (Zn (C 2 H 5 ) 2 ) and water as raw materials has been developed (The Technical Digest of the 5th Interna).
nation Photovoltaic Science and Engineering Confer
ence (1990) 1032).

【0004】ところで、近年の太陽電池の大面積化の要
求が高まるにつれ、大面積でも均一な膜厚や膜質が得ら
れやすいことや比較的低温で成膜できることから、透明
導電膜の形成方法としてスパッタ法が注目されている。
酸化亜鉛系の膜では、スパッタガス圧を高くすることに
より、凹凸膜を形成する方法が提案されている(特開平
6−57410)。しかし、この方法では、通常のスパ
ッタ圧(0.06〜1.4Pa)より、高いスパッタ圧
に設定する必要があるので、成膜速度が遅く、生産性が
低く、実用的でない。
In recent years, as the demand for a larger area of a solar cell has increased, a uniform film thickness and film quality can be easily obtained even in a large area, and a film can be formed at a relatively low temperature. Attention has been paid to the sputtering method.
For a zinc oxide-based film, a method of forming an uneven film by increasing the sputtering gas pressure has been proposed (JP-A-6-57410). However, in this method, it is necessary to set the sputtering pressure higher than the normal sputtering pressure (0.06 to 1.4 Pa), so that the film forming rate is low, the productivity is low, and the method is not practical.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来技術が
有していた前述の課題を解消し、スパッタ法により高速
で成膜でき生産性に富む、表面凹凸構造を有する透明導
電膜付き基体とその製造方法および該透明導電膜付き基
体を用いてなる太陽電池の提供を目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and provides a substrate with a transparent conductive film having a surface irregularity structure, which can be formed at high speed by a sputtering method and has high productivity. And a method of manufacturing the same and a solar cell using the substrate with a transparent conductive film.

【0006】[0006]

【課題を解決するための手段】本発明は、基体上に形成
された酸化チタンを主成分とする膜(以下、単に酸化チ
タン膜という)の上に接して酸化亜鉛を主成分とする透
明導電膜(以下、単に酸化亜鉛系透明導電膜という)を
積層する透明導電膜付き基体の製造方法を提供する。本
発明は、また、基体上に形成された酸化チタン膜の上に
接して酸化亜鉛系透明導電膜が積層された透明導電膜付
き基体を提供する。
According to the present invention, there is provided a transparent conductive material mainly composed of zinc oxide which is in contact with a film mainly composed of titanium oxide (hereinafter simply referred to as a titanium oxide film) formed on a substrate. Provided is a method for manufacturing a substrate with a transparent conductive film, which laminates a film (hereinafter, simply referred to as a zinc oxide-based transparent conductive film). The present invention also provides a substrate with a transparent conductive film in which a zinc oxide-based transparent conductive film is laminated on a titanium oxide film formed on the substrate.

【0007】本発明における酸化亜鉛系透明導電膜は、
表面に凹凸構造を有している。表面凹凸状態としては、
JIS B0601で定義される算術平均粗さRaが1
5〜150nmであることが好ましい。15nmより小
さいと光閉じ込め効果が低くなる傾向にある。また15
0nmより大きいと凹凸が粗すぎて、膜上に形成される
光電変換層(例えば非晶質シリコン層)の膜厚が不均一
になる、または光電変換層が形成されない部分が生じ電
池の効率が低下する傾向にある。
[0007] The zinc oxide-based transparent conductive film of the present invention comprises:
The surface has an uneven structure. As the surface unevenness state,
Arithmetic mean roughness R a as defined in JIS B0601 is 1
It is preferably from 5 to 150 nm. If it is smaller than 15 nm, the light confinement effect tends to be low. Also 15
If it is larger than 0 nm, the unevenness is too coarse, and the thickness of the photoelectric conversion layer (for example, an amorphous silicon layer) formed on the film becomes uneven, or a portion where the photoelectric conversion layer is not formed, and the efficiency of the battery is reduced. It tends to decrease.

【0008】酸化亜鉛系透明導電膜としては、ZnOに
別の成分(例えば、B、Al、Ga、In、Siおよび
Tiからなる群から選ばれる1種以上)をドーパントと
してドープした膜などが挙げられる。特に、導電性の観
点から、ドーパントはGaまたはAl、特にGaである
ことが好ましい。透明導電膜中のドーパントの含有割合
は、ドーパントの総量と亜鉛(Zn)との合計に対する
ドーパントの総量が、0.01〜10原子%であること
が好ましい。特に、導電性の観点から、0.2〜8原子
%、さらには0.3〜7原子%であることが好ましい。
Examples of the zinc oxide-based transparent conductive film include a film obtained by doping ZnO with another component (for example, at least one selected from the group consisting of B, Al, Ga, In, Si and Ti) as a dopant. Can be Particularly, from the viewpoint of conductivity, the dopant is preferably Ga or Al, particularly Ga. The content ratio of the dopant in the transparent conductive film is preferably such that the total amount of the dopant with respect to the total amount of the dopant and zinc (Zn) is 0.01 to 10 atomic%. Particularly, from the viewpoint of conductivity, the content is preferably 0.2 to 8 atomic%, more preferably 0.3 to 7 atomic%.

