JP2000183376A - Insulation base material for solar cell and manufacturing method for the board - Google Patents

Insulation base material for solar cell and manufacturing method for the board

Info

Publication number
JP2000183376A
JP2000183376A JP10358530A JP35853098A JP2000183376A JP 2000183376 A JP2000183376 A JP 2000183376A JP 10358530 A JP10358530 A JP 10358530A JP 35853098 A JP35853098 A JP 35853098A JP 2000183376 A JP2000183376 A JP 2000183376A
Authority
JP
Japan
Prior art keywords
solar cell
inorganic powder
insulating layer
metal plate
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10358530A
Other languages
Japanese (ja)
Inventor
Atsushi Kajimoto
淳 梶本
Setsuko Koura
節子 小浦
Kenji Sakado
健二 坂戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP10358530A priority Critical patent/JP2000183376A/en
Publication of JP2000183376A publication Critical patent/JP2000183376A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an oxide layer that is effective as an insulation layer for a substrate of a solar cell on the surface of a metal plate through a sol/gel method. SOLUTION: In a substrate for a solar cell, an insulation layer 2 with a thickness of 0.5-10 μm a is formed on the surface of a metal plate 1 as a backing material by the sol/gel method. With inorganic powder of particle diameter of 0.2-2.0 μm, a concentration with respect to insulation layer of 25-75 mass %, and a visible light reflection coefficient of 70% or higher, an optoelectric conversion efficiency can be improved. The base material can be manufactured by dissolving one or two types or more of alkoxysilane, organoalkoxysilane, aluminumalkoxide, titaniumalkoxide, alkali metal, or alkoxide of alkaline earth metal and water or a thickening agent into an organic solvent, bringing the metal plate into contact with a solution where the inorganic powder is dispersed, drying and burning the solution which is adhering to the surface of the metal plate, and forming an insulation layer on the surface of the metal plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、可撓性、耐熱性、絶縁
性、電極材との密着性、および太陽電池形成時の光電変
換効率に優れた太陽電池用絶縁基板及びその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating substrate for a solar cell, which is excellent in flexibility, heat resistance, insulation, adhesion to an electrode material, and photoelectric conversion efficiency when forming the solar cell, and a method of manufacturing the same. .

【0002】[0002]

【従来の技術】非晶質Siからなる太陽電池を形成する基
板には、ガラス板や金属板が使用されている。なかで
も、金属板は、ガラス板に比較して優れた可とう性を活
用した基板材料として着目されている。金属板を太陽電
池用基板として使用する場合、基板表面を絶縁処理する
必要があり、樹脂系絶縁皮膜、無機系絶縁皮膜、金属酸
化物皮膜、陽極酸化皮膜等が提案されている。たとえ
ば、特開昭59-47776号公報では、スピナー、ス
プレー、浸漬法で液状樹脂をステンレス鋼基板の表面に
塗布し、高温焼成することにより厚み2μm程度の高分
子樹脂皮膜を形成している。また、特開昭59-477
5号公報では、スパッタリング、蒸着、イオンプレーテ
ィング、フ゜ラス゛マCVD、熱分解CVD等でSiO2、Al2O3、SiNx
等の絶縁皮膜を形成している。さらに、特開平2ー18
0081号では、絶縁性微粒子を含む有機シリケートを
主成分とするコーティング材を用いて、絶縁皮膜を形成
している。
2. Description of the Related Art A glass plate or a metal plate is used as a substrate for forming a solar cell made of amorphous Si. Above all, a metal plate has been attracting attention as a substrate material utilizing flexibility that is superior to a glass plate. When a metal plate is used as a solar cell substrate, the substrate surface needs to be insulated, and a resin-based insulating film, an inorganic-based insulating film, a metal oxide film, an anodized film, and the like have been proposed. For example, in JP-A-59-47776, a liquid resin is applied to the surface of a stainless steel substrate by a spinner, spray, or immersion method, and is fired at a high temperature to form a polymer resin film having a thickness of about 2 μm. Also, Japanese Unexamined Patent Publication No. 59-477
No. 5 discloses sputtering, evaporation, ion plating, plasma CVD, pyrolysis CVD, etc., for SiO 2 , Al 2 O 3 , SiNx
Etc. are formed. Further, Japanese Patent Application Laid-Open No. 2-18
In No. 0081, an insulating film is formed using a coating material containing an organic silicate containing insulating fine particles as a main component.

