JP2005311292A - Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same - Google Patents

Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same Download PDF

Info

Publication number
JP2005311292A
JP2005311292A JP2004304970A JP2004304970A JP2005311292A JP 2005311292 A JP2005311292 A JP 2005311292A JP 2004304970 A JP2004304970 A JP 2004304970A JP 2004304970 A JP2004304970 A JP 2004304970A JP 2005311292 A JP2005311292 A JP 2005311292A
Authority
JP
Japan
Prior art keywords
thin film
substrate
film solar
solar cell
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004304970A
Other languages
Japanese (ja)
Inventor
Toshiaki Sasaki
敏明 佐々木
Yohei Koi
洋平 小井
Hiroko Tawada
裕子 多和田
Kenji Yamamoto
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004304970A priority Critical patent/JP2005311292A/en
Publication of JP2005311292A publication Critical patent/JP2005311292A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive thin film solar cell that can improve the performance of a thin film solar cell by effectively increasing the uneveness of the substrate suface of the thin film solar cell to augment an optical confinement effect, and a manufacturing method therefor, and further, a thin film solar cell using the substrate, whose performance is improved. <P>SOLUTION: A substrate for the thin film solar cell has a translucent insulating substrate and a transparent electrode layer that includes at least zinc oxide (ZnO) deposited on it. The translucent insulating substrate has minute surface irregularity on the transparent electrode layer-side interface, the surface irregularity whose (RMS) roughness is 5 to 50nm, and the convex part of the irregularity is of a curved surface. Further, since a haze ratio, which is an index of a substrate's irregularity, i.e., a ratio of the diffuse transmittance vs total transmittance measured by a C light source, can be 20% or more, optical confinement can be effectively caused, thus improving the performance of the thin film solar cell. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、薄膜太陽電池用基板およびその製造方法、並びにそれを用いた薄膜太陽電池に関する。   The present invention relates to a substrate for a thin film solar cell, a method for producing the same, and a thin film solar cell using the same.

近年、太陽電池の低コスト化、高効率化を両立するために原材料が少なくてすむ薄膜太陽電池が注目され、開発が精力的に行われている。特に、ガラス等の安価な透光性基体上に低温プロセスを用いて良質の半導体層を形成する方法が低コストを実現可能な方法として期待されている。   In recent years, thin-film solar cells that require less raw materials in order to achieve both low cost and high efficiency of solar cells have attracted attention and have been vigorously developed. In particular, a method of forming a high-quality semiconductor layer on an inexpensive translucent substrate such as glass using a low-temperature process is expected as a method capable of realizing low cost.

このような薄膜太陽電池を、電力用として高電圧で高出力を生じ得る大面積の薄膜太陽電池として製造する場合、大きな基板上に形成された薄膜太陽電池を複数個直列接続して用いるのではなく、歩留りを良くするために大きな基板上に形成された薄膜太陽電池を複数のセルに分割し、それらのセルを直列接続して集積化するのが一般的である。特に、基板としてガラス板を用いて、ガラス基板側から光を入射させるタイプの薄膜太陽電池においては、ガラス基板上に順次半導体層を形成した後、ガラス基板上の透明電極層の抵抗による損失を低減するために、レーザスクライブ法でその透明電極を所定幅の短冊状に加工する分離溝を設け、その短冊状の長手方向に直行する方向に各セルを直列接続して集積化するのが一般的である。   When manufacturing such a thin film solar cell as a large area thin film solar cell capable of producing high output at high voltage for power, a plurality of thin film solar cells formed on a large substrate are used in series connection. In general, in order to improve the yield, a thin film solar cell formed on a large substrate is divided into a plurality of cells, and these cells are connected in series and integrated. In particular, in a thin film solar cell of a type in which light is incident from the glass substrate side using a glass plate as a substrate, after forming a semiconductor layer sequentially on the glass substrate, the loss due to the resistance of the transparent electrode layer on the glass substrate is reduced. In order to reduce this, it is common to provide a separation groove for processing the transparent electrode into a strip with a predetermined width by a laser scribing method, and integrate each cell in series in a direction perpendicular to the longitudinal direction of the strip Is.

図2は、このような集積型薄膜太陽電池の概念平面図である。図3は、図2中において楕円2Aで囲まれた領域の構造断面図である。そして、図4は、図3中において楕円3Aで囲まれた領域のより詳細な積層構造断面図である。   FIG. 2 is a conceptual plan view of such an integrated thin film solar cell. FIG. 3 is a structural cross-sectional view of a region surrounded by an ellipse 2A in FIG. FIG. 4 is a more detailed cross-sectional view of the laminated structure in the region surrounded by the ellipse 3A in FIG.

図2〜4に示されているような集積型薄膜太陽電池6の製造においては、透光性絶縁基板11として一般にガラス基板11が用いられる。ガラス基板11上には透明電極層12として、たとえば厚さ700nmのSnO2膜が熱CVD法にて形成される。透明電極層12はレーザスクライブで幅約100μmの透明電極層分離溝62を形成することによって、約10mmの幅Wを有する短冊状透明電極に分離される。スクライブ後の残滓は水または有機溶媒を用いた超音波洗浄で除去される。なお、洗浄方法としては、粘着剤や噴射ガスなどを用いて残滓を除去する方法も可能である。 In the manufacture of the integrated thin film solar cell 6 as shown in FIGS. 2 to 4, a glass substrate 11 is generally used as the translucent insulating substrate 11. On the glass substrate 11, as the transparent electrode layer 12, for example, a SnO 2 film having a thickness of 700 nm is formed by a thermal CVD method. The transparent electrode layer 12 is separated into strip-shaped transparent electrodes having a width W of about 10 mm by forming transparent electrode layer separation grooves 62 having a width of about 100 μm by laser scribing. The residue after scribing is removed by ultrasonic cleaning using water or an organic solvent. In addition, as a cleaning method, a method of removing residues using an adhesive or a jet gas is also possible.

さらに一つ以上の非晶質ユニット2または結晶質光電変換ユニット3を形成後、接続溝63によって、これらのユニットは面内で複数の短冊状の領域に分割される。なお、この接続溝63は互いに隣接するセル間で透明電極層12と裏面電極層4とを電気的に接続するために利用されるものなので、部分的にスクライブの残滓が残っていても問題とならず、超音波洗浄は省略されてもよい。引き続き、裏面電極層4が形成されると、接続溝63を介して、裏面電極層4は前述のように短冊状に形成されている透明電極層12へ電気的に接続される。   Further, after one or more amorphous units 2 or crystalline photoelectric conversion units 3 are formed, these units are divided into a plurality of strip-like regions within the plane by the connection grooves 63. Since the connection groove 63 is used to electrically connect the transparent electrode layer 12 and the back electrode layer 4 between adjacent cells, there is a problem even if a scribe residue remains partially. Instead, ultrasonic cleaning may be omitted. Subsequently, when the back electrode layer 4 is formed, the back electrode layer 4 is electrically connected to the transparent electrode layer 12 formed in a strip shape as described above via the connection groove 63.

裏面電極層4は一つ以上の非晶質ユニット2または結晶質光電変換ユニット3と同様のレーザスクライブによってパターニングされ、一つ以上の非晶質ユニット2または結晶質光電変換ユニット3とともに裏面電極層4を局所的に吹き飛ばすことによって複数の裏面電極分離溝64が形成された後に超音波洗浄される。これによって複数の短冊状の太陽電池セル61が形成され、それらのセルは接続溝63を介して互いに電気的に直列接続されていることになる。最後に、薄膜太陽電池の裏面側は封止樹脂(図示せず)が添付されることにより保護される。   The back electrode layer 4 is patterned by laser scribing similar to that of one or more amorphous units 2 or crystalline photoelectric conversion units 3, and the back electrode layer together with one or more amorphous units 2 or crystalline photoelectric conversion units 3. After the plurality of back surface electrode separation grooves 64 are formed by blowing off 4 locally, ultrasonic cleaning is performed. As a result, a plurality of strip-shaped solar battery cells 61 are formed, and these cells are electrically connected in series with each other through the connection groove 63. Finally, the back side of the thin film solar cell is protected by attaching a sealing resin (not shown).

ところで、薄膜太陽電池は、従来のバルクの単結晶や多結晶シリコンを使用した太陽電池に比べて光電変換層を薄くすることが可能であるが、反面、薄膜全体の光吸収が膜厚によって制限されてしまうという問題がある。そこで、光電変換層を含む光電変換ユニットに入射した光をより有効に利用するために、光電変換ユニットに接する透明導電膜あるいは金属層の表面を凹凸化(テクスチャ化)し、その界面で光を散乱した後、光電変換ユニット内へ入射させることで光路長を延長せしめ、光電変換層内での光吸収量を増加させる工夫がなされている。この技術は「光閉じ込め」と呼ばれており、高い光電変換効率を有する薄膜太陽電池を実用化する上で、重要な要素技術となっている。   By the way, a thin film solar cell can make a photoelectric conversion layer thinner than a solar cell using conventional bulk single crystal or polycrystalline silicon. However, the light absorption of the entire thin film is limited by the film thickness. There is a problem of being done. Therefore, in order to use light incident on the photoelectric conversion unit including the photoelectric conversion layer more effectively, the surface of the transparent conductive film or metal layer in contact with the photoelectric conversion unit is made uneven (textured), and light is transmitted at the interface. After scattering, the optical path length is extended by making it enter into a photoelectric conversion unit, and the device which makes the light absorption amount in a photoelectric converting layer increase is made | formed. This technology is called “optical confinement” and is an important elemental technology for practical use of a thin film solar cell having high photoelectric conversion efficiency.

薄膜太陽電池の一例である非晶質シリコン太陽電池は、ガラス等の透明基体上に形成され、透明電極層として表面凹凸を有する酸化錫(SnO2)膜をよく用いている。この透明電極層の表面凹凸は、光電変換層内への光閉じ込めに有効に寄与している。しかし、光閉じ込めに有効な表面凹凸を有する透明電極層として熱化学気相堆積法(熱CVD法)によりSnO2膜を形成したガラス基体は、その透明電極層を形成するために約550〜650℃の高温プロセスを必要とするので製造コストが高いという問題がある。また、製膜温度が高いため、固体化後のガラスやプラスチックフィルムなどの安価な基体が使えない問題がある。強化ガラスを高温プロセスにさらすと強化が取れてしまうので、強化ガラスを基体に使えず、大面積太陽電池に適用する場合、ガラス基体の強度を確保するためには、ガラスを厚くすることが必要となり、結果として、重くなってしまう問題がある。 An amorphous silicon solar cell which is an example of a thin film solar cell often uses a tin oxide (SnO 2 ) film formed on a transparent substrate such as glass and having a surface asperity as a transparent electrode layer. The surface unevenness of the transparent electrode layer effectively contributes to light confinement in the photoelectric conversion layer. However, a glass substrate on which an SnO 2 film is formed by a thermal chemical vapor deposition method (thermal CVD method) as a transparent electrode layer having surface irregularities effective for light confinement is about 550 to 650 in order to form the transparent electrode layer. Since a high temperature process at ℃ is required, there is a problem that the manufacturing cost is high. In addition, since the film forming temperature is high, there is a problem that an inexpensive substrate such as glass or plastic film after solidification cannot be used. When tempered glass is exposed to a high-temperature process, it can be tempered, so it is not possible to use tempered glass as a substrate, and when applying to large area solar cells, it is necessary to thicken the glass to ensure the strength of the glass substrate. As a result, there is a problem of becoming heavy.

また、SnO2膜は耐プラズマ性が低く、水素を使用した大きなプラズマ密度での光電変換層の堆積環境下では、SnO2膜が還元されてしまう。SnO2膜が還元されると黒化し、黒化した透明電極層部分で入射光が吸収され、光電変換層への透過光量が減少し、変換効率の低下を招く原因となる。 In addition, the SnO 2 film has low plasma resistance, and the SnO 2 film is reduced in the deposition environment of the photoelectric conversion layer at a high plasma density using hydrogen. When the SnO 2 film is reduced, it is blackened, and incident light is absorbed by the blackened transparent electrode layer portion, and the amount of light transmitted to the photoelectric conversion layer is reduced, which causes a decrease in conversion efficiency.

さらに、非晶質シリコン太陽電池は、単結晶や多結晶太陽電池に比べ、初期光電変換効率が低く、さらに光劣化現象により変換効率が低下するという問題がある。そこで、薄膜多結晶シリコンや微結晶シリコンのような結晶質シリコンを光電変換層として用いた結晶質シリコン薄膜太陽電池が、低コスト化と高効率化とを両立可能なものとして期待され、検討されている。なぜなら、結晶質シリコン薄膜太陽電池は、非晶質シリコンの形成と同様にプラズマCVD法にて低温形成でき、さらに光劣化現象がほとんど生じないからである。また、非晶質シリコン光電変換層が長波長側において800nm程度の波長の光を光電変換し得るのに対し、結晶質シリコン光電変換層はそれより長い約1200nm程度の波長の光までを光電変換することができる。しかし、非晶質シリコンの形成時に用いられる堆積条件よりも大きなプラズマ密度が必要であり、SnO2膜を透明電極に用いた場合は、大幅な変換効率向上は困難であった。 Furthermore, the amorphous silicon solar cell has a problem that the initial photoelectric conversion efficiency is lower than that of a single crystal or polycrystalline solar cell, and further, the conversion efficiency is lowered due to a light deterioration phenomenon. Therefore, a crystalline silicon thin film solar cell using crystalline silicon such as thin film polycrystalline silicon or microcrystalline silicon as a photoelectric conversion layer is expected and studied as being capable of achieving both low cost and high efficiency. ing. This is because the crystalline silicon thin film solar cell can be formed at a low temperature by the plasma CVD method similarly to the formation of amorphous silicon, and further, the light deterioration phenomenon hardly occurs. The amorphous silicon photoelectric conversion layer can photoelectrically convert light having a wavelength of about 800 nm on the long wavelength side, while the crystalline silicon photoelectric conversion layer photoelectrically converts light having a longer wavelength of about 1200 nm. can do. However, a plasma density larger than the deposition conditions used at the time of forming amorphous silicon is necessary, and when the SnO 2 film is used as a transparent electrode, it is difficult to greatly improve the conversion efficiency.

なお、本願明細書における、「結晶質」、「微結晶」の用語は、部分的に非晶質を含んでいるものも含んでいるものとする。   In the specification of the present application, the terms “crystalline” and “microcrystal” include those partially including amorphous.

一方、酸化亜鉛(ZnO)は、透明電極層の材料として広く用いられているSnO2あるいは酸化インジウム錫(ITO)よりも安価であり、また耐プラズマ性が高いという利点を有しており、薄膜太陽電池用の透明電極層材料として好適である。 On the other hand, zinc oxide (ZnO) has advantages that it is cheaper than SnO 2 or indium tin oxide (ITO) widely used as a material for the transparent electrode layer and has high plasma resistance, and is a thin film It is suitable as a transparent electrode layer material for solar cells.

(先行例1)
例えば、特許文献1に開示されているZnO膜の形成方法は、200℃以下の低圧熱CVD法(あるいはMOCVD法とも呼ばれる)で、低温で凹凸を有する薄膜が形成できると開示している。高圧熱CVDに比べて、200℃以下の低温プロセスのため、低コスト化が図れる。また、固体化後のガラスやプラスチックフィルムなどの安価な基体を用いることができる。さらに、強化ガラスを使用できるので大面積太陽電池のガラス基体を約2/3程度に薄くでき、軽くできる。また、低圧熱CVD法は、スパッタ法に比べて1桁以上速い製膜速度にて製膜が可能であるとともに、原料の利用効率が高いことから、製造コストの面でも薄膜太陽電池にとって好ましい。
(Prior Example 1)
For example, the method for forming a ZnO film disclosed in Patent Document 1 discloses that a thin film having unevenness can be formed at a low temperature by a low-pressure thermal CVD method (also called MOCVD method) of 200 ° C. or lower. Compared with high-pressure thermal CVD, a low-temperature process at 200 ° C. or lower can reduce the cost. In addition, an inexpensive base such as glass or plastic film after solidification can be used. Further, since tempered glass can be used, the glass substrate of the large area solar cell can be made thin by about 2/3 and light. In addition, the low-pressure thermal CVD method is preferable for a thin film solar cell in terms of manufacturing cost because it can be formed at a film forming speed one digit or more faster than the sputtering method and the utilization efficiency of raw materials is high.

(先行例2)
一方で、薄膜太陽電池用の基板に凹凸をつけるために、透明電極層自体に凹凸を形成するのではなく、ガラス基体の表面に凹凸のある下地層を設け、その上に透明電極層を形成する手法が、特許文献2に開示されている。ガラス基体の上に、平均粒径が0.1〜1.0μmの絶縁性微粒子とバインダーからなる凹凸を有する下地層を形成し、その上に透明電極層を堆積することで、微粒子にて微細な凹凸がガラス基板上に形成されていることから、透明電極層自体には特に凹凸を形成する必要がない。
特開2000−252501号公報 特開2003−243676号公報
(Prior Example 2)
On the other hand, in order to make the substrate for thin film solar cells uneven, instead of forming unevenness on the transparent electrode layer itself, an underlying layer with unevenness is provided on the surface of the glass substrate, and a transparent electrode layer is formed thereon This technique is disclosed in Patent Document 2. On the glass substrate, an underlying layer having irregularities composed of insulating fine particles having an average particle size of 0.1 to 1.0 μm and a binder is formed, and a transparent electrode layer is deposited thereon, whereby fine particles are formed. Since unevenness is formed on the glass substrate, it is not necessary to form unevenness in the transparent electrode layer itself.
JP 2000-252501 A JP 2003-243676 A

本発明の目的は、薄膜太陽電池用基板の凹凸を効果的に増大させて光閉込め効果を大きくすることで、薄膜太陽電池の性能を改善可能とする安価な薄膜太陽電池用基板、及びその製造方法で提供し、さらにその基板を用いた性能が改善された薄膜太陽電池を提供することを目的とする。   An object of the present invention is to provide an inexpensive thin film solar cell substrate capable of improving the performance of the thin film solar cell by effectively increasing the unevenness of the thin film solar cell substrate to increase the light confinement effect, and its An object of the present invention is to provide a thin film solar cell provided by a manufacturing method and further improved in performance using the substrate.