【0009】酸化亜鉛系透明導電膜の膜厚は100〜3
000nmが好ましい。100nmより薄いと、凹凸構
造が現れにくい。また、3000nmを超えると成膜に
時間がかかり実用的でなく、さらに、膜の吸収が多くな
り、光エネルギーを多く損失する。特に、膜厚は100
〜1000nmであることが好ましい。また、酸化亜鉛
系透明導電膜の形態としては、連続膜(電子顕微鏡的に
みて明らかに連続的と思われる程度の膜厚を有する膜)
であることが好ましい。
The thickness of the zinc oxide-based transparent conductive film is 100 to 3
000 nm is preferred. If it is thinner than 100 nm, the uneven structure is less likely to appear. On the other hand, if the thickness exceeds 3000 nm, it takes a long time to form a film, which is not practical. In particular, the film thickness is 100
It is preferably from 1000 to 1000 nm. As the form of the zinc oxide-based transparent conductive film, a continuous film (a film having a film thickness that is considered to be apparently continuous from an electron microscope) is used.
It is preferable that

【0010】本発明における酸化チタン膜は、変換効率
が高い太陽電池を得る観点から、吸収性でない、すなわ
ち、消衰係数が0.1以下、特にほぼ0の透明膜である
ことが好ましい。例えば、TiO2膜や、TiO2にわず
かに別の成分(例えばSiO 2、Al23、Fe23
をドープした膜などが挙げられる。酸化チタン膜の膜厚
は0.5〜200nmが好ましい。0.5nmより薄い
と酸化亜鉛系透明導電膜の凹凸構造が現れにくい。ま
た、200nmを超えると成膜に時間がかかり実用的で
ない。特に、1〜10nmであることが好ましい。酸化
チタン膜の形態としては、連続膜、不連続膜のいずれで
もよい。
The titanium oxide film of the present invention has a high conversion efficiency.
From the viewpoint of obtaining a solar cell with high
That is, it is a transparent film having an extinction coefficient of 0.1 or less, particularly almost 0.
Is preferred. For example, TiOTwoFilm and TiOTwoBeside
Another component of the crab (eg SiO 2 Two, AlTwoOThree, FeTwoOThree)
And the like. Thickness of titanium oxide film
Is preferably 0.5 to 200 nm. Thinner than 0.5 nm
And the uneven structure of the zinc oxide-based transparent conductive film hardly appears. Ma
If it exceeds 200 nm, it takes a long time to form a film and it is practical.
Absent. In particular, the thickness is preferably 1 to 10 nm. Oxidation
The form of the titanium film can be either a continuous film or a discontinuous film.
Is also good.

【0011】本発明の透明導電膜付き基体は、例えば次
のようにして作製される。ガラス基板上に、Tiターゲ
ットを用いて、酸化反応性スパッタ法でTiO2膜を
0.5〜200nmの膜厚(膜厚は幾何学的膜厚であ
り、以下も同様である)で形成し、次いで、酸化亜鉛を
主成分とする導電性の酸化物ターゲットを用いて、アル
ゴンガス中でスパッタして、酸化亜鉛系透明導電膜を前
記TiO2膜に接して成膜することにより作製される。
The substrate with a transparent conductive film of the present invention is produced, for example, as follows. On a glass substrate, a TiO 2 film is formed in a thickness of 0.5 to 200 nm (the film thickness is a geometric film thickness, and the same applies hereinafter) using a Ti target by an oxidation reactive sputtering method. Then, sputtering is performed in an argon gas using a conductive oxide target containing zinc oxide as a main component to form a zinc oxide-based transparent conductive film in contact with the TiO 2 film. .