【0003】[0003]

【発明が解決しようとする課題】樹脂系絶縁皮膜は、可
とう性があり耐衝撃性にも優れている。しかし、太陽電
池として働く非晶質Siの堆積時に加熱されると、熱分解
してガスを発生し易く、非晶質Si層に欠陥を導入する原
因となる。また、耐湿性も十分でないことから、耐久性
の点で問題がある。 他方、スパッタリング、蒸着、イ
オンプレーティング、フ゜ラス゛マCVD、熱分解CVD等で無機系
絶縁皮膜を設ける方法では、絶縁皮膜が必要厚みに成長
するまでに時間がかかり、製造コストが高くなる。
SUMMARY OF THE INVENTION Resin-based insulating films are flexible and have excellent impact resistance. However, when heated during the deposition of amorphous Si that functions as a solar cell, it is likely to thermally decompose and generate gas, causing defects to be introduced into the amorphous Si layer. In addition, since moisture resistance is not sufficient, there is a problem in durability. On the other hand, in a method of providing an inorganic insulating film by sputtering, vapor deposition, ion plating, plasma CVD, thermal decomposition CVD, or the like, it takes time until the insulating film grows to a required thickness, and the manufacturing cost increases.

【0004】更に、無機系絶縁皮膜の上層に電極材およ
び非晶質Si層を積層する課程において、熱膨張係数の違
いから無機系絶縁皮膜に微少なクラックが生じると、太
陽電池のセル間で短絡が生じるといった問題がある。し
かも、TiO2等の絶縁性微粒子を含むSiO2膜を絶縁皮膜と
して用いる方法は、太陽電池を形成した際の光電変換効
率を向上させる方法として有効であるが、SiO2の有機系
化合物を主成分とする浴から製膜されたものであるた
め、硬化時に有機分が残存し易い欠点がある。有機分が
残存しているSiO2系皮膜の上に電極材を積層すると、電
極材/SiO2系皮膜の界面で剥離が生じ、良好な太陽電池
を構成できなくなる。添加粒子の凹凸によるアンカー効
果は剥離の改善に有効であるが、添加粒子の濃度が少な
すぎるとアンカー効果が低下するため、電極材との密着
性が低下して剥離するし、逆に多すぎると添加粒子が凝
集してクラックが発生し、光電変換効率を低下させると
いった問題があり、ただ単に添加粒子の粒径を規定する
だけでは、実際に太陽電池の光電変換効率を向上させる
ことはできない。
Further, in the process of laminating an electrode material and an amorphous Si layer on the inorganic insulating film, if a minute crack is generated in the inorganic insulating film due to a difference in thermal expansion coefficient, the solar cell may have a problem. There is a problem that a short circuit occurs. In addition, the method of using an SiO 2 film containing insulating fine particles such as TiO 2 as an insulating film is effective as a method of improving the photoelectric conversion efficiency when forming a solar cell, but mainly uses an organic compound of SiO 2. Since the film is formed from a bath as a component, there is a disadvantage that organic components easily remain during curing. When the electrode material is laminated on the SiO 2 -based film in which the organic component remains, peeling occurs at the interface between the electrode material and the SiO 2 -based film, and a favorable solar cell cannot be formed. The anchor effect due to the irregularities of the added particles is effective in improving peeling, but if the concentration of the added particles is too low, the anchor effect is reduced, so that the adhesion to the electrode material is reduced and the peeling is performed, and conversely, the amount is too large. There is a problem that the added particles aggregate and cracks occur, which lowers the photoelectric conversion efficiency, and simply defining the particle size of the added particles cannot actually improve the photoelectric conversion efficiency of the solar cell. .

【0005】本発明は、このような問題を解消すべく案
出されたものであり、粒径、添加濃度および可視光反射
率を規定した無機粉末を含むゾルーゲル浴に金属板を接
触させることで、絶縁層の表面粗度、絶縁層表面に突出
した無機粉末の高さおよび隣り合う間隔を制御した絶縁
層を金属板表面に形成し、厚膜でもクラックの発生を抑
性し、電極材との密着性が良好で剥離がなく、テクスチ
ャー効果により光電変換効率を向上させる無機系絶縁層
を金属板表面に形成する太陽電池基板を提供することを
目的とする。
[0005] The present invention has been devised to solve such a problem. A metal plate is brought into contact with a sol-gel bath containing an inorganic powder having a prescribed particle size, additive concentration and visible light reflectance. Forming an insulating layer on the surface of the metal plate, controlling the surface roughness of the insulating layer, the height of the inorganic powder protruding from the surface of the insulating layer, and the distance between adjacent ones, suppressing the occurrence of cracks even in a thick film, An object of the present invention is to provide a solar cell substrate having an inorganic insulating layer formed on a metal plate surface, which has good adhesion, does not peel off, and improves photoelectric conversion efficiency by a texture effect.