まず、図1に示すように、先行例1のように下地層無しの基体の上にZnOを形成した場合は、ヘイズ率を高く例えば20%以上に増大することが困難であり、「光閉込め」が有効にできなかった。特に、下地層がない場合、基体温度150℃以上で透明電極層を製膜するとヘイズ率が低下するので、先行例1の従来法では150℃以上に基体温度を上げると薄膜太陽電池の短絡電流密度が低下する課題が有る。シリコン系薄膜太陽電池において、非晶質シリコンまたは結晶質シリコンの薄膜シリコン系半導体層は、一般にプラズマCVDで基体温度180〜300℃で作製される。この場合、透明電極層の作製温度よりシリコン系半導体層の作製温度が高い。一般的に、透明電極層とシリコン系半導体層の作製温度の温度差が大きいほど、透明電極層への熱ダメージが大きくなる傾向があり、先行例1の技術では薄膜太陽電池の特性低下、長期信頼性低下の課題が発生する。   First, as shown in FIG. 1, when ZnO is formed on a substrate without an underlayer as in the first example, it is difficult to increase the haze ratio to be high, for example, 20% or more. Could not be activated. In particular, when there is no underlayer, the haze ratio decreases when the transparent electrode layer is formed at a substrate temperature of 150 ° C. or higher. Therefore, in the conventional method of the first example, when the substrate temperature is increased to 150 ° C. or higher, the short-circuit current of the thin-film solar cell There is a problem that the density decreases. In silicon-based thin-film solar cells, a thin-film silicon-based semiconductor layer of amorphous silicon or crystalline silicon is generally produced at a substrate temperature of 180 to 300 ° C. by plasma CVD. In this case, the production temperature of the silicon-based semiconductor layer is higher than the production temperature of the transparent electrode layer. Generally, as the temperature difference between the production temperature of the transparent electrode layer and the silicon-based semiconductor layer increases, thermal damage to the transparent electrode layer tends to increase. The problem of reduced reliability occurs.

また、先行例1のような結晶質光電変換層を含む集積型薄膜太陽電池において、低温形成された透明電極102を用いた場合、裏面電極分離溝105をレーザスクライブで形成した後の超音波洗浄時に、分離溝近傍の多数の領域で膜の剥がれが生じやすくなっていることを本発明者は見出した。このような膜の剥がれにおいては、薄膜太陽電池の面積が大きくなるにしたがって剥がれる面積が増加する傾向にある。また、スクライブ後既に膜剥がれが発生する場合もある。そして、このような膜剥がれが発生すると、当然薄膜太陽電池の性能低下の原因となる。   Further, in the integrated thin film solar cell including the crystalline photoelectric conversion layer as in the preceding example 1, when the transparent electrode 102 formed at a low temperature is used, ultrasonic cleaning after the back electrode separation groove 105 is formed by laser scribing. The present inventor has found that peeling of the film is likely to occur in many areas near the separation groove. In such film peeling, the peeled area tends to increase as the area of the thin-film solar cell increases. Moreover, film peeling may already occur after scribing. And when such film peeling occurs, it naturally becomes the cause of the performance fall of a thin film solar cell.

さらに、先行例2の方法でヘイズ率を高く、例えば20%以上にしようとすると、下地層で凹凸を大きくする必要があり、その結果、絶縁性微粒子の粒径を大きくする必要が生じるが、大きな絶縁性微粒子を用いた場合には、基板上への絶縁性微粒子の分散が不均一になり、例えば微粒子が付いてない領域が発生し、基板全体としての平均の薄膜光電変換変換効率が低下したり、面内でのヘイズ率分布により色ムラが生じるという問題があった。さらに、大きな絶縁性微粒子を用いて大きな凹凸を形成しようとするとバインダーによる微粒子の基板への付着が不十分となり薄膜太陽電池そのものの信頼性が低下する可能性があるという問題が生じることが判った。   Furthermore, when the haze ratio is increased by the method of the preceding example 2, for example, 20% or more, it is necessary to increase the unevenness in the underlayer, and as a result, it is necessary to increase the particle size of the insulating fine particles. When large insulating fine particles are used, the dispersion of the insulating fine particles on the substrate becomes non-uniform, for example, a region without fine particles is generated, and the average thin film photoelectric conversion efficiency of the entire substrate is lowered. Or color unevenness occurs due to the in-plane haze ratio distribution. Furthermore, it has been found that if large irregularities are formed using large insulating fine particles, the adhesion of the fine particles to the substrate is insufficient and the reliability of the thin film solar cell itself may be lowered. .

本発明はこのような課題に鑑みてなされたものであり、発電効率の高い薄膜太陽電池用の基板、及び、その製造方法、並びにそれを用いた薄膜太陽電池を提供することを主な目的としている。また、集積型薄膜太陽電池の大面積化において、集積型薄膜太陽電池の高い発電効率を維持しつつ、その集積化を容易にするとともに生産歩留りを改善し得る薄膜太陽電池用基板を提供することをも目的としている。   This invention is made | formed in view of such a subject, and it aims at providing the board | substrate for thin film solar cells with high electric power generation efficiency, its manufacturing method, and a thin film solar cell using the same. Yes. In addition, in increasing the area of an integrated thin film solar cell, to provide a substrate for a thin film solar cell capable of facilitating the integration and improving the production yield while maintaining the high power generation efficiency of the integrated thin film solar cell. Is also aimed at.

上記問題に鑑み、透明電極層自体で十分な凹凸を形成する方法につき鋭意検討の結果、意外にも、小さい粒径の下地層を形成することで下地層そのものの凹凸は小さいものの、、その上に堆積した透明電極層の凹凸を大きく形成できる場合があること本発明者らは見出し本発明を考案するに到った。   In view of the above problems, as a result of intensive studies on a method for forming sufficient irregularities with the transparent electrode layer itself, surprisingly, although the irregularity of the underlayer itself is small by forming an underlayer with a small particle diameter, The present inventors have found that the unevenness of the transparent electrode layer deposited on the substrate can be greatly formed, and have devised the present invention.

上記課題を解決するために、本発明の薄膜太陽電池用基板は、透光性絶縁基板とその上に堆積された少なくとも酸化亜鉛(ZnO)を含む透明電極層を有し、該透光性絶縁基板は該透明電極層側の界面に二乗平均平方根粗さ(RMS)が5〜50nmである微細な表面凹凸を有し、その凸部は曲面からなることを特徴としている。   In order to solve the above problems, a thin film solar cell substrate of the present invention has a transparent insulating substrate and a transparent electrode layer containing at least zinc oxide (ZnO) deposited thereon, and the transparent insulating layer. The substrate is characterized by having fine surface irregularities having a root mean square roughness (RMS) of 5 to 50 nm at the interface on the transparent electrode layer side, and the convex portions are curved surfaces.

特に、透明電極層が1μm以上の膜厚を有する場合、上記透光性絶縁基板を使用すれば、厚い透明電極層中の内部応力によって生じる透光性絶縁基板からの膜剥がれを抑制する効果が明確である。   In particular, when the transparent electrode layer has a thickness of 1 μm or more, the use of the translucent insulating substrate has the effect of suppressing film peeling from the translucent insulating substrate caused by internal stress in the thick transparent electrode layer. It is clear.

前記の様な微細な表面凹凸を有する透光性絶縁基板上に透明電極層を形成することで、本発明の薄膜太陽電池用基板は、基板の凹凸の指標であるC光源を用いて測定した拡散透過率と全透過率の比であるヘイズ率が、20%以上となり、光閉じ込めを効果的に起こすことが出来るので、薄膜太陽電池の性能を向上することができる。   The thin film solar cell substrate of the present invention was measured using a C light source, which is an index of substrate unevenness, by forming a transparent electrode layer on a transparent insulating substrate having fine surface unevenness as described above. The haze ratio, which is the ratio between the diffuse transmittance and the total transmittance, is 20% or more, and light confinement can be effectively caused. Therefore, the performance of the thin film solar cell can be improved.

さらに上記透光性絶縁基板が主としてガラス等の平滑な表面を有する透光性基体からなる場合、透明電極層側の微細な凹凸は、粒径が10以上で100nm未満である少なくとも酸化珪素からなる微粒子を含む透光性下地層によって形成されることが好ましい。加えて、上記透光性下地層は微粒子を金属酸化物で覆う膜であることが、透光性絶縁基板との接着強度の点から好ましい。   Further, when the translucent insulating substrate is mainly composed of a translucent substrate having a smooth surface such as glass, the fine irregularities on the transparent electrode layer side are composed of at least silicon oxide having a particle size of 10 or more and less than 100 nm. It is preferably formed of a light-transmitting underlayer containing fine particles. In addition, the transparent base layer is preferably a film in which fine particles are covered with a metal oxide from the viewpoint of adhesive strength with the transparent insulating substrate.

また、本発明に係る集積型薄膜太陽電池は、上記薄膜太陽電池用基板上に少なくとも一つの結晶質光電変換ユニット層を備えた複数の光電変換セルを形成するように複数の分離溝によって分離されていて、かつそれらの複数のセルが接続用溝を介して互いに電気的に直列接続されており、結晶質光電変換ユニット層に含まれる結晶質光電変換層が1μm以上の厚さに堆積されていることを特徴としている。   Further, the integrated thin film solar cell according to the present invention is separated by a plurality of separation grooves so as to form a plurality of photoelectric conversion cells having at least one crystalline photoelectric conversion unit layer on the substrate for the thin film solar cell. The plurality of cells are electrically connected in series with each other through the connection groove, and the crystalline photoelectric conversion layer included in the crystalline photoelectric conversion unit layer is deposited to a thickness of 1 μm or more. It is characterized by being.

この様な、本発明の薄膜太陽電池用基板は、透光性基体上に順に、表面凹凸を有する透光性下地層、少なくとも酸化亜鉛を含む透明電極層を低圧熱CVD法を用いて透光性絶縁基板の温度が150℃以上で堆積することで製造することができる。   Such a substrate for a thin-film solar cell of the present invention has a light-transmitting underlayer having surface irregularities and a transparent electrode layer containing at least zinc oxide in order on a light-transmitting substrate using a low-pressure thermal CVD method. It can be manufactured by depositing the conductive insulating substrate at a temperature of 150 ° C. or higher.

本発明によれば、安価な製造方法で透明電極層付き基板の凹凸を効果的に増大させて、光閉込め効果の大きい薄膜太陽電池用基板を提供することができる。また、この薄膜太陽電池用基板を薄膜太陽電池に適用することによって、光閉じ込め効果によって発電電流を増大させて薄膜太陽電池の性能を向上することができる。さらに、凹凸の大きい透明電極層付きの薄膜太陽電池用基板を150℃以上の基体温度で作製することが可能となり、半導体層作製時の透明電極層への熱ダメージを抑制でき、光閉込め効果と低抵抗を両立できるので、薄膜太陽電池の性能と信頼性の向上に効果がある。   ADVANTAGE OF THE INVENTION According to this invention, the unevenness | corrugation of a board | substrate with a transparent electrode layer can be increased effectively with an inexpensive manufacturing method, and the board | substrate for thin film solar cells with a big light confinement effect can be provided. Moreover, by applying this thin film solar cell substrate to a thin film solar cell, the power generation current can be increased by the optical confinement effect, and the performance of the thin film solar cell can be improved. Furthermore, it becomes possible to produce a substrate for a thin film solar cell with a transparent electrode layer having large irregularities at a substrate temperature of 150 ° C. or more, and it is possible to suppress thermal damage to the transparent electrode layer during the production of the semiconductor layer, and to provide a light confinement effect And low resistance are effective in improving the performance and reliability of the thin-film solar cell.

さらに、本発明によれば、集積型薄膜太陽電池の膜剥がれを抑制する効果を発揮でき、かつ高い光電変換効率を有する薄膜太陽電池用基板を安価に提供できる。   Furthermore, according to the present invention, it is possible to provide an inexpensive thin film solar cell substrate that can exhibit the effect of suppressing film peeling of an integrated thin film solar cell and that has high photoelectric conversion efficiency.

発明者らは、薄膜太陽電池用基板の作製を低圧熱CVD法による透明電極層を中心に鋭意検討した。その結果、低圧熱CVD法を用いた透明電極層では下地層の有無によって薄膜太陽電池用基板の凹凸が異なり、特に下地層の有無によって薄膜太陽電池用基板の凹凸の基体温度依存性が大きく異なることを発見した。   The inventors diligently studied the production of a thin-film solar cell substrate centering on a transparent electrode layer formed by a low-pressure thermal CVD method. As a result, in the transparent electrode layer using the low pressure thermal CVD method, the unevenness of the thin film solar cell substrate varies depending on the presence or absence of the underlayer, and the substrate temperature dependency of the unevenness of the thin film solar cell substrate varies greatly depending on the presence or absence of the underlayer. I discovered that.

なお本発明では薄膜太陽電池用基板の凹凸の評価指標として、主にヘイズ率を用いている。ヘイズ率とは、(拡散透過率/全光線透過率)×100[%]で表されるものである(JIS K7136)。   In the present invention, the haze ratio is mainly used as an evaluation index of the unevenness of the thin film solar cell substrate. The haze ratio is expressed by (diffuse transmittance / total light transmittance) × 100 [%] (JIS K7136).

図1は本発明の第一の実施形態である、透明電極層12として低圧熱CVDで酸化亜鉛(ZnO)を形成したときの基体温度に対する、図5に示す薄膜太陽電池用基板1のヘイズ率を示す。この薄膜太陽電池用基板1は透光性絶縁基板11としては透光性基体111であるガラス板111上に、凹凸の有る透光性下地層112として透光性微粒子1121であるシリカ微粒子1121を含むシリコン酸化物が形成されてなる。透明電極層12は、ジエチル亜鉛(DEZ)、水、ジボラン(B26)、水素、アルゴンの混合気体を原料ガスとして用い、低圧熱CVD法で製膜されうる。図1において形成した透明電極層12の膜厚は約1.5μmで一定である。また、ガラス板111上に透光性下地層112のみを形成した透光性絶縁基板11のヘイズ率は0.7%以下であり、光学的に散乱効果はほとんどなかった。 FIG. 1 is a first embodiment of the present invention, and the haze ratio of the substrate 1 for thin film solar cells shown in FIG. 5 with respect to the substrate temperature when zinc oxide (ZnO) is formed as the transparent electrode layer 12 by low pressure thermal CVD. Indicates. This thin-film solar cell substrate 1 has a light-transmitting insulating substrate 11 on a glass plate 111 that is a light-transmitting substrate 111, and silica fine particles 1121 that are light-transmitting fine particles 1121 as a light-transmitting underlayer 112 having irregularities. The silicon oxide containing is formed. The transparent electrode layer 12 can be formed by a low pressure thermal CVD method using a mixed gas of diethyl zinc (DEZ), water, diborane (B 2 H 6 ), hydrogen, and argon as a source gas. The film thickness of the transparent electrode layer 12 formed in FIG. 1 is constant at about 1.5 μm. Moreover, the haze rate of the translucent insulating substrate 11 in which only the translucent underlayer 112 was formed on the glass plate 111 was 0.7% or less, and there was almost no optical scattering effect.

図1からわかるように、透光性下地層112がない場合、酸化亜鉛層12堆積時の透光性絶縁基板11の温度が140℃以上でヘイズ率が急激に増加し、150℃でヘイズ率が最大となって、それ以上の温度では逆にヘイズ率が低下する。これに対して、透光性下地層112がある場合は、酸化亜鉛層12堆積時の透光性絶縁基板11の温度が140℃以上でヘイズ率が急激に増加するのは透光性下地層112がない場合と同様であるが、150℃以上でもヘイズ率は増加しつづける。酸化亜鉛層12堆積時の透光性絶縁基板11の温度が低い場合は、透光性下地層112の有無によるヘイズ率の差は4〜6%でほぼ一定である。しかし、150℃以上では温度の増加とともに透光性下地層112の有無によるヘイズ率の差が著しく大きくなる。このことから、低圧熱CVD法による酸化亜鉛(ZnO)12の堆積では、透光性絶縁基板11の温度が150℃以上の場合に、凹凸の有る透光性下地層112の有無で膜成長様式が異なることが判る。酸化亜鉛層12堆積時の透光性絶縁基板11の温度が150℃以上の場合に、透光性下地層112の凸部において、よりZnOの成長が促進されて、ヘイズ率が大きくなると推定される。   As can be seen from FIG. 1, in the absence of the translucent underlayer 112, the haze ratio increases rapidly when the temperature of the translucent insulating substrate 11 during deposition of the zinc oxide layer 12 is 140 ° C. or higher, and the haze ratio increases at 150 ° C. However, at higher temperatures, the haze rate decreases. On the other hand, when the transparent base layer 112 is present, the haze ratio increases rapidly when the temperature of the transparent insulating substrate 11 when the zinc oxide layer 12 is deposited is 140 ° C. or higher. Similar to the case without 112, the haze rate continues to increase even at 150 ° C. or higher. When the temperature of the translucent insulating substrate 11 at the time of depositing the zinc oxide layer 12 is low, the difference in haze ratio depending on the presence or absence of the translucent underlayer 112 is substantially constant at 4 to 6%. However, at 150 ° C. or higher, the difference in haze rate due to the presence or absence of the light-transmitting underlayer 112 becomes significantly larger as the temperature increases. Therefore, in the deposition of zinc oxide (ZnO) 12 by the low-pressure thermal CVD method, when the temperature of the light-transmitting insulating substrate 11 is 150 ° C. or higher, the film growth pattern is determined depending on the presence or absence of the light-transmitting underlayer 112 having unevenness. Is different. It is estimated that when the temperature of the translucent insulating substrate 11 during deposition of the zinc oxide layer 12 is 150 ° C. or higher, the growth of ZnO is further promoted at the convex portions of the translucent underlayer 112 and the haze ratio is increased. The

この結果、透明電極層12の膜厚を一定としても、ヘイズ率を大幅に増加することができることがわかった。また、比較的ZnOの膜厚が薄い1.5μmにおいて、透光性下地層112がない場合は得られなかった20%以上の高いヘイズ率を得ることができる。   As a result, it was found that the haze ratio can be greatly increased even when the film thickness of the transparent electrode layer 12 is constant. Further, at a relatively thin ZnO film thickness of 1.5 μm, a high haze ratio of 20% or more that could not be obtained without the light-transmitting underlayer 112 can be obtained.