【0012】酸化チタン膜は、酸化物ターゲット(Ti
2またはTiO2-x(1<x<2))を用いても成膜で
きる。TiO2ターゲットは導電性がないので高周波
(RF)スパッタに限られる。TiO2-x(1<x<
2)ターゲットは導電性を有しているので直流(DC)
スパッタまたはRFスパッタのいずれにも用い得る。T
iO2-x(1<x<2)ターゲットを用いてDCスパッ
タで成膜する方が、Tiターゲットを用いてDCスパッ
タで成膜するよりも高速で成膜できる。
The titanium oxide film is formed on an oxide target (Ti
A film can also be formed using O 2 or TiO 2-x (1 <x <2). TiO 2 targets are limited to radio frequency (RF) sputtering because they are not conductive. TiO 2-x (1 <x <
2) Direct current (DC) because the target has conductivity
It can be used for either sputtering or RF sputtering. T
A film formed by DC sputtering using an iO 2-x (1 <x <2) target can be formed at a higher speed than a film formed by DC sputtering using a Ti target.

【0013】酸化亜鉛を主成分とする導電性の酸化物タ
ーゲットとしては、B、Al、Ga、In、Siおよび
Tiからなる群から選ばれる1種以上がドーパントとし
てドープされたZnOターゲットが挙げられる。ターゲ
ット中のドーパントの含有割合は、ドーパントの総量と
亜鉛(Zn)との合計に対するドーパントの総量が、
0.01〜10原子%であることが好ましい。導電性の
観点からは、ドーパントはGaまたはAl、特にGaで
あることが好ましい。特に、導電性の観点から、0.2
〜8原子%であることが好ましい。酸化亜鉛を主成分と
する導電性の酸化物ターゲットはDCスパッタまたはR
Fスパッタのいずれにも用い得る。生産性の観点から
は、成膜速度の大きいDCスパッタで成膜することが好
ましい。
Examples of the conductive oxide target containing zinc oxide as a main component include a ZnO target doped with at least one selected from the group consisting of B, Al, Ga, In, Si and Ti as a dopant. . The content ratio of the dopant in the target is such that the total amount of the dopant with respect to the total amount of the dopant and the total amount of zinc (Zn) is:
It is preferably 0.01 to 10 atomic%. From the viewpoint of conductivity, the dopant is preferably Ga or Al, particularly Ga. In particular, from the viewpoint of conductivity, 0.2
Preferably, it is 88 atomic%. The conductive oxide target containing zinc oxide as a main component is DC sputtering or R
It can be used for any of F sputtering. From the viewpoint of productivity, it is preferable to form a film by DC sputtering at a high film formation rate.

【0014】酸化チタン膜成膜時および酸化亜鉛系透明
導電膜のスパッタ成膜時の基体の温度は、0〜600℃
であることが好ましい。0℃より低いと凹凸構造ができ
にくくなる。また、基体としては、ガラス基板を用いる
ことが好ましく、600℃を超えるとガラス基板が変形
したり、ガラス基板と酸化亜鉛系透明導電膜の熱膨張率
の違いから酸化亜鉛系透明導電膜が剥がれやすくなる。
生産性の観点からは、20℃以上であることが好まし
く、また、400℃以下であることが好ましい。本発明
において用いる基体としては、ガラス基板中のアルカリ
成分の拡散を防止する膜(例えば酸化ケイ素膜)が形成
されたガラス基板などの、表面処理された基体も用い得
る。
The temperature of the substrate during the formation of the titanium oxide film and the sputtering of the zinc oxide-based transparent conductive film is 0 to 600 ° C.
It is preferable that If the temperature is lower than 0 ° C., it becomes difficult to form an uneven structure. As the base, a glass substrate is preferably used. If the temperature exceeds 600 ° C., the glass substrate is deformed, or the zinc oxide-based transparent conductive film is peeled off due to a difference in thermal expansion coefficient between the glass substrate and the zinc oxide-based transparent conductive film. It will be easier.
From the viewpoint of productivity, the temperature is preferably 20 ° C. or higher, and more preferably 400 ° C. or lower. As the substrate used in the present invention, a surface-treated substrate such as a glass substrate on which a film (for example, a silicon oxide film) for preventing diffusion of an alkali component in the glass substrate may be used.

【0015】また、酸化亜鉛系透明導電膜のスパッタ成
膜時のスパッタ圧は、特に限定されず、一般に安定に放
電のできる0.01〜2Paであることが好ましい。特
に、放電の安定性および成膜速度の観点から、0.06
〜1.4Paであることが好ましい。
The sputtering pressure at the time of forming the zinc oxide-based transparent conductive film by sputtering is not particularly limited, and is generally preferably 0.01 to 2 Pa at which stable discharge can be performed. In particular, from the viewpoints of discharge stability and deposition rate, 0.06
It is preferable that it is -1.4 Pa.