【0006】[0006]

【課題を解決するための手段】本発明の太陽電池用絶縁
基板は、その目的を達成するため、金属板を基板とし、
無機粉末を含む絶縁層が、ゾルーゲル法により金属板の
表面に形成されていることを特徴とする。
In order to achieve the object, an insulating substrate for a solar cell according to the present invention comprises a metal plate as a substrate,
An insulating layer containing an inorganic powder is formed on a surface of a metal plate by a sol-gel method.

【0007】絶縁層は0.5〜10μmの酸化物層であり、無
機粉末が分散されている。添加する無機粉末は可視光反
射率70%以上の無機化合物等の絶縁性無機粉末であり、
粒径を0.2μm以上2.0μm以下とし、25〜75mass%の割合
で絶縁層に分散させることができる。絶縁層の表面粗さ
をRaで0.2〜0.4μm、Rmaxで0.8〜2.0μmの範囲とし、絶
縁層表面に突出した無機粉末の高さを0.2〜2.0μm、隣
り合う間隔を0.2〜2.0μmに制御することが望ましい。
The insulating layer is an oxide layer having a thickness of 0.5 to 10 μm, in which inorganic powder is dispersed. The inorganic powder to be added is an insulating inorganic powder such as an inorganic compound having a visible light reflectance of 70% or more,
The particle size can be 0.2 μm or more and 2.0 μm or less and can be dispersed in the insulating layer at a rate of 25 to 75 mass%. The surface roughness of the insulating layer is in the range of 0.2 to 0.4 μm in Ra and 0.8 to 2.0 μm in Rmax, the height of the inorganic powder protruding on the surface of the insulating layer is 0.2 to 2.0 μm, and the adjacent space is 0.2 to 2.0 μm. It is desirable to control.

【0008】この太陽電池用絶縁基板は、アルコキシシ
ラン、式(1)の構造を持つオルガノアルコキシシラ
ン、アルミニウムアルコキシド、チタンアルコキシド、
アルカリ金属又はアルカリ土類金属のアルコキシドの1
種類又は2種以上と、水及び増粘剤を有機溶媒に溶解
し、無機粉末を分散させたゾル-ゲル溶液に金属板を浸
漬、塗布、スプレー等で接触させ、金属板の表面に付着
した溶液を乾燥・焼成することにより形成される。
The insulating substrate for a solar cell includes an alkoxysilane, an organoalkoxysilane having a structure of the formula (1), an aluminum alkoxide, a titanium alkoxide,
Alkoxides of alkali metals or alkaline earth metals
Kind or two or more, water and a thickener are dissolved in an organic solvent, and a metal plate is immersed in a sol-gel solution in which an inorganic powder is dispersed, contacted by coating, spraying, etc., and adhered to the surface of the metal plate. It is formed by drying and baking the solution.

【0009】[0009]

【式1】 X:ビニル基、エポキシ基、アミノ基、メタクリロキシ
基又はメルカプト基 R:アルキル基
(Equation 1) X: vinyl group, epoxy group, amino group, methacryloxy group or mercapto group R: alkyl group

【0010】[0010]

【作用】ゾル-ゲル法は、金属板表面に酸化物層を形成
させる方法として従来から使用されており、比較的低温
で酸化物層を形成できる長所をもっている。しかし、従
来のゾル-ゲル法では、膜厚が1μm以下の薄膜が得られ
るに過ぎない。このような膜では絶縁性が十分でないこ
とから、太陽電池用基板の絶縁層として使用できない。
ところで、本発明者等は、オルガノアルコキシシランを
膜強化剤として、ヒドロキシアルキルセルロースを増粘
剤としてアルコキシドに添加したコーティング溶液を使
用すると、比較的厚膜の酸化物層が形成されることを見
いだし、特願平8-40558号等で紹介した。
The sol-gel method has been conventionally used as a method for forming an oxide layer on the surface of a metal plate, and has an advantage that an oxide layer can be formed at a relatively low temperature. However, according to the conventional sol-gel method, only a thin film having a thickness of 1 μm or less can be obtained. Such a film cannot be used as an insulating layer of a solar cell substrate because of insufficient insulation.
By the way, the present inventors have found that a relatively thick oxide layer is formed when a coating solution in which an organoalkoxysilane is used as a film strengthening agent and hydroxyalkyl cellulose is added to an alkoxide as a thickening agent is used. And Japanese Patent Application No. 8-40558.