透光性下地層112がある場合は150℃以上の酸化亜鉛層12堆積時の透光性絶縁基板11の温度でもヘイズ率の低下の問題がないので、透光性下地層112がない場合に比べて透明電極層12の製膜時の温度をより高くすることができる。したがって、透明電極層12の上にプラズマCVD法などで堆積する一つ以上の非晶質ユニット2または結晶質光電変換ユニット3製膜時の熱ダメージの影響を低減することができ、薄膜太陽電池5の性能向上、長期信頼性の向上を図ることができる。   When there is a translucent underlayer 112, there is no problem of a decrease in haze rate even at the temperature of the translucent insulating substrate 11 when the zinc oxide layer 12 is deposited at 150 ° C. or higher. In comparison, the temperature at the time of forming the transparent electrode layer 12 can be further increased. Therefore, it is possible to reduce the influence of thermal damage during the formation of one or more amorphous units 2 or crystalline photoelectric conversion units 3 deposited on the transparent electrode layer 12 by plasma CVD or the like. 5 and the long-term reliability can be improved.

図5は、本発明の薄膜太陽電池用基板1の模式的な断面図である。本発明の薄膜太陽電池用基板1は、透光性基体111の上に透光性下地層112を形成してなる透光性絶縁基板11の上に、透明電極層12を堆積してなる。   FIG. 5 is a schematic cross-sectional view of the thin film solar cell substrate 1 of the present invention. The thin film solar cell substrate 1 of the present invention is formed by depositing a transparent electrode layer 12 on a translucent insulating substrate 11 formed by forming a translucent base layer 112 on a translucent substrate 111.

透光性絶縁基板11は、透光性基体111の上に透光性下地層112を形成してなる。   The translucent insulating substrate 11 is formed by forming a translucent base layer 112 on a translucent substrate 111.

なお、透光性絶縁基板11は薄膜太陽電池5を構成した際に光入射側に位置することから、より多くの太陽光を透過させて非晶質または結晶質の光電変換ユニットに吸収させるために、できるだけ透明であることが好ましく、その材料としてはガラス板、透光性プラスチックフィルム等が用いられる。同様の意図から、太陽光の光入射面における光反射ロスを低減させるように、透光性基体111の光入射面に無反射コーティングを行うことが望ましい。   In addition, since the translucent insulating substrate 11 is located on the light incident side when the thin film solar cell 5 is configured, it transmits more sunlight and absorbs it in the amorphous or crystalline photoelectric conversion unit. In addition, it is preferable to be as transparent as possible, and as the material, a glass plate, a translucent plastic film or the like is used. For the same purpose, it is desirable to apply a non-reflective coating to the light incident surface of the translucent substrate 111 so as to reduce the light reflection loss on the light incident surface of sunlight.

透光性下地層112は、ZnO層12の凹凸の成長を促すために、微細な表面凹凸を付与するのが好ましい。ZnOが成長する場合、下地層2の凸部において、よりZnOの成長が促進されてZnOの凹凸が大きくなってヘイズ率が向上すると考えられる。透光性下地層112によって形成される微細な表面凹凸の二乗平均平方根粗さ(RMS)は5nm以上であることが好ましい。なぜなら、RMSが小さすぎれば、平滑な表面に近い形状であるため、表面の微細な凹凸によるZnOの成長性の差が得にくいからである。   The light-transmitting underlayer 112 is preferably provided with fine surface irregularities in order to promote the growth of the ZnO layer 12 irregularities. In the case where ZnO grows, it is considered that the growth of ZnO is further promoted in the convex portions of the underlayer 2 and the unevenness of the ZnO becomes larger and the haze ratio is improved. The root mean square roughness (RMS) of the fine surface irregularities formed by the translucent underlayer 112 is preferably 5 nm or more. This is because if the RMS is too small, the shape is close to a smooth surface, and it is difficult to obtain a difference in ZnO growth due to fine irregularities on the surface.

また、透光性下地層112に形成される微細な凹凸の凸部は曲面からなるのが好ましい。凸部が曲面であることによって、その上に順次堆積される薄膜の結晶成長の際、透光性下地層112の形状を起点とする結晶粒界の増加を防止でき、薄膜太陽電池5の電気特性の低下を抑えられるからである。   In addition, it is preferable that the fine uneven protrusions formed on the light-transmitting underlayer 112 have a curved surface. Since the convex portion is a curved surface, it is possible to prevent an increase in crystal grain boundary starting from the shape of the light-transmitting underlayer 112 during the crystal growth of the thin film sequentially deposited thereon, and the electric power of the thin film solar cell 5 This is because deterioration of characteristics can be suppressed.

図6において、本発明の実施形態による薄膜太陽電池5が模式的な断面図で示されている。この薄膜太陽電池5は、透光性基体111上に順じ堆積された透光性下地層112、透明電極層12、結晶質光電変換ユニット層3、裏面電極層4を含んでいる。そして、結晶質光電変換ユニット層3は、順に堆積された一導電型層31、実質的に真性半導体の結晶質光電変換層32、および逆導電型層33を含んでいる。この薄膜太陽電池5に対しては、光電変換されるべき太陽光(hν)は透光性絶縁基体111側から入射される。   In FIG. 6, the thin film solar cell 5 by embodiment of this invention is shown with typical sectional drawing. The thin-film solar cell 5 includes a translucent underlayer 112, a transparent electrode layer 12, a crystalline photoelectric conversion unit layer 3, and a back electrode layer 4 that are sequentially deposited on a translucent substrate 111. The crystalline photoelectric conversion unit layer 3 includes one conductivity type layer 31, a substantially intrinsic semiconductor crystalline photoelectric conversion layer 32, and a reverse conductivity type layer 33, which are sequentially deposited. Sunlight (hν) to be subjected to photoelectric conversion is incident on the thin film solar cell 5 from the translucent insulating base 111 side.

図6の薄膜太陽電池5においては、透光性基体111および透光性下地層112によって透光性絶縁基板11が構成されているが、単体で構成されていてもよく、透光性絶縁基板11の透明電極層12側に凸部が曲面である微細な凹凸を有していればよい。さらに、この透光性絶縁基板11上に透明電極層12を形成したものが薄膜太陽電池用基板1である。しかし通常、透光性絶縁基板11として用いられる汎用のガラス板やフィルムは平滑な表面を有しているため、研磨する方法では微細な凹凸を均一に有する表面を得ることが難しく、大面積化はより困難である。従って、本発明の剥離防止効果のある微細な表面凹凸を備えた透光性絶縁基板11としては、平滑な表面を有している透光性基体111上に透光性下地層112を形成し、その透光性下地層112によって微細な表面凹凸を付与するのが好ましい。透光性下地層112によって形成される微細な表面凹凸のRMSは5〜50nmであることが好ましく、10〜40nmであることがより好ましい。なぜなら、RMSが小さすぎれば、平滑な表面に近い形状であるため、表面の微細な凹凸による密着性の十分な改善効果が得られず、大きすぎればその上に形成される薄膜太陽電池5に電気的および機械的な欠陥を生じさせる原因となり、太陽電池の光電変換効率が低下するからである。   In the thin-film solar cell 5 of FIG. 6, the translucent insulating substrate 11 is constituted by the translucent base 111 and the translucent underlayer 112. However, the translucent insulating substrate 11 may be constituted alone. It is only necessary that the convex portions of the eleventh transparent electrode layer 12 side have fine irregularities with curved surfaces. Further, the thin film solar cell substrate 1 is obtained by forming the transparent electrode layer 12 on the translucent insulating substrate 11. However, since a general-purpose glass plate or film generally used as the translucent insulating substrate 11 has a smooth surface, it is difficult to obtain a surface having uniform fine irregularities by the polishing method, and the area is increased. Is more difficult. Therefore, as the translucent insulating substrate 11 having fine surface irregularities having the peeling prevention effect of the present invention, the translucent base layer 112 is formed on the translucent substrate 111 having a smooth surface. It is preferable to provide fine surface irregularities by the translucent underlayer 112. The RMS of the fine surface irregularities formed by the translucent underlayer 112 is preferably 5 to 50 nm, and more preferably 10 to 40 nm. This is because if the RMS is too small, the shape is close to a smooth surface, so that a sufficient improvement effect of the adhesion due to the fine irregularities on the surface cannot be obtained, and if it is too large, the thin film solar cell 5 formed thereon This is because electrical and mechanical defects are caused, and the photoelectric conversion efficiency of the solar cell is lowered.

また、透光性絶縁基板11に形成される微細な凹凸の凸部は曲面からなるのが好ましい。凸部が曲面であることによって、その上に順次堆積される薄膜の結晶成長の際、透光性下地層112の形状を起点とする結晶粒界の増加を防止でき、薄膜の電気特性の低下を抑えられるからである。   Moreover, it is preferable that the convex part of the fine unevenness | corrugation formed in the translucent insulating substrate 11 consists of a curved surface. Since the convex portion is a curved surface, an increase in crystal grain boundary starting from the shape of the light-transmitting underlayer 112 can be prevented during crystal growth of the thin film sequentially deposited thereon, and the electrical characteristics of the thin film are deteriorated. This is because it can be suppressed.

本発明において形成される透光性下地層112は、透光性微粒子1121を含むことが好ましい。透光性微粒子1121によって透光性下地層112に凹凸が形成され、その上に堆積する透明電極層12の膜成長を透光性下地層112がない場合に比べて変化させることができる。   The translucent underlayer 112 formed in the present invention preferably includes translucent fine particles 1121. Irregularities are formed in the light-transmitting underlayer 112 by the light-transmitting fine particles 1121, and the film growth of the transparent electrode layer 12 deposited thereon can be changed as compared with the case where the light-transmitting underlayer 112 is not provided.

本発明において形成される透光性下地層112の一例として、少なくとも酸化珪素(SiO2)からなる微粒子を透光性微粒子1121として含むものが挙げられる。SiO2は屈折率が透明導電層12よりも低く、ガラス板等の透光性基体111に近い値を有するからである。また、SiO2は透明度が高いため、光入射側に使用する材料として好適である。さらに、透光性下地層112の屈折率を調整する目的で、SiO2に加え、透光性微粒子1121の材料としては、屈折率がガラスに近い材料である、例えば、シリカ(SiO2)、酸化チタン(TiO2)、酸化アルミニウム(Al2O3)、酸化ジルコニウム(ZrO2)、酸化インジウム錫(ITO)またはフッ化マグネシウム(MgF2)等が用いられ得る。屈折率の値としては、1.4〜2.5のものが好ましい。材料の透明度やガラス板との相性という点では、シリカ微粒子が特に好ましい。なお、透光性下地層112における表面凹凸の二乗平均平方根粗さを5〜50nmとするためには、用いられる微粒子の粒径を10以上、100nm未満とすることが好ましい。また、できるだけ微細な凹凸を均一に形成するために、微粒子の形状は球状であることが好ましい。 As an example of the light-transmitting underlayer 112 formed in the present invention, one containing at least fine particles made of silicon oxide (SiO 2 ) as the light-transmitting fine particles 1121 can be given. This is because SiO 2 has a refractive index lower than that of the transparent conductive layer 12 and has a value close to that of the translucent substrate 111 such as a glass plate. Further, since SiO 2 has high transparency, it is suitable as a material used on the light incident side. Further, for the purpose of adjusting the refractive index of the light-transmitting underlayer 112, in addition to SiO 2 , the material of the light-transmitting fine particles 1121 is a material having a refractive index close to that of glass, for example, silica (SiO 2 ), Titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), indium tin oxide (ITO), magnesium fluoride (MgF 2 ), or the like can be used. The refractive index is preferably 1.4 to 2.5. Silica fine particles are particularly preferable in terms of transparency of the material and compatibility with the glass plate. In order to set the root mean square roughness of the surface irregularities in the light-transmitting underlayer 112 to 5 to 50 nm, the particle size of the fine particles used is preferably 10 or more and less than 100 nm. Further, in order to uniformly form as fine as possible unevenness, the shape of the fine particles is preferably spherical.

透光性微粒子1121を含む透光性下地層112を透光性基体111の表面に形成させる方法は特に限定されないが、溶媒を含んだバインダー形成材料と共に塗布することで透光性バインダー1122を透光性微粒子1121の間に形成する方法が望ましい。透光性微粒子1121同士、および透光性微粒子1121と透光性基体111の間の付着強度を向上させる役割を果たす透光性バインダー1122は接着層として機能するのでは、長期信頼性や光電変換層形成条件(特に温度)に対する耐久性を考慮すると無機材料が好ましい。具体的には、シリコン酸化物、アルミニウム酸化物、チタン酸化物、ジルコニウム酸化物およびタンタル酸化物などの金属酸化物が挙げられる。特に、ガラス板111にSiO2微粒子1121を付着させる場合、同じシリコンを主成分とするシリコン酸化物を接着層である透光性バインダー1122として使用すると、シリサイド結合の形成により付着力が強固であり、透明性も良く、屈折率も基板や微粒子に近いため、好ましい。 A method for forming the light-transmitting base layer 112 including the light-transmitting fine particles 1121 on the surface of the light-transmitting substrate 111 is not particularly limited, but the light-transmitting binder 1122 is made transparent by applying it together with a binder-forming material including a solvent. A method of forming between the light-sensitive fine particles 1121 is desirable. The translucent binder 1122 that plays a role of improving the adhesion strength between the translucent fine particles 1121 and between the translucent fine particles 1121 and the translucent substrate 111 functions as an adhesive layer. In view of durability against the layer formation conditions (particularly temperature), inorganic materials are preferred. Specific examples include metal oxides such as silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, and tantalum oxide. In particular, when the SiO 2 fine particles 1121 are attached to the glass plate 111, if silicon oxide having the same silicon as a main component is used as the translucent binder 1122 as an adhesive layer, the adhesion is strong due to the formation of silicide bonds. It is preferable because it has good transparency and a refractive index close to that of the substrate or fine particles.

上記に挙げたように透光性下地層112は、後述する透明電極層12と同じ物質である必要はない。また、透光性下地層112は結晶相である必要はなく、一部または全部が非晶質相であっても同様に適用可能である。例えば、透光性微粒子1121としてSiO2微粒子、および透光性バインダーバインダー1122としてシリコン酸化物を用いて透光性下地層112を形成した場合、通常、透光性下地層112は非晶質である。 As mentioned above, the transparent base layer 112 does not need to be the same material as the transparent electrode layer 12 described later. Further, the light-transmitting underlayer 112 does not need to be in a crystalline phase, and can be similarly applied even if a part or all of it is in an amorphous phase. For example, when the light-transmitting underlayer 112 is formed using SiO 2 fine particles as the light-transmitting fine particles 1121 and silicon oxide as the light-transmitting binder binder 1122, the light-transmitting underlayer 112 is usually amorphous. is there.

透光性基体111の表面に上記塗布液を塗布する方法としては、ディッピング法、スピンコート法、バーコート法、スプレー法、ダイコート法、ロールコート法、フローコート法等が挙げられるが、透光性微粒子1121を緻密かつ均一に形成するにはロールコート法が好適に用いられる。塗布操作が完了したら、直ちに塗布薄膜を加熱乾燥する。このようにして形成した透光性下地層112膜は、微粒子を含んでいるため、凸部の形状は曲面からなり、凹凸の高さも比較的揃っている。従って、後に形成される透明電極層12、さらに薄膜光電変換ユニットに欠陥を生じさせることが少ない。   Examples of the method for applying the coating solution on the surface of the translucent substrate 111 include a dipping method, a spin coat method, a bar coat method, a spray method, a die coat method, a roll coat method, and a flow coat method. In order to form the fine particles 1121 densely and uniformly, a roll coat method is preferably used. When the coating operation is completed, the coated thin film is immediately dried by heating. Since the translucent underlayer 112 film thus formed contains fine particles, the shape of the convex portion is a curved surface, and the height of the concave and convex portions is relatively uniform. Therefore, the transparent electrode layer 12 to be formed later and the thin film photoelectric conversion unit are less likely to cause defects.

また、透光性基体111としてソーダライムガラス板を用いた場合は、ガラスからのアルカリ成分が透明電極層12や光電変換ユニットへ侵入することを防ぐために、アルカリバリア膜として透光性下地層112を利用することができる。   When a soda lime glass plate is used as the translucent substrate 111, the translucent underlayer 112 is used as an alkali barrier film in order to prevent alkali components from the glass from entering the transparent electrode layer 12 and the photoelectric conversion unit. Can be used.

加えて、透明電極層12を形成した薄膜太陽電池用基板1は、透明薄膜の積層体であるため、光の干渉による色むらが発生しやすくなる。その色むらを防止するために、透光性下地層2と透明電極層102の間には屈折率の異なる薄膜を複数層組合せたものを介在させてもよい。   In addition, since the thin film solar cell substrate 1 on which the transparent electrode layer 12 is formed is a laminate of transparent thin films, uneven color due to light interference is likely to occur. In order to prevent the color unevenness, a combination of a plurality of thin films having different refractive indexes may be interposed between the transparent base layer 2 and the transparent electrode layer 102.