【0016】本発明は、また、前記の透明導電膜付き基
体の酸化亜鉛系透明導電膜の上に、光電変換層と、電極
層とがこの順に形成された太陽電池を提供する。光電変
換層としては非晶質シリコン層が挙げられる。非晶質シ
リコン層は例えばプラズマCVD法で形成される。層の
厚さは200〜800nmであることが好ましい。20
0nmより薄いと変換効率が低下する。また、800n
mより厚いと成膜に時間がかかり、コスト高になり、変
換効率も低下する。
The present invention also provides a solar cell in which a photoelectric conversion layer and an electrode layer are formed in this order on the zinc oxide-based transparent conductive film of the substrate with a transparent conductive film. An example of the photoelectric conversion layer is an amorphous silicon layer. The amorphous silicon layer is formed by, for example, a plasma CVD method. The thickness of the layer is preferably between 200 and 800 nm. 20
If the thickness is smaller than 0 nm, the conversion efficiency decreases. 800n
If it is thicker than m, it takes a long time to form a film, the cost increases, and the conversion efficiency also decreases.

【0017】電極層としては、金属膜、または、金属膜
(例えばAg膜やAl膜など)と酸化亜鉛系透明導電膜
とを積層した積層膜が挙げられる。具体的には、非晶質
シリコンの上に、酸化亜鉛系透明導電膜、金属膜の順で
形成されたものが挙げられる。電極層は例えばスパッタ
法で形成される。金属膜は50〜500nmの膜厚であ
ることが好ましい。50nmより小さいと反射率が低下
し変換効率が低下し、また500nmより大きいと膜応
力が増加し剥がれやすくなる。酸化亜鉛系透明導電膜の
膜厚は5〜500nmであることが好ましい。5nmよ
り小さいと変換効率が低下し、また500nmより大き
いと膜応力が増加し剥がれやすくなる。太陽電池として
は、非晶質シリコン太陽電池、Cu−In−Se系など
の化合物半導体太陽電池などが挙げられる。
Examples of the electrode layer include a metal film or a laminated film in which a metal film (for example, an Ag film or an Al film) and a zinc oxide-based transparent conductive film are laminated. Specifically, a film formed by forming a zinc oxide-based transparent conductive film and a metal film on amorphous silicon in this order can be given. The electrode layer is formed by, for example, a sputtering method. The metal film preferably has a thickness of 50 to 500 nm. If it is less than 50 nm, the reflectance will decrease and the conversion efficiency will decrease. The thickness of the zinc oxide-based transparent conductive film is preferably from 5 to 500 nm. If it is smaller than 5 nm, the conversion efficiency is reduced, and if it is larger than 500 nm, the film stress increases and the film is easily peeled. Examples of the solar cell include an amorphous silicon solar cell and a compound semiconductor solar cell such as a Cu-In-Se type.

【0018】[0018]

【作用】酸化チタン膜は、特に大きな凹凸構造はなくほ
ぼ平坦な膜である。酸化チタン膜は、その上に接して積
層される酸化亜鉛系透明導電膜の結晶成長に影響を及ぼ
し、その結果、結晶成長が促進され結晶粒の大きな酸化
亜鉛結晶が成長する。前記結晶粒に起因して酸化亜鉛系
透明導電膜の表面が凹凸形状となる。結晶は、基体面に
対してほぼ垂直方向に配向しており、結晶方位が揃って
いるので、ほぼ形状が揃った凹凸が得られる。酸化亜鉛
系透明導電膜は、凹凸形状が屋根型をしており、太陽電
池の入射光側電極(いわゆる表面電極)として好適であ
り、光閉じ込め効果が高い。また、傾きが比較的なだら
かな屋根型であるので、該透明導電膜上に非晶質シリコ
ン層を積層した場合、非晶質シリコン層が形成されない
部分は極めて少なく、太陽電池として好適な連続した非
晶質シリコン層となる。
The titanium oxide film is a substantially flat film without a particularly large uneven structure. The titanium oxide film has an effect on the crystal growth of a zinc oxide-based transparent conductive film that is stacked on the titanium oxide film, and as a result, the crystal growth is promoted and zinc oxide crystals having large crystal grains grow. The surface of the zinc oxide-based transparent conductive film becomes uneven due to the crystal grains. The crystals are oriented in a direction substantially perpendicular to the substrate surface, and the crystal orientations are uniform, so that unevenness having a substantially uniform shape is obtained. The zinc oxide-based transparent conductive film has a roof-like uneven shape, is suitable as an incident light side electrode (so-called surface electrode) of a solar cell, and has a high light confinement effect. In addition, since the inclination is a relatively gentle roof type, when an amorphous silicon layer is stacked on the transparent conductive film, the portion where the amorphous silicon layer is not formed is extremely small, and a continuous cell suitable as a solar cell is obtained. It becomes an amorphous silicon layer.