【0011】基本となるゾル-ゲル浴は、アルミニウム
アルコキシド、チタンアルコキシド、アルコキシシラ
ン、オルガノアルコキシシラン、アルカリ金属及び/又
はアルカリ土類金属の1種又は2種以上を含むアルコキ
シドと、アルコールアミン、水及び無機粉末を含み、各
アルコキシドを溶解させるためアルコール系の溶剤を使
用する。アルコール系溶剤に溶解したアルコキシドは、
水添加によって加水分解し、水酸化物となる。しかし、
急激な加水分解では沈殿物が生成するので、アルコール
アミンの添加によって加水分解の反応速度を調整する。
The basic sol-gel bath includes an alkoxide containing one or more of aluminum alkoxide, titanium alkoxide, alkoxysilane, organoalkoxysilane, alkali metal and / or alkaline earth metal, alcohol amine, water And an alcohol-based solvent for dissolving each alkoxide. Alkoxides dissolved in alcohol solvents,
Hydrolyzes by addition of water to form hydroxide. But,
Since a precipitate is generated by rapid hydrolysis, the reaction rate of the hydrolysis is adjusted by adding alcohol amine.

【0012】このゾル-ゲル浴を金属板に浸漬、塗布、
スプレー等でコーティングすると、アルミニウムアルコ
キシド、チタンアルコキシド、アルコキシシラン、アル
カリ金属、アルカリ土類金属のアルコキシド等の加水分
解された水酸化物が付着する。この状態で金属板を加熱
すると合成反応が進行し、金属板の表面に酸化物層が形
成される。このときの加熱は、100〜600℃程度で、従来
の無機系酸化物を焼き付ける温度に比較して大幅に低
い。そのため、金属板に熱的な悪影響を及ぼすことな
く、しかも酸化物本来の優れた絶縁性を呈する絶縁層と
なる。
This sol-gel bath is immersed in a metal plate, coated,
When coated with a spray or the like, a hydrolyzed hydroxide such as an aluminum alkoxide, a titanium alkoxide, an alkoxysilane, an alkoxide of an alkali metal or an alkaline earth metal adheres. When the metal plate is heated in this state, the synthesis reaction proceeds, and an oxide layer is formed on the surface of the metal plate. The heating at this time is about 100 to 600 ° C., which is much lower than the temperature at which conventional inorganic oxides are baked. For this reason, the insulating layer does not adversely affect the metal plate thermally and exhibits excellent insulating properties inherent to the oxide.

【0013】形成された絶縁層は、従来のゾルーゲル法
による酸化物層と異なり、オルガノアルコキシシラン添
加によりシリカの網目構造の結合が強化され、ヒドロキ
シアルキルセルロースの添加により急激な溶剤の蒸発に
伴うクラックの発生が抑制されるし、金属板に対する密
着性も良好である。
The formed insulating layer is different from the oxide layer formed by the conventional sol-gel method in that the bonding of the silica network structure is strengthened by the addition of the organoalkoxysilane, and the cracks accompanying the rapid evaporation of the solvent are caused by the addition of the hydroxyalkyl cellulose. And the adhesion to the metal plate is good.