透明電極層12の材料としては、低圧熱CVD法で形成した少なくともZnOを含む透明導電性酸化膜を用いることが好ましい。なぜなら、ZnOは200℃以下の低温でも光閉じ込め効果を有するテクスチャが形成でき、かつ耐プラズマ性の高い材料であるため、結晶質光電変換ユニット3を有する薄膜太陽電池5に好適だからである。例えば、本発明の薄膜太陽電池用基板のZnO透明電極層12は、下地である透光性絶縁基板11の温度である基体温度が150℃以上、圧力5〜1000Pa、原料ガスとしてジエチル亜鉛(DEZ)、水、ドーピングガス、および希釈ガスで形成される。亜鉛の原料ガスとしてはこの他ジメチル亜鉛を用いることもできる。酸素の原料ガスとしては、酸素、二酸化炭素、一酸化炭素、酸化二窒素、二酸化窒素、二酸化硫黄、五酸化二窒素、アルコール類(R(OH))、ケトン類(R(CO)R’)、エーテル類(ROR’)、アルデヒド類(R(COH))、アミド類((RCO)x(NH3-x)、x=1,2,3)、スルホキシド類(R(SO)R’)(ただし、RおよびR’はアルキル基)を用いることもできる。希釈ガスとしては希ガス(He、Ar、Xe、Kr、Rn)、窒素、水素などを用いることができる。ドーピングガスとしてはジボラン(B26)、アルキルアルミ、アルキルガリウムなどを用いることができる。DEZと水の比は1:1から1:5、DEZに対するB26の比は0.05%以上が好ましい。DEZ、水は常温常圧で液体なので、加熱蒸発、バブリング、噴霧などの方法で気化させてから、供給する。ZnOの膜厚を0.5〜3μmにすると、粒径が概ね50〜500nmで、かつ凹凸の高さが概ね20〜200nmの表面凹凸を有する薄膜が得られ、薄膜太陽電池の光閉じ込め効果を得る点で好ましい。なお、ここでいう基体温度とは、透光性絶縁基板11が製膜装置の加熱部と接している面の温度のことをいう。 As a material of the transparent electrode layer 12, it is preferable to use a transparent conductive oxide film containing at least ZnO formed by a low pressure thermal CVD method. This is because ZnO is suitable for the thin film solar cell 5 having the crystalline photoelectric conversion unit 3 because ZnO can form a texture having a light confinement effect even at a low temperature of 200 ° C. or less and has a high plasma resistance. For example, the ZnO transparent electrode layer 12 of the substrate for a thin film solar cell of the present invention has a substrate temperature which is the temperature of the transparent insulating substrate 11 as a base, 150 ° C. or higher, a pressure of 5 to 1000 Pa, and diethyl zinc (DEZ) as a source gas. ), Water, doping gas, and dilution gas. In addition to this, dimethylzinc can also be used as the zinc source gas. Examples of oxygen source gases include oxygen, carbon dioxide, carbon monoxide, dinitrogen oxide, nitrogen dioxide, sulfur dioxide, dinitrogen pentoxide, alcohols (R (OH)), and ketones (R (CO) R ′). , Ethers (ROR ′), aldehydes (R (COH)), amides ((RCO) x (NH 3−x ), x = 1,2,3), sulfoxides (R (SO) R ′) (However, R and R ′ are alkyl groups). As the dilution gas, a rare gas (He, Ar, Xe, Kr, Rn), nitrogen, hydrogen, or the like can be used. As the doping gas, diborane (B 2 H 6 ), alkylaluminum, alkylgallium, or the like can be used. The ratio of DEZ to water is preferably 1: 1 to 1: 5, and the ratio of B 2 H 6 to DEZ is preferably 0.05% or more. Since DEZ and water are liquids at normal temperature and normal pressure, they are vaporized by methods such as heat evaporation, bubbling, and spraying before being supplied. When the film thickness of ZnO is 0.5 to 3 μm, a thin film having surface irregularities with a particle size of approximately 50 to 500 nm and an irregularity height of approximately 20 to 200 nm is obtained, and the light confinement effect of the thin film solar cell is obtained. It is preferable in terms of obtaining. Here, the substrate temperature refers to the temperature of the surface where the translucent insulating substrate 11 is in contact with the heating part of the film forming apparatus.

透明電極層12がZnOを主とする薄膜で構成されている場合、ZnO膜の平均厚さは0.5〜3μmであることが好ましい。なぜなら、ZnO膜が薄すぎれば、光閉じ込め効果に有効に寄与する凹凸を十分に付与すること自体が困難となり、また透明電極として必要な導電性が得にくく、厚すぎればZnO膜自体による光吸収により、ZnOを透過し光電変換ユニットへ到達する光量が減るため、効率が低下するからである。さらに、厚すぎる場合は、製膜時間の増大によりその製膜コストが増大する。   When the transparent electrode layer 12 is composed of a thin film mainly composed of ZnO, the average thickness of the ZnO film is preferably 0.5 to 3 μm. This is because if the ZnO film is too thin, it is difficult to sufficiently provide unevenness that effectively contributes to the light confinement effect, and it is difficult to obtain the necessary conductivity as a transparent electrode, and if it is too thick, the light absorption by the ZnO film itself is difficult. This is because the amount of light that passes through ZnO and reaches the photoelectric conversion unit is reduced, so that the efficiency is lowered. Furthermore, when it is too thick, the film forming cost increases due to an increase in the film forming time.

この透明電極層12は、集積型薄膜太陽電池においては集積化される複数の太陽電池セル16に対応する複数の領域に分離するために、レーザスクライブによって透明電極層分離溝62が形成されてなる。これらの透明電極層分離溝62は、図3の紙面に直交する方向に直線状に延びている。   In the integrated thin film solar cell, the transparent electrode layer 12 is formed with a transparent electrode layer separation groove 62 by laser scribing so as to be separated into a plurality of regions corresponding to a plurality of solar cells 16 to be integrated. . These transparent electrode layer separation grooves 62 extend linearly in a direction perpendicular to the paper surface of FIG.

透明電極層分離溝62が形成された透明電極層12の上には、結晶質光電変換ユニット3が形成される。   The crystalline photoelectric conversion unit 3 is formed on the transparent electrode layer 12 in which the transparent electrode layer separation groove 62 is formed.

図7は、本発明の1つの実施形態による薄膜太陽電池5の模式的な断面図である。図5に示した薄膜太陽電池用基板1の上に、結晶質光電変換ユニット3、裏面電極層4を順次形成してなる。   FIG. 7 is a schematic cross-sectional view of a thin-film solar cell 5 according to one embodiment of the present invention. A crystalline photoelectric conversion unit 3 and a back electrode layer 4 are sequentially formed on the thin film solar cell substrate 1 shown in FIG.

結晶質光電変換ユニット3には一導電型層31、結晶質真性光電変換層32および逆導電型層33が含まれる。図7では結晶質光電変換ユニット3が1ユニットのみ存在する薄膜太陽電池5を示したが、複数の異なる性質の光電変換ユニットを積層してもよい。結晶質光電変換ユニット3としては、太陽光の主波長域(400〜1200nm)に吸収を有するものが好ましく、例えば結晶質シリコン系薄膜を結晶質真性光電変換層32とした結晶質シリコン系光電変換ユニット3としてもよい。また、「シリコン系」の材料には、シリコンに加え、シリコンカーバイドやシリコンゲルマニウムなど、シリコンを含むシリコン合金半導体材料も含む。   The crystalline photoelectric conversion unit 3 includes a one conductivity type layer 31, a crystalline intrinsic photoelectric conversion layer 32, and a reverse conductivity type layer 33. Although FIG. 7 shows the thin film solar cell 5 in which only one unit of the crystalline photoelectric conversion unit 3 is present, a plurality of photoelectric conversion units having different properties may be stacked. As the crystalline photoelectric conversion unit 3, one having absorption in the main wavelength range (400 to 1200 nm) of sunlight is preferable. For example, a crystalline silicon photoelectric conversion using a crystalline silicon thin film as a crystalline intrinsic photoelectric conversion layer 32 is preferable. Unit 3 may be used. In addition to silicon, “silicon-based” materials include silicon alloy semiconductor materials containing silicon such as silicon carbide and silicon germanium.

結晶質シリコン系光電変換ユニット3は、例えばpin型の順にプラズマCVD法により各半導体層を積層して形成される。具体的には、例えば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型微結晶シリコン系層を一導電型層31とし、光電変換層となる真性結晶質シリコン層32、および導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型微結晶シリコン系層を逆導電型層33としてこの順に堆積すればよい。しかし、これら各層は上記に限定されず、例えばp型層として非晶質シリコン系膜を用いてもよい。またp型層として、非晶質または微結晶のシリコンカーバイド、シリコンゲルマニウムなどの合金材料を用いてもよい。なお、導電型(p型、n型)微結晶シリコン系層の膜厚は3nm以上100nm以下が好ましく、5nm以上50nm以下がさらに好ましい。   The crystalline silicon-based photoelectric conversion unit 3 is formed by stacking each semiconductor layer by a plasma CVD method in the order of, for example, a pin type. Specifically, for example, a p-type microcrystalline silicon-based layer doped with 0.01 atomic% or more of boron, which is a conductivity type determining impurity atom, is used as one conductivity type layer 31, and an intrinsic crystalline silicon layer 32 serving as a photoelectric conversion layer. And an n-type microcrystalline silicon-based layer doped with 0.01 atom% or more of phosphorus, which is a conductivity type determining impurity atom, may be deposited as the reverse conductivity type layer 33 in this order. However, these layers are not limited to the above. For example, an amorphous silicon film may be used as the p-type layer. Further, an alloy material such as amorphous or microcrystalline silicon carbide or silicon germanium may be used for the p-type layer. Note that the film thickness of the conductive (p-type, n-type) microcrystalline silicon-based layer is preferably 3 nm to 100 nm, and more preferably 5 nm to 50 nm.

結晶質真性光電変換層32である真性結晶質シリコン層42は、プラズマCVD法によって基体温度300℃以下で形成することが好ましい。低温で形成することにより、結晶粒界や粒内における欠陥を終端させて不活性化させる水素原子を多く含ませることが好ましい。具体的には、この層の水素含有量は1〜30原子%の範囲内にあるのが好ましい。この層は、導電型決定不純物原子の密度が1×1018cm-3以下である実質的に真性半導体である薄膜として形成されることが好ましい。さらに、真性結晶質シリコン層に含まれる結晶粒の多くは、透明電極層12側から柱状に延びて成長しており、その膜面に対して(110)の優先配向面を有することが好ましい。この真性結晶質シリコン層の膜厚は光吸収の観点から1μm以上が好ましく、結晶質薄膜の内部応力による剥離を抑える観点から10μm以下が好ましい。ただし、結晶質光電変換ユニット3としては、太陽光の主波長域(400〜1200nm)に吸収を有するものが好ましいため、真性結晶質シリコン層に代えて、合金材料である結晶質シリコンカーバイド層(例えば10原子%以下の炭素を含有する結晶質シリコンからなる結晶質シリコンカーバイド層)や結晶質シリコンゲルマニウム層(例えば30原子%以下のゲルマニウムを含有する結晶質シリコンからなる結晶質シリコンゲルマニウム層)を形成してもよい。 The intrinsic crystalline silicon layer 42 which is the crystalline intrinsic photoelectric conversion layer 32 is preferably formed at a substrate temperature of 300 ° C. or less by a plasma CVD method. By forming at a low temperature, it is preferable to include many hydrogen atoms that terminate and inactivate defects in the grain boundaries and grains. Specifically, the hydrogen content of this layer is preferably in the range of 1-30 atomic%. This layer is preferably formed as a thin film that is substantially an intrinsic semiconductor having a conductivity type determining impurity atom density of 1 × 10 18 cm −3 or less. Further, most of the crystal grains contained in the intrinsic crystalline silicon layer grow in a columnar shape from the transparent electrode layer 12 side, and preferably have a (110) preferential orientation plane with respect to the film surface. The thickness of the intrinsic crystalline silicon layer is preferably 1 μm or more from the viewpoint of light absorption, and preferably 10 μm or less from the viewpoint of suppressing peeling due to internal stress of the crystalline thin film. However, since the crystalline photoelectric conversion unit 3 preferably has absorption in the main wavelength region (400 to 1200 nm) of sunlight, instead of the intrinsic crystalline silicon layer, a crystalline silicon carbide layer (alloy material) ( For example, a crystalline silicon carbide layer made of crystalline silicon containing 10 atomic% or less of carbon or a crystalline silicon germanium layer (for example, a crystalline silicon germanium layer made of crystalline silicon containing 30 atomic% or less of germanium) It may be formed.

こうして積層された結晶質光電変換ユニット層3は、透明電極層12の場合と同様にレーザスクライブによって形成された半導体層分割溝である接続溝63によって複数の短冊状の半導体領域に分割される。これらの接続溝63も図3の紙面に垂直な方向に直線状に延びている。   The crystalline photoelectric conversion unit layer 3 laminated in this way is divided into a plurality of strip-shaped semiconductor regions by connection grooves 63 which are semiconductor layer dividing grooves formed by laser scribing as in the case of the transparent electrode layer 12. These connection grooves 63 also extend linearly in a direction perpendicular to the paper surface of FIG.

レーザパターニングされた1以上の光電変換ユニットの上には、裏面電極層4が形成される。   A back electrode layer 4 is formed on the one or more photoelectric conversion units subjected to laser patterning.

裏面電極層4としては、Al、Ag、Au、Cu、PtおよびCrから選ばれる少なくとも一つの材料を、少なくとも一層の金属薄膜としてスパッタ法または蒸着法により形成することが好ましい。また、1以上の光電変換ユニットとの間に、ITO、SnO2、ZnO等の導電性酸化物層を裏面電極層4の一部として形成するほうが好ましい。この導電性酸化物層は、1以上の光電変換ユニットと裏面電極層4との間の密着性を高めるとともに、裏面電極層4の光反射率を高め、さらに、光電変換ユニットの化学変化を防止する機能を有する。 As the back electrode layer 4, it is preferable to form at least one material selected from Al, Ag, Au, Cu, Pt and Cr as at least one metal thin film by sputtering or vapor deposition. Further, it is preferable to form a conductive oxide layer such as ITO, SnO 2 , or ZnO as a part of the back electrode layer 4 between one or more photoelectric conversion units. This conductive oxide layer enhances the adhesion between one or more photoelectric conversion units and the back electrode layer 4, increases the light reflectivity of the back electrode layer 4, and further prevents chemical changes of the photoelectric conversion unit. It has the function to do.

裏面電極層4は1以上の光電変換ユニットと同様のレーザスクライブによってパターニングされ、1以上の光電変換ユニットとともに裏面電極層4を局所的に吹き飛ばすことによって複数の裏面電極層分離溝64が形成される。これによって複数の短冊状の太陽電池セル61が形成され、それらのセル61は接続用溝63を介して互いに電気的に直列接続されていることになる。   The back electrode layer 4 is patterned by laser scribing similar to that of one or more photoelectric conversion units, and a plurality of back electrode layer separation grooves 64 are formed by locally blowing the back electrode layer 4 together with the one or more photoelectric conversion units. . As a result, a plurality of strip-shaped solar cells 61 are formed, and these cells 61 are electrically connected in series with each other through the connection groove 63.

図8は、本発明の1つのの実施形態による薄膜太陽電池5の模式的な断面図である。薄膜太陽電池用基板1の上に非晶質光電変換ユニット2と結晶質光電変換ユニット3を順に積層したタンデム型薄膜太陽電池である。非晶質光電変換ユニット2は、前方一導電型層、真性非晶質光電変換層および前方逆導電型層が含まれる。非晶質光電変換ユニット2として非晶質シリコン系材料を選べば、約360〜800nmの光に対して感度を有し、結晶質光電変換ユニット3に結晶質シリコン系材料を選べばそれより長い約1200nmまでの光に対して感度を有する。したがって、光入射側から非晶質シリコン系光電変換ユニット2、結晶質シリコン系光電変換ユニット3の順で配置される薄膜太陽電池5は、入射光をより広い範囲で有効利用可能な薄膜太陽電池5となる。結晶質光電変換ユニット3は、上述のの実施形態と同様に形成する。この場合、透明電極層12上に形成される1以上の光電変換ユニット部分の全体膜厚が厚くなるため、内部応力が増大する。従って、このような結晶質光電変換ユニット3を含むタンデム薄膜太陽電池にも、本発明の薄膜太陽電池用基板1は好ましい。   FIG. 8 is a schematic cross-sectional view of a thin-film solar cell 5 according to one embodiment of the present invention. This is a tandem-type thin film solar cell in which an amorphous photoelectric conversion unit 2 and a crystalline photoelectric conversion unit 3 are sequentially laminated on a thin film solar cell substrate 1. The amorphous photoelectric conversion unit 2 includes a front one conductivity type layer, an intrinsic amorphous photoelectric conversion layer, and a front reverse conductivity type layer. If an amorphous silicon-based material is selected as the amorphous photoelectric conversion unit 2, it has sensitivity to light of about 360 to 800 nm, and if a crystalline silicon-based material is selected for the crystalline photoelectric conversion unit 3, it is longer than that. Sensitive to light up to about 1200 nm. Therefore, the thin film solar cell 5 arranged in the order of the amorphous silicon photoelectric conversion unit 2 and the crystalline silicon photoelectric conversion unit 3 from the light incident side is a thin film solar cell that can effectively use incident light in a wider range. 5 The crystalline photoelectric conversion unit 3 is formed in the same manner as in the above-described embodiment. In this case, since the entire film thickness of one or more photoelectric conversion unit portions formed on the transparent electrode layer 12 is increased, internal stress increases. Therefore, the thin film solar cell substrate 1 of the present invention is also preferable for a tandem thin film solar cell including such a crystalline photoelectric conversion unit 3.

非晶質光電変換ユニット2は、例えばpin型の順にプラズマCVD法により各半導体層を積層して形成される。具体的には、例えば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型非晶質シリコン系層、光電変換層となる真性非晶質シリコン系層、および導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型非晶質シリコン系層をこの順に堆積すればよい。しかし、これら各層は上記に限定されず、例えばp型層として微結晶シリコン系膜を用いてもよい。またp型層として、非晶質または微結晶のシリコンカーバイド、シリコンナイトライド、シリコンオキサイド、シリコンゲルマニウムなどの合金材料を用いてもよい。真性非晶質光電変換層としては、シリコンカーバイド、シリコンゲルマニウムなどの合金材料を用いてもよい。真性非晶質シリコン系層としては、膜中の欠陥密度を低減して薄膜太陽電池の再結合電流損失を低減するために、膜中に水素を2〜15%含むことが望ましい。また、真性非晶質シリコン系層は、光照射による劣化を低減するために、膜厚50nm以上500nm以下が望ましい。n型層としては、微結晶シリコン系膜を用いてもよい。なお、導電型(p型、n型)微結晶シリコン系層または非晶質シリコン系層の膜厚は3nm以上100nm以下が好ましく、5nm以上50nm以下がさらに好ましい。   The amorphous photoelectric conversion unit 2 is formed by stacking each semiconductor layer by a plasma CVD method in the order of, for example, a pin type. Specifically, for example, a p-type amorphous silicon-based layer doped with 0.01 atomic% or more of boron, which is a conductivity-determining impurity atom, an intrinsic amorphous silicon-based layer that becomes a photoelectric conversion layer, and a conductivity-type determination An n-type amorphous silicon-based layer doped with 0.01 atomic% or more of phosphorus, which is an impurity atom, may be deposited in this order. However, these layers are not limited to the above. For example, a microcrystalline silicon film may be used as the p-type layer. Further, an alloy material such as amorphous or microcrystalline silicon carbide, silicon nitride, silicon oxide, silicon germanium, or the like may be used for the p-type layer. As the intrinsic amorphous photoelectric conversion layer, an alloy material such as silicon carbide or silicon germanium may be used. The intrinsic amorphous silicon-based layer preferably contains 2 to 15% of hydrogen in the film in order to reduce the defect density in the film and reduce the recombination current loss of the thin film solar cell. In addition, the intrinsic amorphous silicon-based layer desirably has a thickness of 50 nm to 500 nm in order to reduce deterioration due to light irradiation. A microcrystalline silicon film may be used as the n-type layer. Note that the film thickness of the conductive type (p-type, n-type) microcrystalline silicon-based layer or amorphous silicon-based layer is preferably 3 nm to 100 nm, and more preferably 5 nm to 50 nm.