【0019】また、酸化亜鉛系透明導電膜は、太陽電池
の裏面電極にも使用でき、裏面電極にも用いることでさ
らに光閉じ込め効果を高めることが期待できる。酸化チ
タン膜は、基板ガラスからのアルカリ分や水分の拡散を
防止する効果もあり、酸化亜鉛系透明導電膜の劣化を防
止できる。その結果、本発明の透明導電膜付き基体を用
いた太陽電池は信頼性が向上する。
Further, the zinc oxide-based transparent conductive film can be used also for the back electrode of a solar cell, and it is expected that the light confinement effect can be further enhanced by using it for the back electrode. The titanium oxide film also has an effect of preventing diffusion of alkali components and moisture from the substrate glass, and can prevent deterioration of the zinc oxide-based transparent conductive film. As a result, the reliability of the solar cell using the substrate with a transparent conductive film of the present invention is improved.

【0020】[0020]

【実施例】[例1]プラズマ溶射法で作製したTiO
2-x(x=0.06)ターゲットをマグネトロンDCス
パッタ装置にセットした。ガラス基板上に、アルゴンガ
ス(Ar)と酸素ガス(O2)の混合ガス(Ar:O2
4:1(体積比))を導入して、スパッタ圧0.4Pa
として、1mm厚のシリカガラス基板上にTiO2膜を
3nm成膜した。
[Example 1] TiO produced by plasma spraying
A 2-x (x = 0.06) target was set in a magnetron DC sputtering apparatus. On a glass substrate, a mixed gas of argon gas (Ar) and oxygen gas (O 2 ) (Ar: O 2 =
4: 1 (volume ratio)) and a sputtering pressure of 0.4 Pa
A TiO 2 film was formed to a thickness of 3 nm on a silica glass substrate having a thickness of 1 mm.

【0021】続いて、ホットプレス法で作製した3原子
%のGaが添加されたZnO(Ga/(Zn+Ga)=
3原子%)焼結体ターゲット(以下、GZOターゲット
という)を用いて、Arを導入して、スパッタ圧0.4
Paとして、3原子%のGaが添加されたZnO膜(以
下、GZO膜という)を700nmの膜厚でTiO2
に接して成膜し、透明導電膜付きガラス基板を得た。な
お、TiO2膜成膜時およびGZO膜の基板温度は25
0℃とした。
Subsequently, ZnO (Ga / (Zn + Ga) =
3 atomic%) using a sintered target (hereinafter referred to as a GZO target), introducing Ar, and applying a sputtering pressure of 0.4
As a Pa, a ZnO film to which 3 atomic% of Ga was added (hereinafter, referred to as a GZO film) was formed in a thickness of 700 nm in contact with the TiO 2 film to obtain a glass substrate with a transparent conductive film. The substrate temperature of the TiO 2 film and the GZO film were 25
0 ° C.

【0022】得られた透明導電膜付きガラス基板の比抵
抗は、8×10-4Ω・cmであった。波長550nmで
の積分球を用いて測定した全透過率(Tt)は基板込み
で85%であった。ヘーズ率(H)は10%であった。
なお、ヘーズ率(H)は、H=((Tt−Tp)/Tt
×100で求めた値であり、2%以上であることが好ま
しく、上限は特に限定されないが実用上30%以下であ
ることが好ましい。また、Tpは光路上の透過率であ
る。
The specific resistance of the obtained glass substrate with a transparent conductive film was 8 × 10 −4 Ω · cm. The total transmittance (T t ) measured using an integrating sphere at a wavelength of 550 nm was 85% including the substrate. The haze ratio (H) was 10%.
Incidentally, the haze (H) is, H = ((T t -T p) / T t)
× 100, preferably 2% or more, and the upper limit is not particularly limited, but is preferably 30% or less for practical use. T p is the transmittance on the optical path.

【0023】得られた透明導電膜付きガラス基板の透明
導電膜表面を電子顕微鏡により観測すると、表面に屋根
型の凹凸構造を有することが確認された。また、得られ
た透明導電膜付きガラス基板を切断し、断面を電子顕微
鏡により観測すると、GZO膜は連続膜であることが確
認された。また、透明導電膜をX線回折分析すると、
(002)面に由来するピークが大部分であり、基板か
ら垂直方向に配向した膜であることが確認された。ま
た、AFM(原子間力顕微鏡)を用いて、面粗度を測定
した結果、Raは30nmであった。このとき、カット
オフ値は評価長さの3分の1とした。また、用いたTi
2膜の光学特性を調べるため、前記と同様にして別に
約100nmの膜厚のTiO2膜を成膜した。その結
果、波長550nmでの屈折率は、2.4であり、消衰
係数は、1×10-4であった。
When the surface of the transparent conductive film of the obtained glass substrate with a transparent conductive film was observed with an electron microscope, it was confirmed that the surface had a roof-shaped uneven structure. Further, when the obtained glass substrate with a transparent conductive film was cut and the cross section was observed with an electron microscope, it was confirmed that the GZO film was a continuous film. When the transparent conductive film is analyzed by X-ray diffraction,
Most of the peaks originated from the (002) plane, and it was confirmed that the film was oriented vertically from the substrate. Moreover, as a result of measuring the surface roughness using an AFM (atomic force microscope), Ra was 30 nm. At this time, the cutoff value was set to one third of the evaluation length. The used Ti
In order to examine the optical characteristics of the O 2 film, a TiO 2 film having a thickness of about 100 nm was separately formed in the same manner as described above. As a result, the refractive index at a wavelength of 550 nm was 2.4, and the extinction coefficient was 1 × 10 −4 .

【0024】[例2]例1におけるTiO2-x(x=
0.06)ターゲットの代わりに、Ti金属ターゲット
を用い、ArとO2の混合ガス(Ar:O2=1:4(体
積比))を導入し、その他の条件は例1と同様してTi
2膜を5nmの膜厚で成膜した。なお、TiO2膜の成
膜速度は、例2の場合を1とすると、例1の場合は5で
あった。
[Example 2] The TiO 2-x (x =
0.06) Instead of the target, a Ti metal target was used, a mixed gas of Ar and O 2 (Ar: O 2 = 1: 4 (volume ratio)) was introduced, and the other conditions were the same as in Example 1. Ti
An O 2 film was formed to a thickness of 5 nm. The film formation rate of the TiO 2 film was 5 in the case of Example 1, assuming that the case of Example 2 was 1.

【0025】次に、例1と同様にしてTiO2膜に接し
て膜厚700nmのGZO膜を積層し、透明導電膜付き
ガラス基板を得た。得られた透明導電膜付きガラス基板
について、例1と同様にして測定した結果、比抵抗は8
×10-4Ω・cm、Ttは基板込みで85%、Hは10
%であった。透明導電膜の表面凹凸構造、GZO膜の連
続性および配向性も例1と同様であった。例1と同様に
測定したRaは28nmであった。
Next, a 700 nm-thick GZO film was laminated on the TiO 2 film in the same manner as in Example 1 to obtain a glass substrate with a transparent conductive film. The obtained glass substrate with a transparent conductive film was measured in the same manner as in Example 1, and as a result, the specific resistance was 8
× 10 −4 Ω · cm, Tt is 85% including the substrate, H is 10
%Met. The surface irregularity structure of the transparent conductive film and the continuity and orientation of the GZO film were the same as in Example 1. R a as measured in the same manner as in Example 1 was 28nm.

【0026】[例3](比較例) 1mm厚のシリカガラス基板上に、GZOターゲットを
用い、Arを導入して、スパッタ圧0.4Paとして、
GZO膜を700nmの膜厚で成膜し、透明導電膜付き
ガラス基板を得た。なお、このときの基板温度は250
℃とした。得られた透明導電膜付きガラス基板の比抵抗
は、8×10-4Ω・cmであった。Ttは基板込みで8
5%であり、Hは約0%であった。
Example 3 (Comparative Example) Ar was introduced on a silica glass substrate having a thickness of 1 mm using a GZO target at a sputtering pressure of 0.4 Pa.
A GZO film was formed to a thickness of 700 nm to obtain a glass substrate with a transparent conductive film. The substrate temperature at this time is 250
° C. The specific resistance of the obtained glass substrate with a transparent conductive film was 8 × 10 −4 Ω · cm. Tt is 8 including substrate
5% and H was about 0%.

【0027】得られた透明導電膜付きガラス基板の透明
導電膜表面を電子顕微鏡により観測すると、表面には凹
凸構造がほとんど確認されなかった。また、透明導電膜
をX線回折分析すると(002)面に由来するピークが
大部分であり、基板から垂直方向に配向した膜であるこ
とが確認された。また、例1と同様に測定したRaは5
nmであった。
When the surface of the transparent conductive film of the obtained glass substrate with a transparent conductive film was observed by an electron microscope, almost no uneven structure was observed on the surface. Further, when the transparent conductive film was analyzed by X-ray diffraction, most of the peaks originated from the (002) plane, and it was confirmed that the film was oriented vertically from the substrate. Furthermore, R a is 5 as measured in the same manner as in Example 1
nm.