以下、本発明を実施例に基づいて詳細に説明するが、本発明はその趣旨を超えない限り以下の記載例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to the following description examples, unless the meaning is exceeded.

(実施例1)
実施例1として図6に示されるような薄膜太陽電池5を作製した。
(Example 1)
As Example 1, a thin film solar cell 5 as shown in FIG.

透光性基体111として厚み0.7mm、125mm角のガラス基板を用いその上にSiO2微粒子1121を含む透光性下地層112を形成した。透光性下地層112を形成する際に用いた塗布液は、粒径が50nmの球状シリカ分散液、水、エチルセロソルブの混合液にテトラエトキシシランを加え、更に塩酸を添加してテトラエトキシシランを加水分解させたものを用いた。塗布液を印刷機にてガラス基板111上に塗布した後、90℃で30分乾燥し、その後350℃で5分加熱することにより、表面に微細な凹凸が形成された透光性絶縁基板11を得た。この透光性絶縁基板11の表面を原子間力顕微鏡(AFM)で観察したところ、微粒子の形状を反映し、凸部が曲面からなる凹凸が確認された。 A glass substrate having a thickness of 0.7 mm and a 125 mm square was used as the light-transmitting substrate 111, and a light-transmitting underlayer 112 including SiO 2 fine particles 1121 was formed thereon. The coating liquid used for forming the light-transmitting underlayer 112 is tetraethoxysilane added to a mixture of a spherical silica dispersion having a particle size of 50 nm, water, and ethyl cellosolve, and then hydrochloric acid is added. The hydrolyzed product was used. The coating liquid is applied on the glass substrate 111 with a printing machine, dried at 90 ° C. for 30 minutes, and then heated at 350 ° C. for 5 minutes, whereby the light-transmitting insulating substrate 11 having fine irregularities formed on the surface. Got. When the surface of the translucent insulating substrate 11 was observed with an atomic force microscope (AFM), irregularities in which the convex portions were curved reflecting the shape of the fine particles were confirmed.

この条件で製膜された透光性下地層112のRMSは7.2nmであった。なお、本発明におけるRMSは、一辺が5μmの正方形領域を観察した原子間力顕微鏡(AFM)像から求めている(ISO 4287/1)。このAFM測定にはNano−Rシステム(Pacific Nanotechnology社製)のノンコンタクトモードが用いられた。   The RMS of the light-transmitting underlayer 112 formed under these conditions was 7.2 nm. In addition, RMS in this invention is calculated | required from the atomic force microscope (AFM) image which observed the square area | region whose one side is 5 micrometers (ISO 4287/1). The non-contact mode of Nano-R system (manufactured by Pacific Nanotechnology) was used for this AFM measurement.

得られた透光性下地層112の上にZnOからなる透明電極層12を形成した。この透明電極層12は、透光性絶縁基板11の基体温度を180℃に設定し、原料ガスとしてジエチルジンク(DEZ)と水、ドーパントガスとしてジボランガスを供給し、減圧条件下CVD法にて形成している。得られたZnO膜からなる透明電極層12の厚さは1.6μmであり、シート抵抗は8Ω/□程度、ヘイズ率は20%であった。ヘイズ率とは、(拡散透過率/全光線透過率)×100で表されるものである(JIS K7136)。また、こうして得られた薄膜太陽電池用基板1の全光線透過率を、ガラス側から光を入射し、分光光度計にて測定した。波長400nm〜1200nmの範囲で80%以上の透過率を示した。   A transparent electrode layer 12 made of ZnO was formed on the obtained light-transmitting base layer 112. The transparent electrode layer 12 is formed by a CVD method with a base temperature of the translucent insulating substrate 11 set to 180 ° C., diethyl zinc (DEZ) and water as source gases, and diborane gas as a dopant gas. doing. The thickness of the transparent electrode layer 12 made of the obtained ZnO film was 1.6 μm, the sheet resistance was about 8Ω / □, and the haze ratio was 20%. The haze ratio is expressed by (diffuse transmittance / total light transmittance) × 100 (JIS K7136). Further, the total light transmittance of the thin film solar cell substrate 1 thus obtained was measured with a spectrophotometer by entering light from the glass side. A transmittance of 80% or more was exhibited in the wavelength range of 400 nm to 1200 nm.

得られた透明電極層12はレーザスクライブで幅約100μmの透明電極層分離溝62を形成することによって、約10mmの幅Wおよび10cmの長さLを有する短冊状透明電極に分離される。スクライブ後の残滓は水を用いた超音波洗浄で除去された。   The obtained transparent electrode layer 12 is separated into strip-shaped transparent electrodes having a width W of about 10 mm and a length L of 10 cm by forming a transparent electrode layer separation groove 62 having a width of about 100 μm by laser scribing. Residues after scribing were removed by ultrasonic cleaning using water.

この透明電極層12の上に、厚さ15nmのp型微結晶シリコン層31、厚さ1.5μmの真性結晶質シリコン光電変換層32、及び厚さ15nmのn型微結晶シリコン層33からなる結晶質シリコン光電変換層ユニット3を順次プラズマCVD法で形成した。   On the transparent electrode layer 12, a p-type microcrystalline silicon layer 31 having a thickness of 15 nm, an intrinsic crystalline silicon photoelectric conversion layer 32 having a thickness of 1.5 μm, and an n-type microcrystalline silicon layer 33 having a thickness of 15 nm are formed. Crystalline silicon photoelectric conversion layer units 3 were sequentially formed by a plasma CVD method.

レーザスクライブにて接続溝63を形成後、裏面電極層4として厚さ90nmのAlドープされたZnO121と厚さ200nmのAg122をスパッタ法にて順次形成した。裏面電極層分離溝64をレーザスクライブした後に超音波洗浄したところ、基板上の膜剥がれ領域は確認されなかった。なお、集積化された後の直列接続されたセルの段数は10段であった。   After the connection groove 63 was formed by laser scribing, 90 nm thick Al-doped ZnO 121 and 200 nm thick Ag 122 were sequentially formed as the back electrode layer 4 by sputtering. When the back electrode layer separation groove 64 was subjected to ultrasonic cleaning after laser scribing, no film peeling region on the substrate was confirmed. The number of cells connected in series after integration was ten.

以上のようにして得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりの開放電圧(Voc)が0.547V、短絡電流密度(Jsc)が23.1mA/cm2、曲線因子(F.F.)が72.8%、そして変換効率が9.2%であった。 When the integrated silicon thin film solar cell 6 obtained as described above was irradiated with AM 1.5 light at a light amount of 100 mW / cm 2 and the output characteristics were measured, the open circuit voltage (Voc) per stage was 0. .547V, short circuit current density (Jsc) of 23.1 mA / cm 2 , fill factor (FF) of 72.8%, and conversion efficiency of 9.2%.

(実施例2)
実施例2においても、実施例1と同様に集積型結晶質シリコン系薄膜太陽電池6を作製した。ただし、実施例1と異なるのは、ガラス基板111として910mm×455mmの面積を有し、かつ厚みが4mmのものを用いた点である。この条件で製膜された透光性下地層112のRMSは9.8nmであった。
(Example 2)
Also in Example 2, an integrated crystalline silicon thin film solar cell 6 was produced in the same manner as in Example 1. However, the difference from Example 1 is that a glass substrate 111 having an area of 910 mm × 455 mm and a thickness of 4 mm was used. The RMS of the light-transmitting underlayer 112 formed under these conditions was 9.8 nm.

裏面電極層分離溝64をレーザスクライブした後に超音波洗浄したところ、基板上の膜剥がれ領域は確認されなかった。なお、集積化された後の直列接続されたセルの段数は48段であった。   When the back electrode layer separation groove 64 was subjected to ultrasonic cleaning after laser scribing, no film peeling region on the substrate was confirmed. The number of cells connected in series after integration was 48.

こうして作製された実施例2の集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.541V、Jscが23.6mA/cm2、F.F.が71.7%、そして変換効率が9.2%であった。 When the integrated silicon thin film solar cell 6 of Example 2 manufactured in this way was irradiated with AM 1.5 light at a light quantity of 100 mW / cm 2 and the output characteristics were measured, Voc per stage was 0.541 V, Jsc Of 23.6 mA / cm 2 , F.I. F. Was 71.7%, and the conversion efficiency was 9.2%.

実施例2で作製された集積型薄膜太陽電池6は、実施例1よりも大きな面積にも関わらず、変換効率を維持できていた。   The integrated thin-film solar cell 6 produced in Example 2 was able to maintain the conversion efficiency despite the larger area than Example 1.

(実施例3)
実施例3においては、実施例2とほぼ同様に集積型シリコン系薄膜太陽電池6を作製した。ただし、透光性下地層112を形成する際、用いたSiO2微粒子1121の粒径を80nmとし、意図的にRMSを大きくした点が異なる。この条件で製膜された透光性下地層112のRMSは19.3nmであった。また、裏面電極層分離溝64をレーザスクライブした後に超音波洗浄したところ、基板上の膜剥がれ領域は確認されなかった。
(Example 3)
In Example 3, an integrated silicon thin film solar cell 6 was fabricated in substantially the same manner as in Example 2. However, the difference is that when forming the light-transmitting underlayer 112, the SiO 2 fine particles 1121 used have a particle diameter of 80 nm and the RMS is intentionally increased. The RMS of the light-transmitting underlayer 112 formed under these conditions was 19.3 nm. Further, when the back electrode layer separation groove 64 was subjected to ultrasonic cleaning after laser scribing, no film peeling region on the substrate was confirmed.

得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.532V、Jscが24.3mA/cm2、F.F.が70.5%、そして変換効率が9.1%であった。 When the output characteristics were measured by irradiating the obtained integrated silicon thin film solar cell 6 with AM1.5 light at a light quantity of 100 mW / cm 2 , Voc per stage was 0.532 V, and Jsc was 24.3 mA / cm 2 , F.M. F. Was 70.5%, and the conversion efficiency was 9.1%.

(実施例4)
実施例4においては、実施例2とほぼ同様に集積型シリコン系薄膜太陽電池6を作製した。ただし、透光性下地層112を形成する際、用いたSiO2微粒子1121の粒径を90nmとし、意図的にRMSを大きくした点が異なる。加えて、結晶質真性シリコン光電変換層32の膜厚を3.0μmとした。この条件で製膜された透光性下地層112のRMSは23.0nmであった。また、裏面電極層分離溝64をレーザスクライブした後に超音波洗浄したところ、結晶質真性シリコン光電変換層32を厚くしたにも関わらず、基板上の膜剥がれ領域は確認されなかった。
Example 4
In Example 4, an integrated silicon thin film solar cell 6 was produced in substantially the same manner as in Example 2. However, the difference is that when forming the light-transmitting underlayer 112, the particle diameter of the SiO 2 fine particles 1121 used is 90 nm and the RMS is intentionally increased. In addition, the thickness of the crystalline intrinsic silicon photoelectric conversion layer 32 was set to 3.0 μm. The RMS of the light-transmitting underlayer 112 formed under these conditions was 23.0 nm. Further, when the back electrode layer separation groove 64 was subjected to ultrasonic cleaning after laser scribing, the film peeling region on the substrate was not confirmed even though the crystalline intrinsic silicon photoelectric conversion layer 32 was thickened.

得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.529V、Jscが27.6mA/cm2、F.F.が70.0%、そして変換効率が10.2%であった。 When the output characteristics were measured by irradiating the obtained integrated silicon thin film solar cell 6 with AM1.5 light at a light quantity of 100 mW / cm 2 , Voc per stage was 0.529 V, and Jsc was 27.6 mA / cm 2 , F.M. F. Was 70.0%, and the conversion efficiency was 10.2%.

(実施例5)
実施例5においては、実施例3と同様の薄膜太陽電池用基板1を用いて集積型タンデム薄膜太陽電池6を作製した。レーザスクライブされた薄膜太陽電池用基板1の透明電極層12上に、プラズマCVD法により、厚さ15nmのp型非晶質シリコン層、厚さ350nmの真性非晶質シリコン光電変換層、及び厚さ15nmのn型微結晶シリコン層からなる非晶質シリコン光電変換ユニット2を形成し、続いて実施例1と同様に結晶質シリコン光電変換ユニット3を形成した。この時の真性結晶質シリコン光電変換層32は2.0μmの膜厚とした。その後、レーザスクライブにより接続溝63を形成し、裏面電極層4として厚さ90nmのAlドープされたZnO121と厚さ200nmのAg122をスパッタ法にて順次形成し、裏面電極層分離溝64を形成して集積型タンデムシリコン系薄膜太陽電池6を得た。
(Example 5)
In Example 5, an integrated tandem thin film solar cell 6 was produced using the same thin film solar cell substrate 1 as in Example 3. A 15 nm thick p-type amorphous silicon layer, a 350 nm thick intrinsic amorphous silicon photoelectric conversion layer, and a thickness are formed on the transparent electrode layer 12 of the laser-scribing thin film solar cell substrate 1 by plasma CVD. An amorphous silicon photoelectric conversion unit 2 made of an n-type microcrystalline silicon layer having a thickness of 15 nm was formed, and then a crystalline silicon photoelectric conversion unit 3 was formed in the same manner as in Example 1. At this time, the intrinsic crystalline silicon photoelectric conversion layer 32 has a thickness of 2.0 μm. Thereafter, a connection groove 63 is formed by laser scribing, and a 90 nm thick Al-doped ZnO 121 and a 200 nm thick Ag 122 are sequentially formed as the back electrode layer 4 by sputtering to form a back electrode layer separation groove 64. Thus, an integrated tandem silicon thin film solar cell 6 was obtained.

得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが1.38V、Jscが13.1mA/cm2、F.F.が71.2%、そして変換効率が12.9%であった。 When the output characteristics were measured by irradiating the obtained integrated silicon thin film solar cell 6 with AM1.5 light at a light quantity of 100 mW / cm 2 , Voc per stage was 1.38 V, Jsc was 13.1 mA / cm 2 , F.M. F. Was 71.2%, and the conversion efficiency was 12.9%.

(比較例1)
比較例1は、実施例1とほぼ同様に厚み0.7mm、125mm角のガラス基板111上に直接ZnOからなる透明電極層12を形成した。実施例1と比較すると、透光性下地層112が存在しない点が異なる。ガラス基板111の表面のRMSは、0.5nm以下であった。
(Comparative Example 1)
In Comparative Example 1, the transparent electrode layer 12 made of ZnO was directly formed on a glass substrate 111 having a thickness of 0.7 mm and a 125 mm square in substantially the same manner as in Example 1. Compared to Example 1, the difference is that the translucent underlayer 112 does not exist. The RMS of the surface of the glass substrate 111 was 0.5 nm or less.

実施例1と同様にレーザスクライブによって透明電極層分離溝62を形成した透明電極層12の上に、実施例1と同様の厚さ15nmのp型微結晶シリコン層31、厚さ1.5μmの真性結晶質シリコン光電変換層32、及び厚さ15nmのn型微結晶シリコン層33からなる結晶質シリコン光電変換層ユニット3を順次プラズマCVD法で形成した。その後、接続溝63を形成し、裏面電極層4として厚さ90nmのAlドープされたZnO121と厚さ200nmのAg122をスパッタ法にて順次形成した。裏面電極層4形成後、レーザスクライブにより裏面電極層分離溝64を形成し、超音波洗浄を実施したところ、透明電極層分離溝62近傍にところどころ膜剥がれが発生した。剥がれた面積の合計は、集積型薄膜太陽電池6の全面積に対して約6%に相当していた。また、膜が剥がれている部分は導電性が確認されなかったことから、膜剥がれはガラス基板111と透明電極層12の界面で生じていることが判明した。   Similar to Example 1, a 15-nm-thick p-type microcrystalline silicon layer 31 having a thickness of 1.5 μm is formed on the transparent electrode layer 12 on which the transparent electrode layer separation groove 62 is formed by laser scribing. A crystalline silicon photoelectric conversion layer unit 3 including an intrinsic crystalline silicon photoelectric conversion layer 32 and an n-type microcrystalline silicon layer 33 having a thickness of 15 nm was sequentially formed by a plasma CVD method. After that, a connection groove 63 was formed, and 90 nm thick Al-doped ZnO 121 and 200 nm thick Ag 122 were sequentially formed as the back electrode layer 4 by sputtering. After the back electrode layer 4 was formed, the back electrode layer separation groove 64 was formed by laser scribing and ultrasonic cleaning was performed. As a result, peeling of the film occurred in the vicinity of the transparent electrode layer separation groove 62. The total peeled area corresponded to about 6% of the total area of the integrated thin film solar cell 6. Moreover, since the conductivity was not confirmed in the portion where the film was peeled off, it was found that the film peeling occurred at the interface between the glass substrate 111 and the transparent electrode layer 12.

一般に基板上にプラズマCVD法でシリコン薄膜を堆積した場合、その薄膜中には残留歪みによる内部応力が存在する。特に、結晶質シリコン層内では原子が規則的に配列されているので、残留歪みが緩和しにくい傾向にある。したがって、超音波洗浄時の振動のように外的な機械的力が付加された場合に、その外的な力と内部応力とが重畳して結晶質光電変換ユニット3と透明電極層12との界面近傍で剥離しようとする力が作用すると考えられる。しかし、透明電極層12の表面には比較的大きなテクスチャがあるため、アンカー効果による密着力は比較的強い。そこで、低温形成のために平滑な表面を有するガラス基板111との密着力が弱い透明電極層12との間で剥離が生じやすいものと考えられる。   Generally, when a silicon thin film is deposited on a substrate by plasma CVD, internal stress due to residual strain exists in the thin film. In particular, since the atoms are regularly arranged in the crystalline silicon layer, residual strain tends to be difficult to relax. Therefore, when an external mechanical force is applied, such as vibration during ultrasonic cleaning, the external force and the internal stress are superimposed so that the crystalline photoelectric conversion unit 3 and the transparent electrode layer 12 It is considered that a force for peeling near the interface acts. However, since the surface of the transparent electrode layer 12 has a relatively large texture, the adhesion due to the anchor effect is relatively strong. Therefore, it is considered that peeling is likely to occur between the transparent electrode layer 12 having weak adhesion to the glass substrate 111 having a smooth surface for low temperature formation.

得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.499V、Jscが22.7mA/cm2、F.F.が67.1%、そして変換効率が7.6%であった。 When the output characteristics were measured by irradiating the obtained integrated silicon thin film solar cell 6 with AM 1.5 light at a light quantity of 100 mW / cm 2 , Voc per stage was 0.499 V, and Jsc was 22.7 mA / cm 2 , F.M. F. Was 67.1%, and the conversion efficiency was 7.6%.

(比較例2)
比較例2においては、実施例2とほぼ同様に集積型結晶質シリコン系薄膜太陽電池6を作製した。ただし、比較例1と同様にガラス基板111上に透明電極層12を直接形成した点が異なる。従って、透光性絶縁基板11としての表面のRMSは、0.5nm以下である。
(Comparative Example 2)
In Comparative Example 2, an integrated crystalline silicon thin film solar cell 6 was fabricated in substantially the same manner as in Example 2. However, the difference is that the transparent electrode layer 12 is directly formed on the glass substrate 111 as in Comparative Example 1. Therefore, the RMS of the surface as the translucent insulating substrate 11 is 0.5 nm or less.

比較例2においては、接続溝63を形成した時から数ヶ所の膜剥がれが発生しており、裏面電極層4に分離溝64を形成した後では、集積型薄膜太陽電池6の全面積に対して約15%に相当する面積が剥がれていた。   In Comparative Example 2, film peeling occurred at several places from the time when the connection groove 63 was formed. After the separation groove 64 was formed in the back electrode layer 4, the total area of the integrated thin film solar cell 6 was reduced. The area corresponding to about 15% was peeled off.

得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.473V、Jscが20.9mA/cm2、F.F.が65.7%、そして変換効率が6.5%であった。 When the output characteristics were measured by irradiating the obtained integrated silicon thin film solar cell 6 with AM1.5 light at a light quantity of 100 mW / cm 2 , Voc per stage was 0.473 V, and Jsc was 20.9 mA / cm 2 , F.M. F. Of 65.7% and a conversion efficiency of 6.5%.

この比較例2では、比較例1と比較してガラス基板111のサイズが大きくなったことに加え、その厚みが厚くなったことにより、それ自身の柔軟性が小さくなったため、ガラス基板111と透明電極層12との間に生じる歪みが増加した結果を反映したものと考えられる。多数の膜剥がれによって、太陽電池特性の全てのパラメータが低下した。   In Comparative Example 2, in addition to the increase in the size of the glass substrate 111 as compared with Comparative Example 1, the thickness of the glass substrate 111 is increased, so that the flexibility of the glass substrate 111 is reduced. It is considered that the result of an increase in strain generated between the electrode layer 12 and the electrode layer 12 is reflected. All the parameters of the solar cell characteristics were reduced by numerous film peeling.

(比較例3)
比較例3においては、実施例2とほぼ同様に集積型結晶質シリコン系薄膜太陽電池6を作製した。ただし、透光性下地層112を形成する際、微粒子成分を添加せずに透光性バインダー1122の材料である金属酸化物のみによる層を形成した点が異なる。この条件で製膜された透光性基体111表面のRMSは、2.8nmであった。さらに集積型薄膜太陽電池6形成後の膜剥がれの割合は、約10%であった。
(Comparative Example 3)
In Comparative Example 3, an integrated crystalline silicon thin film solar cell 6 was produced in substantially the same manner as in Example 2. However, a difference is that when the light-transmitting underlayer 112 is formed, a layer made of only a metal oxide that is a material of the light-transmitting binder 1122 is formed without adding a fine particle component. The RMS of the surface of the translucent substrate 111 formed under these conditions was 2.8 nm. Further, the rate of film peeling after the formation of the integrated thin film solar cell 6 was about 10%.

得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.491V、Jscが21.8mA/cm2、F.F.が68.6%、そして変換効率が7.3%であった。 The obtained integrated silicon-based thin film solar cell 6 was irradiated with AM 1.5 light at a light quantity of 100 mW / cm 2 to measure the output characteristics. As a result, Voc per stage was 0.491 V, and Jsc was 21.8 mA / cm 2 , F.M. F. Of 68.6% and a conversion efficiency of 7.3%.

(比較例4)
比較例4においては、実施例2とほぼ同様に集積型結晶質シリコン系薄膜太陽電池6を作製した。ただし、透光性下地層112を形成する際、用いたSiO2微粒子1121の粒径を200nmとし、意図的にRMSを大きくした点が異なる。この条件で製膜された基板表面のRMSは、66.9nmであった。また、集積型薄膜太陽電池6形成後には、膜剥がれが確認されなかった。
(Comparative Example 4)
In Comparative Example 4, an integrated crystalline silicon-based thin film solar cell 6 was fabricated in substantially the same manner as in Example 2. However, the difference is that, when forming the light-transmitting underlayer 112, the SiO 2 fine particles 1121 used have a particle diameter of 200 nm and the RMS is intentionally increased. The RMS of the substrate surface formed under these conditions was 66.9 nm. Further, no film peeling was confirmed after the integrated thin film solar cell 6 was formed.

得られた集積型シリコン系薄膜太陽電池6にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、一段あたりのVocが0.452V、Jscが22.0mA/cm2、曲線因子F.F.が60.1%、そして変換効率が6.0%であった。 When the output characteristics were measured by irradiating the obtained integrated silicon thin film solar cell 6 with AM1.5 light at a light quantity of 100 mW / cm 2 , Voc per stage was 0.452 V, and Jsc was 22.0 mA / cm 2 , fill factor F. F. Was 60.1%, and the conversion efficiency was 6.0%.

比較例4では、膜剥がれが確認されなかったにも関わらず、比較例1〜3よりもEff.が低下していた。この原因は、用いたSiO2微粒子1121の粒径が大きすぎために、透光性下地層112の凹凸が大きくなり、その上に形成されるZnO透明電極層12に欠陥となる結晶粒界を多数生じさせ、結晶質シリコン光電変換ユニット3に機械的、電気的な欠陥を生じさせたためと考えられる。従って、粒径の大きな微粒子を使用して剥離防止機能を有する薄膜太陽電池用基板1を作製しようとすると、その上に形成する透明電極層12の凹凸形状の粒径や高低差も大きくなる傾向にあり、それによって結晶質太陽電池の機械的、電気的な欠陥を引き起こされ易くなることが判明した。 In Comparative Example 4, although the film peeling was not confirmed, Eff. Had fallen. This is because the grain size of the SiO 2 fine particles 1121 used is too large, the unevenness of the light-transmitting underlayer 112 becomes large, and the crystal grain boundaries that are defective in the ZnO transparent electrode layer 12 formed thereon are formed. This is probably because a large number of the defects were caused to cause mechanical and electrical defects in the crystalline silicon photoelectric conversion unit 3. Therefore, when the thin film solar cell substrate 1 having a peeling prevention function is prepared using fine particles having a large particle size, the uneven particle size and height difference of the transparent electrode layer 12 formed thereon tend to increase. It has been found that this makes it easier to cause mechanical and electrical defects in crystalline solar cells.

表1は上述の実施例1〜5および比較例1〜4による薄膜太陽電池用基板1の主要な特性とそれらを用いた集積型薄膜太陽電池6における出力特性の測定結果を示している。また、後述する実施例6〜10、比較例5〜8による薄膜太陽電池用基板1の主要な特性とそれらを用いた小面積の薄膜太陽電池5における出力特性を合わせて示す。   Table 1 shows the main characteristics of the thin film solar cell substrate 1 according to Examples 1 to 5 and Comparative Examples 1 to 4 described above, and the measurement results of the output characteristics of the integrated thin film solar cell 6 using them. Moreover, the main characteristic of the board | substrate 1 for thin film solar cells by Examples 6-10 and Comparative Examples 5-8 mentioned later, and the output characteristic in the thin film solar cell 5 of a small area using them are shown collectively.

Figure 2005311292
Figure 2005311292

表1の結果から分かるように、実施例1〜5のいずれにおいても、膜剥がれは確認されなかった。比較例1〜3では、透光性絶縁基板11と低温形成した透明電極層12間の界面凹凸が小さいために、密着力が不足し、膜剥がれが確認された。透光性絶縁基板11と透明電極層12の間で膜剥がれが生じると、全ての特性パラメータが低下していることがわかる。特に比較例のVocやF.F.の低下が大きいことから、透光性絶縁基板11と透明電極層12間の膜剥がれは、複数のセル61が直列接続する集積型太陽電池構造5において、直列抵抗を増加させる原因となることが示されている。また、膜剥がれが生じると、発電層の受光面積が減少することから、Jscの値も低下させる原因となる。   As can be seen from the results in Table 1, film peeling was not confirmed in any of Examples 1 to 5. In Comparative Examples 1-3, since the unevenness | corrugation of the interface between the translucent insulated substrate 11 and the transparent electrode layer 12 formed at low temperature was small, adhesive force was insufficient and film peeling was confirmed. It can be seen that when the film peeling occurs between the translucent insulating substrate 11 and the transparent electrode layer 12, all the characteristic parameters are lowered. In particular, Voc and F. F. Therefore, the film peeling between the translucent insulating substrate 11 and the transparent electrode layer 12 may increase the series resistance in the integrated solar cell structure 5 in which a plurality of cells 61 are connected in series. It is shown. Further, when film peeling occurs, the light receiving area of the power generation layer decreases, which causes a decrease in the value of Jsc.

以上詳細に説明したように本発明によれば、安価に製造可能な薄膜太陽電池用基板1を用いて、性能の改善された集積型薄膜太陽電池6を提供することができる。   As described in detail above, according to the present invention, it is possible to provide an integrated thin film solar cell 6 with improved performance using the thin film solar cell substrate 1 that can be manufactured at low cost.

(実施例6)
実施例6として図5の薄膜太陽電池用基板1を作製した。ガラス基板111上にSiO2微粒子1121を含む凹凸の有る透光性下地層112を形成した。透光性下地層112を形成する際に用いた塗布液は、平均粒径が70nmの球状シリカ分散液、水、エチルセロソルブの混合液にテトラエトキシシランを加え、更に塩酸を添加してテトラエトキシシランを加水分解させたものを用いた。塗布液を印刷機にてガラス基板111上に塗布した後、90℃で30分乾燥し、その後350℃で5分加熱することにより、表面に微細な凹凸が形成された透光性下地層112を得た。この透光性下地層112の表面を原子間力顕微鏡(AFM)で観察したところ、微粒子の形状を反映し、凸部が曲面からなる凹凸が確認された。
(Example 6)
As Example 6, the thin-film solar cell substrate 1 of FIG. A light-transmitting underlayer 112 having unevenness including SiO 2 fine particles 1121 was formed on a glass substrate 111. The coating liquid used for forming the light-transmitting underlayer 112 was tetraethoxysilane added to a mixture of a spherical silica dispersion having an average particle size of 70 nm, water, and ethyl cellosolve, and hydrochloric acid was added to add tetraethoxysilane. A product obtained by hydrolyzing silane was used. The coating liquid is applied on the glass substrate 111 with a printing machine, dried at 90 ° C. for 30 minutes, and then heated at 350 ° C. for 5 minutes, whereby the light-transmitting underlayer 112 having fine irregularities formed on the surface. Got. When the surface of the light-transmitting underlayer 112 was observed with an atomic force microscope (AFM), irregularities in which the convex portions were curved surfaces were confirmed reflecting the shape of the fine particles.

この条件で製膜された透光性下地層112の二乗平均平方根粗さ(RMS)は17.2nmであった。なお、本発明におけるRMSは、一辺が5μmの正方形領域を観察した原子間力顕微鏡(AFM)像から求めている(ISO 4287/1)。このAFM測定にはNano−Rシステム(Pacific Nanotechnology社製)のノンコンタクトモードが用いられた。   The root mean square roughness (RMS) of the light-transmitting underlayer 112 formed under these conditions was 17.2 nm. In addition, RMS in this invention is calculated | required from the atomic force microscope (AFM) image which observed the square area | region whose one side is 5 micrometers (ISO 4287/1). The non-contact mode of Nano-R system (manufactured by Pacific Nanotechnology) was used for this AFM measurement.

ガラス基板111上に透光性下地層112のみを形成した透光性絶縁基板11について、C光源を用いて測定したヘイズ率は0.31%であった。   About the translucent insulated substrate 11 which formed only the translucent base layer 112 on the glass substrate 111, the haze rate measured using C light source was 0.31%.

得られた透光性下地層112の上にZnOからなる透明電極層12を低圧熱CVD法で形成した。この透明電極層12は、基体温度を160℃に設定し、圧力100Pa、ジエチル亜鉛(DEZ)の流量500sccm、水の流量1000sccm、ジボラン(B26)流量5sccm、アルゴン流量1000sccm、水素流量1000sccmで形成した。得られたZnO膜からなる透明電極層12の厚さは1.5μmであり、シート抵抗は8.7Ω/□であった。ガラス基板111、透光性下地層112、透明電極層123から構成される薄膜太陽電池用基板1の、C光源を用いて測定したヘイズ率は27.2%であった。すなわち、透光性下地層112のヘイズ率を大きく上回るヘイズ率が透明電極層12を低圧熱CVD法で作製することによって得られている。また、基体温度150℃以上で20%以上のヘイズ率の薄膜太陽電池基板1が得られているので、半導体層製膜時の透明電極層12への熱ダメージを従来法に比べて低減することができる。なお、この基板1の全光線透過率を、ガラス側から光を入射し、分光光度計にて測定したところ、波長400nm〜1200nmの範囲で80%以上の透過率を示した。 A transparent electrode layer 12 made of ZnO was formed on the obtained transparent base layer 112 by a low pressure thermal CVD method. The transparent electrode layer 12 has a substrate temperature set at 160 ° C., a pressure of 100 Pa, a flow rate of diethyl zinc (DEZ) of 500 sccm, a flow rate of water of 1000 sccm, a diborane (B 2 H 6 ) flow rate of 5 sccm, an argon flow rate of 1000 sccm, and a hydrogen flow rate of 1000 sccm. Formed with. The thickness of the transparent electrode layer 12 made of the obtained ZnO film was 1.5 μm, and the sheet resistance was 8.7Ω / □. The haze ratio measured using the C light source of the thin film solar cell substrate 1 constituted of the glass substrate 111, the light-transmitting underlayer 112, and the transparent electrode layer 123 was 27.2%. That is, a haze ratio that greatly exceeds the haze ratio of the translucent underlayer 112 is obtained by producing the transparent electrode layer 12 by a low-pressure thermal CVD method. Moreover, since the thin film solar cell substrate 1 having a haze ratio of 20% or more at a substrate temperature of 150 ° C. or higher is obtained, thermal damage to the transparent electrode layer 12 during the formation of the semiconductor layer should be reduced as compared with the conventional method. Can do. In addition, when the total light transmittance of this board | substrate 1 entered light from the glass side and measured with the spectrophotometer, the transmittance | permeability of 80% or more was shown in the wavelength range of 400 nm-1200 nm.

(実施例7)
実施例7として図5の薄膜太陽電池用基板1を作製した。平均粒径95nmの球状シリカ分散液を用いた以外は、実施例6と同様に透光性下地層112を形成した。この透光性下地層112のRMSは32.5nmであった。また、ガラス基板111上に透光性下地層112のみを形成した透光性絶縁基板11について、C光源を用いて測定したヘイズ率は0.72%であった。
(Example 7)
As Example 7, the thin film solar cell substrate 1 of FIG. A transparent base layer 112 was formed in the same manner as in Example 6 except that a spherical silica dispersion having an average particle size of 95 nm was used. The RMS of this translucent underlayer 112 was 32.5 nm. Moreover, about the translucent insulated substrate 11 which formed only the translucent base layer 112 on the glass substrate 111, the haze rate measured using C light source was 0.72%.

得られた透光性下地層112の上にZnOからなる透明電極層12を実施例6と同様の条件で低圧熱CVD法により形成した。得られたZnO膜からなる透明電極層12の厚さは1.5μmであり、シート抵抗は9.3Ω/□であった。AFMで測定したRMSは67.8nmであった。ガラス基板111、透光性下地層112、透明電極層123から構成される薄膜太陽電池用基板1の、C光源を用いて測定したヘイズ率は35.7%であった。また、この基板1の全光線透過率を、ガラス側から光を入射し、分光光度計にて測定した。波長400nm〜1200nmの範囲で80%以上の透過率を示した。実施例7は、実施例6に比べて下地層2の凹凸がさらに大きく、ヘイズ率が増加した。   A transparent electrode layer 12 made of ZnO was formed on the obtained transparent base layer 112 under the same conditions as in Example 6 by low pressure thermal CVD. The thickness of the transparent electrode layer 12 made of the obtained ZnO film was 1.5 μm, and the sheet resistance was 9.3Ω / □. The RMS measured by AFM was 67.8 nm. The haze ratio measured using a C light source of the thin film solar cell substrate 1 constituted of the glass substrate 111, the light-transmitting underlayer 112, and the transparent electrode layer 123 was 35.7%. Further, the total light transmittance of the substrate 1 was measured with a spectrophotometer by entering light from the glass side. A transmittance of 80% or more was exhibited in the wavelength range of 400 nm to 1200 nm. In Example 7, the unevenness of the underlayer 2 was larger than that in Example 6, and the haze ratio increased.