【0028】[例4]例2で得られた透明導電膜付きガ
ラス基板の透明導電膜上に、光電変換層として、p−i
−n接合を有するアモルファスSi層をプラズマCVD
法により400nm積層した。このときの基板温度は3
00℃とした。次いで、該光電変換層の上に、前記GZ
Oターゲットを用いて、Arを導入して、スパッタ圧
0.4Paとして、スパッタ法により50nmのGZO
膜を成膜した。最後に、裏面電極として、Agターゲッ
トを用いて、Arを導入して、スパッタ圧0.4Paと
して、スパッタ法により200nmのAg膜を積層し、
非晶質シリコン太陽電池Aを作製した。
Example 4 On the transparent conductive film of the glass substrate with a transparent conductive film obtained in Example 2, p-i was formed as a photoelectric conversion layer.
Plasma CVD of amorphous Si layer with -n junction
400 nm was laminated by the method. The substrate temperature at this time is 3
The temperature was set to 00 ° C. Next, on the photoelectric conversion layer, the GZ
Using an O target, Ar was introduced, the sputtering pressure was set to 0.4 Pa, and 50 nm GZO was formed by sputtering.
A film was formed. Finally, using a Ag target as the back electrode, Ar was introduced, a sputtering pressure of 0.4 Pa was applied, and a 200 nm Ag film was stacked by a sputtering method.
An amorphous silicon solar cell A was produced.

【0029】一方、前記非晶質シリコン太陽電池Aの作
製において、例2で得られた透明導電膜付きガラス基板
の代わりに例3で得られた透明導電膜付きガラス基板を
用いた以外は前記と同様にして各層を積層し、非晶質シ
リコン太陽電池Bを作製した。 得られた太陽電池Aお
よびBに、ソーラーシュミレータでAM(エアマス)−
1の光を照射し、短絡電流、開放端電圧、曲線因子の測
定結果から光電変換効率を求めた。その結果、非晶質シ
リコン太陽電池Bの光電変換効率を1.00としたと
き、非晶質シリコン太陽電池Aの光電変換効率は1.1
5であった。
On the other hand, except that the glass substrate with a transparent conductive film obtained in Example 3 was used instead of the glass substrate with a transparent conductive film obtained in Example 2 in the production of the amorphous silicon solar cell A, Each layer was laminated in the same manner as described above to produce an amorphous silicon solar cell B. The obtained solar cells A and B are supplied with AM (air mass) using a solar simulator.
1 was irradiated, and the photoelectric conversion efficiency was determined from the measurement results of the short-circuit current, open-end voltage, and fill factor. As a result, when the photoelectric conversion efficiency of the amorphous silicon solar cell B is 1.00, the photoelectric conversion efficiency of the amorphous silicon solar cell A is 1.1.
It was 5.

【0030】[0030]

【発明の効果】本発明の透明導電膜付き基体は、透明導
電膜表面に凹凸構造を有しているため、非晶質シリコン
太陽電池の透明電極として用いることにより、良好な光
閉じ込め効果を発揮し、高い光電変換効率を有する非晶
質シリコン太陽電池を得ることができる。
The substrate with a transparent conductive film of the present invention has a concavo-convex structure on the surface of the transparent conductive film, and thus exhibits a good light confinement effect when used as a transparent electrode of an amorphous silicon solar cell. Thus, an amorphous silicon solar cell having high photoelectric conversion efficiency can be obtained.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基体上に形成された酸化チタンを主成分と
する膜の上に接して酸化亜鉛を主成分とする透明導電膜
を積層する透明導電膜付き基体の製造方法。
1. A method of manufacturing a substrate with a transparent conductive film, comprising laminating a transparent conductive film mainly containing zinc oxide on a film mainly containing titanium oxide formed on the substrate.
【請求項2】基体上に形成された酸化チタンを主成分と
する膜の上に接して酸化亜鉛を主成分とする透明導電膜
が積層された透明導電膜付き基体。
2. A substrate with a transparent conductive film in which a transparent conductive film mainly containing zinc oxide is laminated on a film mainly containing titanium oxide formed on the substrate.
【請求項3】請求項2に記載の透明導電膜付き基体の酸
化亜鉛を主成分とする透明導電膜の上に、光電変換層
と、電極層とがこの順に形成された太陽電池。
3. A solar cell in which a photoelectric conversion layer and an electrode layer are formed in this order on a transparent conductive film containing zinc oxide as a main component of the substrate with a transparent conductive film according to claim 2.
JP2000109804A 1999-04-27 2000-04-11 Substrate with transparent conductive film, manufacturing method therefor, and solar battery Withdrawn JP2001015787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000109804A JP2001015787A (en) 1999-04-27 2000-04-11 Substrate with transparent conductive film, manufacturing method therefor, and solar battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-120525 1999-04-27
JP12052599 1999-04-27
JP2000109804A JP2001015787A (en) 1999-04-27 2000-04-11 Substrate with transparent conductive film, manufacturing method therefor, and solar battery

Publications (1)

Publication Number Publication Date
JP2001015787A true JP2001015787A (en) 2001-01-19

Family

ID=26458093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000109804A Withdrawn JP2001015787A (en) 1999-04-27 2000-04-11 Substrate with transparent conductive film, manufacturing method therefor, and solar battery

Country Status (1)

Country Link
JP (1) JP2001015787A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244073A (en) * 2004-02-27 2005-09-08 National Institute Of Advanced Industrial & Technology Solar cell and method for manufacturing the same
WO2005093854A1 (en) * 2004-03-25 2005-10-06 Kaneka Corporation Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
JP2005311292A (en) * 2004-03-25 2005-11-04 Kaneka Corp Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same
WO2009122938A1 (en) * 2008-04-02 2009-10-08 Murata Masayoshi Substrate for thin film solar cell, manufacturing method thereof, and thin film solar cell using thereof
WO2011161038A1 (en) * 2010-06-21 2011-12-29 Innovent E.V. Method for increasing the translucency of a substrate
WO2011161010A3 (en) * 2010-06-21 2012-03-08 Solayer Gmbh Substrate with superficially structured surface electrode for a solar cell and method for producing said substrate
JP2012227146A (en) * 2011-04-18 2012-11-15 Samsung Corning Precision Materials Co Ltd Light extraction substrate for electroluminescent device and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244073A (en) * 2004-02-27 2005-09-08 National Institute Of Advanced Industrial & Technology Solar cell and method for manufacturing the same
WO2005093854A1 (en) * 2004-03-25 2005-10-06 Kaneka Corporation Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
JP2005311292A (en) * 2004-03-25 2005-11-04 Kaneka Corp Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same
US7781668B2 (en) 2004-03-25 2010-08-24 Kaneka Corporation Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
WO2009122938A1 (en) * 2008-04-02 2009-10-08 Murata Masayoshi Substrate for thin film solar cell, manufacturing method thereof, and thin film solar cell using thereof
WO2011161038A1 (en) * 2010-06-21 2011-12-29 Innovent E.V. Method for increasing the translucency of a substrate
WO2011161010A3 (en) * 2010-06-21 2012-03-08 Solayer Gmbh Substrate with superficially structured surface electrode for a solar cell and method for producing said substrate
CN103026493A (en) * 2010-06-21 2013-04-03 索莱尔有限公司 Substrate with superficially structured surface electrode for a solar cell and method for producing said substrate
JP2012227146A (en) * 2011-04-18 2012-11-15 Samsung Corning Precision Materials Co Ltd Light extraction substrate for electroluminescent device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5012793B2 (en) Substrate with transparent conductive oxide film and photoelectric conversion element
US6380480B1 (en) Photoelectric conversion device and substrate for photoelectric conversion device
US7846562B2 (en) Transparent substrate with transparent conductive film, method of manufacturing the same, and photoelectric conversion element including the substrate
US20040038051A1 (en) Conductive film, production method therefor, substrate provided with it and photo-electric conversion device
US20150311361A1 (en) Transparent conductive glass substrate with surface electrode, method for producing same, thin film solar cell, and method for manufacturing thin film solar cell
CN101582460B (en) Multilayer transparent conductive film of thin film solar cell and manufacturing method thereof
WO2003065386A1 (en) Method of forming transparent conductive film, transparent conductive film, glass substrate having the same and photoelectric transduction unit including the glass substrate
US20080210300A1 (en) Method of Producing Substrate for Thin Film Photoelectric Conversion Device, and Thin Film Photoelectric Conversion Device
JP2005347490A (en) Substrate with transparent conductive oxide film, its manufacturing method and photoelectric transfer element
JP5533448B2 (en) Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
JP2001015787A (en) Substrate with transparent conductive film, manufacturing method therefor, and solar battery
JPH07105166B2 (en) Fluorine-doped tin oxide film and method for reducing resistance thereof
KR20150083869A (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
JP2009071034A (en) Thin film photoelectric converion device and its manufacturing method
JP4362273B2 (en) Substrate manufacturing method
US20110020621A1 (en) Glass-type substrate coated with thin layers and production method
JPS63102109A (en) Transparent conducting film
JP2012084843A (en) Substrate with transparent conductive oxide film and photoelectric conversion element
JP2010103347A (en) Thin film photoelectric converter
JPH11186580A (en) Photoelectric conversion element
JP2009239301A (en) Substrate and photoelectric conversion device using the same
JP2002158366A (en) Photoelectric conversion device
JPH0794024A (en) Transparent conductive film and manufacture thereof
JPH0657410A (en) Selective light-transmissive zno thin film
JP2011223023A (en) Base substrate with transparent conductive oxide film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100115