(比較例5)
比較例5の薄膜太陽電池用基板1として、ガラス基板111の上に、透光性下地層112をつけずに、直接ZnO層12を低圧熱CVD法で形成した。ZnO層の製膜条件は実施例6と同様である。ガラス基板111のRMSは0.5nm以下で、AFMの測定限界以下で平坦であった。また、ガラス基板111について、C光源を用いて測定したヘイズ率は0.01%以下で測定限界以下であった。得られたZnO膜からなる透明電極層12の厚さは1.5μmであり、シート抵抗は8.3Ω/□であった。比較例5の薄膜太陽電池用基板1の、C光源を用いて測定したヘイズ率は15.1%であった。また、この基板1の全光線透過率を、ガラス側から光を入射し、分光光度計にて測定した。波長400nm〜1200nmの範囲で80%以上の透過率を示した。実施例6に比べて、同じZnO層12の膜厚でヘイズ率が小さく約半分になっている。
(Comparative Example 5)
As the thin film solar cell substrate 1 of Comparative Example 5, the ZnO layer 12 was directly formed on the glass substrate 111 without using the light-transmitting underlayer 112 by a low pressure thermal CVD method. The conditions for forming the ZnO layer are the same as in Example 6. The RMS of the glass substrate 111 was 0.5 nm or less, and was flat below the AFM measurement limit. Moreover, about the glass substrate 111, the haze rate measured using C light source was 0.01% or less and below the measurement limit. The thickness of the transparent electrode layer 12 made of the obtained ZnO film was 1.5 μm, and the sheet resistance was 8.3Ω / □. The haze ratio measured using the C light source of the thin film solar cell substrate 1 of Comparative Example 5 was 15.1%. Further, the total light transmittance of the substrate 1 was measured with a spectrophotometer by entering light from the glass side. A transmittance of 80% or more was exhibited in the wavelength range of 400 nm to 1200 nm. Compared to Example 6, the haze ratio is small and about half with the same film thickness of the ZnO layer 12.

(比較例6)
比較例6として薄膜太陽電池用基板1を作製した。平均粒径8nmの球状シリカ分散液を用いた以外は、実施例6と同様に透光性下地層112を形成した。この下地層112のRMSは3.1nmであった。また、下地層112のみを形成したガラス基板111について、C光源を用いて測定したヘイズ率は0.01%以下で測定限界以下であった。得られた下地層2の上にZnOからなる透明電極層12を実施例6と同様の条件で低圧熱CVD法により形成した。得られたZnO膜からなる透明電極層12の厚さは1.5μmであり、シート抵抗は8.5Ω/□であった。ガラス基板111、下地層112、透明電極層12から構成される薄膜太陽電池用基板1の、C光源を用いて測定したヘイズ率は15.5%であった。また、この基板1の全光線透過率を、ガラス側から光を入射し、分光光度計にて測定した。波長400nm〜1200nmの範囲で80%以上の透過率を示した。比較例6のヘイズ率は比較例5とほぼ同等であり、下地層112の凹凸が小さくRMSが小さい場合は、ヘイズ率を下地層2によって向上する効果はほとんどないと言える。
(Comparative Example 6)
As Comparative Example 6, a thin film solar cell substrate 1 was produced. A transparent base layer 112 was formed in the same manner as in Example 6 except that a spherical silica dispersion having an average particle diameter of 8 nm was used. The under layer 112 had an RMS of 3.1 nm. Moreover, about the glass substrate 111 which formed only the base layer 112, the haze rate measured using C light source was 0.01% or less and below the measurement limit. A transparent electrode layer 12 made of ZnO was formed on the obtained underlayer 2 by the low pressure thermal CVD method under the same conditions as in Example 6. The thickness of the transparent electrode layer 12 made of the obtained ZnO film was 1.5 μm, and the sheet resistance was 8.5Ω / □. The haze ratio measured using the C light source of the thin film solar cell substrate 1 composed of the glass substrate 111, the base layer 112, and the transparent electrode layer 12 was 15.5%. Further, the total light transmittance of the substrate 1 was measured with a spectrophotometer by entering light from the glass side. A transmittance of 80% or more was exhibited in the wavelength range of 400 nm to 1200 nm. The haze ratio of Comparative Example 6 is almost the same as that of Comparative Example 5, and it can be said that there is almost no effect of improving the haze ratio by the underlayer 2 when the unevenness of the underlayer 112 is small and the RMS is small.

(実施例8)
実施例6の薄膜太陽電池用基板1を用いて図7の構造で10mm角の薄膜太陽電池5を作製した。薄膜太陽電池用基板1の透明電極層12の上に、厚さ15nmのp型微結晶シリコンの一導電型層31、厚さ1.5μmの真性結晶質シリコンの真性結晶質光電変換層32、及び厚さ15nmのn型微結晶シリコンの逆導電型層33からなる結晶質光電変換層ユニット3を順次プラズマCVD法で形成した。その後、裏面電極層4として厚さ90nmのAlドープされたZnOの導電性酸化物層と、厚さ300nmのAgの金属層をスパッタ法にて順次形成した。
(Example 8)
Using the thin film solar cell substrate 1 of Example 6, a 10 mm square thin film solar cell 5 having the structure shown in FIG. On the transparent electrode layer 12 of the thin-film solar cell substrate 1, a one-conductive layer 31 of p-type microcrystalline silicon having a thickness of 15 nm, an intrinsic crystalline photoelectric conversion layer 32 of intrinsic crystalline silicon having a thickness of 1.5 μm, The crystalline photoelectric conversion layer unit 3 composed of the n-type microcrystalline silicon reverse conductivity type layer 33 having a thickness of 15 nm was sequentially formed by the plasma CVD method. Thereafter, an Al-doped ZnO conductive oxide layer having a thickness of 90 nm and an Ag metal layer having a thickness of 300 nm were sequentially formed as the back electrode layer 4 by sputtering.

以上のようにして得られたシリコン系薄膜太陽電池5にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、開放電圧(Voc)が0.515V、短絡電流密度(Jsc)が27.8mA/cm2、曲線因子(F.F.)が0.711、そして変換効率が10.2%であった。 When the output characteristics were measured by irradiating the silicon-based thin film solar cell 5 obtained as described above with AM 1.5 light at a light quantity of 100 mW / cm 2 , the open circuit voltage (Voc) was 0.515 V, and the short-circuit current was measured. The density (Jsc) was 27.8 mA / cm 2 , the fill factor (FF) was 0.711, and the conversion efficiency was 10.2%.

(比較例7)
比較例7として、比較例5の薄膜太陽電池用基板1を用いて薄膜太陽電池5を作製した。下地層112がないことが異なるほか、薄膜太陽電池の構造、作製方法は実施例8と同様である。得られたシリコン系薄膜太陽電池5にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが0.517V、Jscが26.5mA/cm2、F.F.が0.702、そして変換効率が9.6%であった。基板1のヘイズ率が実施例8の薄膜太陽電池に比べて低いのため、光閉じ込め効果が十分でなく、短絡電流密度が低下して変換効率が低くなっている。
(Comparative Example 7)
As Comparative Example 7, a thin film solar cell 5 was produced using the thin film solar cell substrate 1 of Comparative Example 5. The structure and manufacturing method of the thin-film solar cell are the same as in Example 8 except that the base layer 112 is not provided. When the output characteristics were measured by irradiating the obtained silicon-based thin film solar cell 5 with AM 1.5 light at a light quantity of 100 mW / cm 2 , Voc was 0.517 V, Jsc was 26.5 mA / cm 2 , F.R. F. Was 0.702, and the conversion efficiency was 9.6%. Since the haze ratio of the substrate 1 is lower than that of the thin film solar cell of Example 8, the light confinement effect is not sufficient, the short-circuit current density is lowered, and the conversion efficiency is lowered.

(比較例8)
比較例8として、比較例6の薄膜太陽電池用基板1を用いて薄膜太陽電池5を作製した。下地層112を形成するとき平均粒径8nmの球状シリカ分散液を用いたほか、薄膜太陽電池の構造、作製方法は実施例8と同様である。得られたシリコン系薄膜太陽電池5にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが0.515V、Jscが26.5mA/cm2、F.F.が0.705、そして変換効率が9.6%であった。基板のヘイズ率が比較例7の場合とほぼ同じため、Jscが比較例7とかわらず、変換効率も比較例7と同じだった。
(Comparative Example 8)
As the comparative example 8, the thin film solar cell 5 was produced using the thin film solar cell substrate 1 of the comparative example 6. In addition to using a spherical silica dispersion having an average particle size of 8 nm when forming the underlayer 112, the structure and manufacturing method of the thin-film solar cell are the same as in Example 8. When the output characteristics were measured by irradiating the obtained silicon-based thin film solar cell 5 with AM 1.5 light at a light quantity of 100 mW / cm 2 , Voc was 0.515 V, Jsc was 26.5 mA / cm 2 , F.R. F. Was 0.705, and the conversion efficiency was 9.6%. Since the haze ratio of the substrate was almost the same as that of Comparative Example 7, the conversion efficiency was the same as that of Comparative Example 7 regardless of Jsc.

(実施例9)
実施例9として、実施例7の薄膜太陽電池用基板1を用いて図7の薄膜太陽電池5を作製した。下地層112を形成するとき平均粒径100nmの球状シリカ分散液を用いたほか、薄膜太陽電池の構造、作製方法は実施例8と同様である。得られたシリコン系薄膜太陽電池5にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが0.522V、Jscが28.4mA/cm2、F.F.が0.705、そして変換効率が10.5%であった。基板のヘイズ率が実施例8の薄膜太陽電池に比べて増加しているため、Jscが増加して変換効率が向上している。
Example 9
As Example 9, the thin film solar cell 5 of FIG. 7 was produced using the thin film solar cell substrate 1 of Example 7. In addition to using a spherical silica dispersion having an average particle size of 100 nm when forming the underlayer 112, the structure and manufacturing method of the thin-film solar cell are the same as in Example 8. When the output characteristics were measured by irradiating the obtained silicon-based thin film solar cell 5 with AM 1.5 light at a light quantity of 100 mW / cm 2 , Voc was 0.522 V, Jsc was 28.4 mA / cm 2 , F.R. F. Was 0.705, and the conversion efficiency was 10.5%. Since the haze ratio of the substrate is increased as compared with the thin film solar cell of Example 8, Jsc is increased and the conversion efficiency is improved.

(実施例10)
実施例10においては、実施例7の薄膜太陽電池用基板1を用いて、図8のタンデム型薄膜太陽電池5を作製した。薄膜太陽電池用基板1の透明電極層12上に、プラズマCVD法により、厚さ15nmのp型非晶質シリコンカーバイドの前方一導電型層、厚さ350nmの真性非晶質シリコンの非晶質光電変換層、及び厚さ15nmのn型微結晶シリコンの前方逆導電型層からなる非晶質光電変換ユニット2を形成し、続いて実施例8、9と同様に結晶質光電変換ユニット3を形成した。ただし、結晶質光電変換ユニット3の、真性結晶質光電変換層32は2.0μmの膜厚とした。その後、裏面電極層4として厚さ90nmのAlドープされたZnOの導電性酸化物層と、厚さ300nmのAgの金属層をスパッタ法にて順次形成し、タンデム型薄膜太陽電池5を得た。
(Example 10)
In Example 10, the thin film solar cell substrate 1 of Example 7 was used to produce the tandem thin film solar cell 5 of FIG. On the transparent electrode layer 12 of the thin film solar cell substrate 1, a front one conductivity type layer of p-type amorphous silicon carbide having a thickness of 15 nm and an amorphous amorphous silicon having a thickness of 350 nm are formed by plasma CVD. An amorphous photoelectric conversion unit 2 composed of a photoelectric conversion layer and a forward reverse conductivity type layer of n-type microcrystalline silicon having a thickness of 15 nm is formed, and then the crystalline photoelectric conversion unit 3 is formed in the same manner as in Examples 8 and 9. Formed. However, the intrinsic crystalline photoelectric conversion layer 32 of the crystalline photoelectric conversion unit 3 has a thickness of 2.0 μm. Thereafter, an Al-doped ZnO conductive oxide layer having a thickness of 90 nm and an Ag metal layer having a thickness of 300 nm were sequentially formed as the back electrode layer 4 by a sputtering method, whereby a tandem-type thin film solar cell 5 was obtained. .

得られたタンデム型薄膜太陽電池5にAM1.5の光を100mW/cm2の光量で照射して出力特性を測定したところ、Vocが1.35V、Jscが13.7mA/cm2、F.F.が0.733、そして変換効率が13.6%であった。 When the output characteristics were measured by irradiating the obtained tandem-type thin film solar cell 5 with AM1.5 light at a light quantity of 100 mW / cm 2 , Voc was 1.35 V, Jsc was 13.7 mA / cm 2 , F.D. F. Was 0.733, and the conversion efficiency was 13.6%.

表1に実施例6〜10、比較例5〜8による薄膜太陽電池用基板の主要な特性とそれらを用いた小面積の薄膜太陽電池における出力特性を示す。比較例7,8の太陽電池特性に比べて、実施例8,9の太陽電池は特にJscが増加して特性が向上している。小面積のセルでは、比較例も実施例も外観の不良や膜剥がれはなかった。   Table 1 shows the main characteristics of the thin film solar cell substrates according to Examples 6 to 10 and Comparative Examples 5 to 8 and the output characteristics of the small area thin film solar cells using them. Compared with the solar cell characteristics of Comparative Examples 7 and 8, the solar cells of Examples 8 and 9 have particularly improved characteristics due to an increase in Jsc. In the small-area cell, neither the comparative example nor the example had an appearance defect or film peeling.

以上詳細に説明したように本発明によれば、凹凸のある下地層112の上に、低圧熱CVDを用いて150℃以上の基体温度で透明電極層12を製膜することによって、薄膜太陽電池用基板1の凹凸を効果的に増大させることが可能となり、光閉込め効果の大きい薄膜太陽電池用基板1を提供することができる。また、この薄膜太陽電池用基板1を薄膜太陽電池5に適用することによって、光閉じ込め効果によって発電電流を増大させて薄膜太陽電池5の性能を向上することができる。さらに、基体温度150℃以上でヘイズ率の低下がなくむしろ増大するので、従来法より高い基体温度で透明電極層12を製膜することが可能となり、半導体層作製時の透明電極層12への熱ダメージを抑制でき、薄膜太陽電池5の性能と信頼性の向上に効果がある。   As described above in detail, according to the present invention, the transparent electrode layer 12 is formed on the uneven base layer 112 at a substrate temperature of 150 ° C. or higher by using low-pressure thermal CVD, so that a thin film solar cell is formed. The unevenness of the substrate 1 can be increased effectively, and the thin film solar cell substrate 1 having a large light confinement effect can be provided. Further, by applying this thin film solar cell substrate 1 to the thin film solar cell 5, the power generation current can be increased by the optical confinement effect, and the performance of the thin film solar cell 5 can be improved. Furthermore, since the haze ratio does not decrease at a substrate temperature of 150 ° C. or higher, the transparent electrode layer 12 can be formed at a substrate temperature higher than that of the conventional method. Thermal damage can be suppressed, which is effective in improving the performance and reliability of the thin-film solar cell 5.

低圧熱CVDで製膜したの基板温度に対するZnOのヘイズ率。The haze ratio of ZnO with respect to the substrate temperature of the film formed by low pressure thermal CVD. 集積型薄膜太陽電池の典型的な一例の素子面を示す模式的な平面図。The typical top view which shows the element surface of a typical example of an integrated thin film solar cell. 図2内の楕円2Aで囲まれた領域における積層構造を拡大して示す模式的な断面図。FIG. 3 is a schematic cross-sectional view showing, in an enlarged manner, a laminated structure in a region surrounded by an ellipse 2A in FIG. 図3中の楕円3Aで囲まれた領域のより詳細な積層構造をさらに拡大して示す模式的な断面図。FIG. 4 is a schematic cross-sectional view further enlarging a more detailed laminated structure in a region surrounded by an ellipse 3A in FIG. 3. 本発明の第二の実施形態である薄膜太陽電池用基板の断面図。Sectional drawing of the board | substrate for thin film solar cells which is 2nd embodiment of this invention. 本発明に係る第三の実施形態である薄膜太陽電池の一例を、図2中の楕円3Aで囲まれた領域で拡大して示す模式的な断面図。Typical sectional drawing which expands and shows an example of the thin film solar cell which is 3rd embodiment which concerns on this invention in the area | region enclosed by the ellipse 3A in FIG. 本発明の第四の実施形態である薄膜太陽電池の断面図。Sectional drawing of the thin film solar cell which is 4th embodiment of this invention. 本発明の第五の実施形態であるタンデム型薄膜太陽電池の断面図。Sectional drawing of the tandem-type thin film solar cell which is the fifth embodiment of this invention.

符号の説明Explanation of symbols

1 薄膜太陽電池用基板
11 透光性絶縁基板
111 透光性基体
112 透光性下地層
1121 透光性微粒子
1122 透光性バインダー
12 透明電極層
2 非晶質光電変換ユニット
22 非晶質真性半導体層
3 結晶質光電変換ユニット
31 一導電型層
32 結晶質真性半導体層
33 逆導電型層
4 裏面電極層
5 薄膜太陽電池
6 集積型薄膜太陽電池
61 太陽電池セル
62 透明電極層分離溝
63 接続溝
64 裏面電極層分離溝
DESCRIPTION OF SYMBOLS 1 Substrate for thin film solar cells 11 Translucent insulating substrate 111 Translucent substrate 112 Translucent base layer 1121 Translucent fine particles 1122 Translucent binder 12 Transparent electrode layer 2 Amorphous photoelectric conversion unit 22 Amorphous intrinsic semiconductor Layer 3 Crystalline photoelectric conversion unit 31 One conductivity type layer 32 Crystalline intrinsic semiconductor layer 33 Reverse conductivity type layer 4 Back electrode layer 5 Thin film solar cell 6 Integrated thin film solar cell 61 Solar cell cell 62 Transparent electrode layer separation groove 63 Connection groove 64 Back electrode layer separation groove

Claims (7)

透光性絶縁基板、及び該透光性絶縁基板上に堆積された少なくとも酸化亜鉛を含む透明電極層からなる薄膜太陽電池用基板であって、該透光性絶縁基板は該透明電極層側の界面に二乗平均平方根粗さが5〜50nmである微細な表面凹凸を有し、その凸部は曲面からなることを特徴とする薄膜太陽電池用基板。   A thin film solar cell substrate comprising a translucent insulating substrate and a transparent electrode layer containing at least zinc oxide deposited on the translucent insulating substrate, the translucent insulating substrate on the transparent electrode layer side A thin film solar cell substrate having fine surface irregularities having a root mean square roughness of 5 to 50 nm at the interface, and the convex portions are curved surfaces. 請求項1に記載の薄膜太陽電池用基板であって、前記透明電極層は1μm以上の膜厚を有することを特徴とする薄膜太陽電池用基板。   It is a board | substrate for thin film solar cells of Claim 1, Comprising: The said transparent electrode layer has a film thickness of 1 micrometer or more, The board | substrate for thin film solar cells characterized by the above-mentioned. 請求項1または2いずれかに記載の薄膜太陽電池用基板であって、C光源を用いて測定した拡散透過率と全透過率の比であるヘイズ率が20%以上であることを特徴とする薄膜太陽電池用基板。   It is a board | substrate for thin film solar cells in any one of Claim 1 or 2, Comprising: The haze rate which is ratio of the diffuse transmittance measured using C light source and total transmittance is 20% or more, It is characterized by the above-mentioned. Thin film solar cell substrate. 請求項1〜3のいずれかに記載の薄膜太陽電池用基板であって、前記透光性絶縁基板は平滑な表面を有する透光性基体と透光性下地層との積層体からなり、該透光性下地層は、平均粒径が10nm以上で100nm未満の透光性微粒子と、透光性バインダーとを含むことを特徴とする薄膜太陽電池用基板。   It is a board | substrate for thin film solar cells in any one of Claims 1-3, Comprising: The said translucent insulated substrate consists of a laminated body of the translucent base | substrate and translucent base layer which have a smooth surface, The light-transmitting underlayer includes a light-transmitting fine particle having an average particle size of 10 nm or more and less than 100 nm, and a light-transmitting binder. 請求項1〜4のいずれかに記載の薄膜太陽電池用基板を備えた薄膜太陽電池。   The thin film solar cell provided with the board | substrate for thin film solar cells in any one of Claims 1-4. 請求項1〜4のいずれかに記載の薄膜太陽電池用基板を備え、また、前記透明電極層の上に堆積された少なくとも一つの結晶質光電変換ユニット層、及び裏面電極層を含み、さらに、これらの層が複数の光電変換セルを形成するように複数の分離溝によって分離されており、かつ、それらの複数の光電変換セルが複数の接続溝を介して互いに電気的に直列接続されていることを特徴とする集積型薄膜太陽電池。   A thin film solar cell substrate according to any one of claims 1 to 4, further comprising at least one crystalline photoelectric conversion unit layer deposited on the transparent electrode layer, and a back electrode layer, These layers are separated by a plurality of separation grooves so as to form a plurality of photoelectric conversion cells, and the plurality of photoelectric conversion cells are electrically connected in series to each other through the plurality of connection grooves. An integrated thin film solar cell. 請求項1〜4のいずれかに記載の薄膜太陽電池用基板の製造方法であって、前記透光性絶縁基板の温度が150℃以上で、前記少なくとも酸化亜鉛を含む透明電極層を堆積することを特徴とする薄膜太陽電池用基板の製造方法。   It is a manufacturing method of the board | substrate for thin film solar cells in any one of Claims 1-4, Comprising: The temperature of the said translucent insulated substrate is 150 degreeC or more, and deposits the transparent electrode layer containing the said at least zinc oxide. The manufacturing method of the board | substrate for thin film solar cells characterized by these.
JP2004304970A 2004-03-25 2004-10-19 Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same Pending JP2005311292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304970A JP2005311292A (en) 2004-03-25 2004-10-19 Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004089817 2004-03-25
JP2004304970A JP2005311292A (en) 2004-03-25 2004-10-19 Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011247626A Division JP5600660B2 (en) 2004-03-25 2011-11-11 Thin film solar cell substrate and method for manufacturing thin film solar cell

Publications (1)

Publication Number Publication Date
JP2005311292A true JP2005311292A (en) 2005-11-04

Family

ID=35439656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304970A Pending JP2005311292A (en) 2004-03-25 2004-10-19 Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same

Country Status (1)

Country Link
JP (1) JP2005311292A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062685A1 (en) 2006-11-20 2008-05-29 Kaneka Corporation Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
JP2008235687A (en) * 2007-03-22 2008-10-02 Kaneka Corp Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device
JP2008277387A (en) * 2007-04-26 2008-11-13 Kaneka Corp Method of manufacturing photoelectric conversion device
JP2008300732A (en) * 2007-06-01 2008-12-11 Kaneka Corp Manufacturing method of thin film solar battery
WO2009041659A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
JP2009267222A (en) * 2008-04-28 2009-11-12 Kaneka Corp Manufacturing method of substrate with transparent conductive film for thin-film photoelectric converter
WO2009157447A1 (en) * 2008-06-27 2009-12-30 株式会社カネカ Substrate provided with transparent conductive film, thin film photoelectric conversion device and method for manufacturing the substrate
WO2010090142A1 (en) * 2009-02-03 2010-08-12 株式会社カネカ Substrate with transparent conductive film and thin film photoelectric conversion device
US7939454B1 (en) 2008-05-31 2011-05-10 Stion Corporation Module and lamination process for multijunction cells
US8017860B2 (en) 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
EP2381482A1 (en) * 2010-04-22 2011-10-26 Excico Group NV Improved method for manufacturing a photovoltaic cell comprising a TCO layer
US8058092B2 (en) 2007-09-28 2011-11-15 Stion Corporation Method and material for processing iron disilicide for photovoltaic application
US8067263B2 (en) 2008-09-30 2011-11-29 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8071179B2 (en) 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
WO2012014572A1 (en) 2010-07-28 2012-02-02 株式会社カネカ Transparent electrode for thin film solar cell, substrate having transparent electrode for thin film solar cell and thin film solar cell using same, and production method for transparent electrode for thin film solar cell
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
JP2012089712A (en) * 2010-10-20 2012-05-10 Mitsubishi Electric Corp Thin film solar cell and method for manufacturing the same
US8193028B2 (en) 2008-10-06 2012-06-05 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8198122B2 (en) 2008-09-29 2012-06-12 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8258000B2 (en) 2008-09-29 2012-09-04 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
JP2012174735A (en) * 2011-02-17 2012-09-10 Kaneka Corp Thin film solar cell
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
JP2012522265A (en) * 2009-03-27 2012-09-20 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Solar reflector having protective coating and method of manufacturing the same
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US8344243B2 (en) 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
WO2013002394A1 (en) 2011-06-30 2013-01-03 株式会社カネカ Thin film solar cell and method for manufacturing same
US8383450B2 (en) 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
JP2013515373A (en) * 2009-12-21 2013-05-02 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Silicon thin-film solar cell with improved haze and method for manufacturing the same
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices
US8435822B2 (en) 2008-09-30 2013-05-07 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8501507B2 (en) 2007-11-14 2013-08-06 Stion Corporation Method for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
US8614396B2 (en) 2007-09-28 2013-12-24 Stion Corporation Method and material for purifying iron disilicide for photovoltaic application
US8617917B2 (en) 2008-06-25 2013-12-31 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US8673675B2 (en) 2008-09-30 2014-03-18 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8691618B2 (en) 2008-09-29 2014-04-08 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US8759671B2 (en) 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8941132B2 (en) 2008-09-10 2015-01-27 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
TWI493728B (en) * 2009-03-13 2015-07-21 Sumitomo Metal Mining Co Transparent conductive film layered structure and method for producing the same, and silicon based thin film solar cell
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
US9105776B2 (en) 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697475A (en) * 1992-09-11 1994-04-08 Sanyo Electric Co Ltd Photovoltaic device and fabrication thereof
JPH11135817A (en) * 1997-10-27 1999-05-21 Sharp Corp Photoelectric conversion element and its manufacture
JP2000183376A (en) * 1998-12-17 2000-06-30 Nisshin Steel Co Ltd Insulation base material for solar cell and manufacturing method for the board
JP2001015787A (en) * 1999-04-27 2001-01-19 Asahi Glass Co Ltd Substrate with transparent conductive film, manufacturing method therefor, and solar battery
JP2001257369A (en) * 2000-03-10 2001-09-21 Sharp Corp Photoelectric transducer and its manufacturing method
JP2002141525A (en) * 2000-10-31 2002-05-17 National Institute Of Advanced Industrial & Technology Substrate for solar cell and thin film solar cell
JP2002529937A (en) * 1998-11-06 2002-09-10 パシフィック ソーラー ピー ティ ワイ リミテッド Glass texturing with SiO2 film
JP2003243676A (en) * 2002-02-19 2003-08-29 Kanegafuchi Chem Ind Co Ltd Thin-film photoelectric converting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697475A (en) * 1992-09-11 1994-04-08 Sanyo Electric Co Ltd Photovoltaic device and fabrication thereof
JPH11135817A (en) * 1997-10-27 1999-05-21 Sharp Corp Photoelectric conversion element and its manufacture
JP2002529937A (en) * 1998-11-06 2002-09-10 パシフィック ソーラー ピー ティ ワイ リミテッド Glass texturing with SiO2 film
JP2000183376A (en) * 1998-12-17 2000-06-30 Nisshin Steel Co Ltd Insulation base material for solar cell and manufacturing method for the board
JP2001015787A (en) * 1999-04-27 2001-01-19 Asahi Glass Co Ltd Substrate with transparent conductive film, manufacturing method therefor, and solar battery
JP2001257369A (en) * 2000-03-10 2001-09-21 Sharp Corp Photoelectric transducer and its manufacturing method
JP2002141525A (en) * 2000-10-31 2002-05-17 National Institute Of Advanced Industrial & Technology Substrate for solar cell and thin film solar cell
JP2003243676A (en) * 2002-02-19 2003-08-29 Kanegafuchi Chem Ind Co Ltd Thin-film photoelectric converting device

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314326B2 (en) 2006-05-15 2012-11-20 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US9105776B2 (en) 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
US8017860B2 (en) 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
WO2008062685A1 (en) 2006-11-20 2008-05-29 Kaneka Corporation Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
US8658887B2 (en) 2006-11-20 2014-02-25 Kaneka Corporation Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
JP5156641B2 (en) * 2006-11-20 2013-03-06 株式会社カネカ Substrate with transparent conductive film for photoelectric conversion device and method for manufacturing photoelectric conversion device
JP2008235687A (en) * 2007-03-22 2008-10-02 Kaneka Corp Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device
JP2008277387A (en) * 2007-04-26 2008-11-13 Kaneka Corp Method of manufacturing photoelectric conversion device
JP2008300732A (en) * 2007-06-01 2008-12-11 Kaneka Corp Manufacturing method of thin film solar battery
US8871305B2 (en) 2007-06-29 2014-10-28 Stion Corporation Methods for infusing one or more materials into nano-voids of nanoporous or nanostructured materials
US8071179B2 (en) 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
US8058092B2 (en) 2007-09-28 2011-11-15 Stion Corporation Method and material for processing iron disilicide for photovoltaic application
US8614396B2 (en) 2007-09-28 2013-12-24 Stion Corporation Method and material for purifying iron disilicide for photovoltaic application
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US8759671B2 (en) 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
WO2009041659A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
US8501507B2 (en) 2007-11-14 2013-08-06 Stion Corporation Method for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8642361B2 (en) 2007-11-14 2014-02-04 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8623677B2 (en) 2007-11-14 2014-01-07 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration
US8512528B2 (en) 2007-11-14 2013-08-20 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using single-chamber configuration
JP2009267222A (en) * 2008-04-28 2009-11-12 Kaneka Corp Manufacturing method of substrate with transparent conductive film for thin-film photoelectric converter
US7939454B1 (en) 2008-05-31 2011-05-10 Stion Corporation Module and lamination process for multijunction cells
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US8617917B2 (en) 2008-06-25 2013-12-31 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
WO2009157447A1 (en) * 2008-06-27 2009-12-30 株式会社カネカ Substrate provided with transparent conductive film, thin film photoelectric conversion device and method for manufacturing the substrate
US8941132B2 (en) 2008-09-10 2015-01-27 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US8691618B2 (en) 2008-09-29 2014-04-08 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8258000B2 (en) 2008-09-29 2012-09-04 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8198122B2 (en) 2008-09-29 2012-06-12 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8084291B2 (en) 2008-09-30 2011-12-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8435822B2 (en) 2008-09-30 2013-05-07 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8673675B2 (en) 2008-09-30 2014-03-18 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8071421B2 (en) 2008-09-30 2011-12-06 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8383450B2 (en) 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US8318531B2 (en) 2008-09-30 2012-11-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8084292B2 (en) 2008-09-30 2011-12-27 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8088640B2 (en) 2008-09-30 2012-01-03 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US8076176B2 (en) 2008-09-30 2011-12-13 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8067263B2 (en) 2008-09-30 2011-11-29 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US8193028B2 (en) 2008-10-06 2012-06-05 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8557625B1 (en) 2008-10-17 2013-10-15 Stion Corporation Zinc oxide film method and structure for cigs cell
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US8344243B2 (en) 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
US9059422B2 (en) 2009-02-03 2015-06-16 Kaneka Corporation Substrate with transparent conductive film and thin film photoelectric conversion device
JP5559704B2 (en) * 2009-02-03 2014-07-23 株式会社カネカ MANUFACTURING METHOD FOR SUBSTRATE WITH TRANSPARENT CONDUCTIVE FILM, MULTI-JUNCTION TYPE THIN-FILM PHOTOELECTRIC CONVERSION DEVICE AND LIGHT-EMITTING DEVICE
JPWO2010090142A1 (en) * 2009-02-03 2012-08-09 株式会社カネカ Substrate with transparent conductive film and thin film photoelectric conversion device
WO2010090142A1 (en) * 2009-02-03 2010-08-12 株式会社カネカ Substrate with transparent conductive film and thin film photoelectric conversion device
TWI493728B (en) * 2009-03-13 2015-07-21 Sumitomo Metal Mining Co Transparent conductive film layered structure and method for producing the same, and silicon based thin film solar cell
JP2012522265A (en) * 2009-03-27 2012-09-20 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Solar reflector having protective coating and method of manufacturing the same
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
JP2013515373A (en) * 2009-12-21 2013-05-02 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Silicon thin-film solar cell with improved haze and method for manufacturing the same
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
CN102934240B (en) * 2010-04-22 2016-03-16 艾思科集团有限公司 For the manufacture of the modification method of photovoltaic cell comprising tco layer
CN102934240A (en) * 2010-04-22 2013-02-13 艾思科集团有限公司 Improved method for manufacturing a photovoltaic cell comprising a tco layer
EP2381482A1 (en) * 2010-04-22 2011-10-26 Excico Group NV Improved method for manufacturing a photovoltaic cell comprising a TCO layer
WO2011131634A1 (en) * 2010-04-22 2011-10-27 Excico Group Nv Improved method for manufacturing a photovoltaic cell comprising a tco layer
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US9166080B2 (en) 2010-07-28 2015-10-20 Kaneka Corporation Transparent electrode for thin film solar cell, substrate having transparent electrode for thin film solar cell and thin film solar cell using same, and production method for transparent electrode for thin film solar cell
WO2012014572A1 (en) 2010-07-28 2012-02-02 株式会社カネカ Transparent electrode for thin film solar cell, substrate having transparent electrode for thin film solar cell and thin film solar cell using same, and production method for transparent electrode for thin film solar cell
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
JP2012089712A (en) * 2010-10-20 2012-05-10 Mitsubishi Electric Corp Thin film solar cell and method for manufacturing the same
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
JP2012174735A (en) * 2011-02-17 2012-09-10 Kaneka Corp Thin film solar cell
WO2013002394A1 (en) 2011-06-30 2013-01-03 株式会社カネカ Thin film solar cell and method for manufacturing same
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices

Similar Documents

Publication Publication Date Title
JP5600660B2 (en) Thin film solar cell substrate and method for manufacturing thin film solar cell
JP2005311292A (en) Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same
JP5156641B2 (en) Substrate with transparent conductive film for photoelectric conversion device and method for manufacturing photoelectric conversion device
JP5012793B2 (en) Substrate with transparent conductive oxide film and photoelectric conversion element
JP5069790B2 (en) Thin film photoelectric conversion device substrate, thin film photoelectric conversion device including the same, and method for manufacturing thin film photoelectric conversion device substrate
JP4222500B2 (en) Silicon-based thin film photoelectric conversion device
JP5243697B2 (en) Transparent conductive film for photoelectric conversion device and manufacturing method thereof
JP4928337B2 (en) Method for manufacturing photoelectric conversion device
CN104969362A (en) Transparent conductive glass substrate with surface electrode, method for producing same, thin film solar cell, and method for manufacturing thin film solar cell
JP2003243676A (en) Thin-film photoelectric converting device
JP2000252500A (en) Silicon thin-film photoelectric conversion device
JPWO2006046397A1 (en) Substrate for thin film photoelectric conversion device and integrated thin film photoelectric conversion device using the same
JP4713819B2 (en) Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device using the same
JP5127925B2 (en) Thin film solar cell and manufacturing method thereof
JP5469298B2 (en) Transparent conductive film for photoelectric conversion device and method for producing the same
JP5144949B2 (en) Substrate for thin film photoelectric conversion device and method for manufacturing thin film photoelectric conversion device including the same
JP2001257369A (en) Photoelectric transducer and its manufacturing method
JP6199299B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP2012084843A (en) Substrate with transparent conductive oxide film and photoelectric conversion element
JP5650057B2 (en) Transparent electrode substrate and manufacturing method thereof
JP5613296B2 (en) Transparent conductive film for photoelectric conversion device, photoelectric conversion device, and manufacturing method thereof
JP2000252499A (en) Manufacture of thin-film photoelectric conversion device
JP2012244029A (en) Thin film solar cell substrate and manufacturing method thereof and thin film solar cell
JP2009010108A (en) Method for manufacturing photoelectric conversion device
JP2011086731A (en) Photoelectric conversion apparatus and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110720

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111117

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120203