【0014】本発明にあっては、図1(a)に示すよう
に、金属板1の表面に、酸化物、窒化物、炭化物等の無
機粉末を分散させたゾル-ゲル浴を用い、膜厚0.5μm以
上の酸化物層を形成すると、無機粉末3が分散した酸化
物層2が得られる。無機粉末3は酸化物層2のクラック
発生を抑制し、酸化物層2を比較的容易に厚膜化できる
ため、太陽電池用の絶縁層として十分な絶縁特性が発現
される。しかし、酸化物層2の厚みが厚すぎると幅の広
いクラックが多数発生し、絶縁不良となることから、酸
化物層2の厚みは10μm以下に調整することが望まし
い。添加する無機粉末3の粒径が小さすぎると反射光の
拡散が不十分となり、テクスチャー効果が減少するため
光電変換効率が低下するし、緩衝効果の低下のため、厚
膜化する場合クラック等が発生しやすくなる。逆に、添
加する無機粉末3の粒径が大きすぎると無機粉末3が凝
集しやすくなり、加熱および物理的衝撃により凝集部分
にクラックが発生し、クラックに沿って表面拡散した電
極材を介する短絡がおこり、光電変換効率は低下する。
従って、無機粉末3の粒径は0.2〜2.0μmとするのが望
ましい。添加する無機粉末3の濃度が低すぎると反射光
の拡散が不十分となり、テクスチャー効果が減少するた
め、光電変換効率が低下するし、緩衝効果の低下のた
め、厚膜化する場合クラック等が発生しやすくなる。ま
た、アンカー効果の低下により上層に形成する電極との
密着性も低下して剥離が生じる。逆に、添加する無機粉
末3の濃度が高すぎると無機粉末3が凝集しやすくな
り、加熱および物理的衝撃により凝集部分にクラックが
発生し、クラックに沿って表面拡散した電極材を介する
短絡がおこり、光電変換効率は低下する。従って、無機
粉末3の濃度は、酸化物層2に対し、25〜75mass%とす
るのが望ましい。絶縁層の表面粗さがRa<0.2μm、Rmax<
0.8μmでは、反射光の拡散が不十分となり、テクスチャ
ー効果が減少するため、光電変換効率が低下するし、ア
ンカー効果の低下により上層に形成する電極との密着性
も低下して剥離が生じる。逆に、絶縁層の表面粗さがRa
>0.4μm、Rmax>2.0μmでは、絶縁層表面に形成される電
極材および非晶質半導体層にクラック等を発生すること
がある。絶縁層の表面粗さはRaで0.2〜0.4μm、Rmaxで
0.8〜2.0μmの範囲が望ましい。
In the present invention, as shown in FIG. 1 (a), a film is formed on a surface of a metal plate 1 by using a sol-gel bath in which inorganic powders such as oxides, nitrides and carbides are dispersed. When an oxide layer having a thickness of 0.5 μm or more is formed, an oxide layer 2 in which the inorganic powder 3 is dispersed is obtained. The inorganic powder 3 suppresses the occurrence of cracks in the oxide layer 2 and can relatively easily increase the thickness of the oxide layer 2, so that sufficient insulating properties are exhibited as an insulating layer for a solar cell. However, if the thickness of the oxide layer 2 is too large, a large number of wide cracks will occur and insulation failure will occur. Therefore, it is desirable to adjust the thickness of the oxide layer 2 to 10 μm or less. If the particle size of the inorganic powder 3 to be added is too small, the diffusion of the reflected light becomes insufficient, and the texture effect is reduced, so that the photoelectric conversion efficiency is reduced. More likely to occur. On the other hand, if the particle size of the inorganic powder 3 to be added is too large, the inorganic powder 3 is likely to agglomerate, cracks are generated in the agglomerated portion by heating and physical impact, and short-circuiting occurs through the electrode material that is surface-diffused along the cracks. Occurs, and the photoelectric conversion efficiency decreases.
Therefore, it is desirable that the particle diameter of the inorganic powder 3 be 0.2 to 2.0 μm. If the concentration of the inorganic powder 3 to be added is too low, the diffusion of the reflected light becomes insufficient, and the texture effect is reduced, so that the photoelectric conversion efficiency is reduced. More likely to occur. In addition, due to the decrease in the anchor effect, the adhesion to the electrode formed on the upper layer is also reduced, and peeling occurs. Conversely, if the concentration of the inorganic powder 3 to be added is too high, the inorganic powder 3 tends to agglomerate, cracks occur in the agglomerated portion due to heating and physical impact, and short-circuiting occurs via the electrode material whose surface has diffused along the cracks. Occasionally, the photoelectric conversion efficiency decreases. Therefore, the concentration of the inorganic powder 3 is desirably 25 to 75 mass% with respect to the oxide layer 2. The surface roughness of the insulating layer is Ra <0.2μm, Rmax <
At 0.8 μm, the diffusion of the reflected light becomes insufficient and the texture effect is reduced, so that the photoelectric conversion efficiency is reduced, and the adhesion to the electrode formed on the upper layer is also reduced due to the reduced anchor effect, and peeling is caused. Conversely, if the surface roughness of the insulating layer is Ra
If> 0.4 μm and Rmax> 2.0 μm, cracks and the like may occur in the electrode material and the amorphous semiconductor layer formed on the surface of the insulating layer. The surface roughness of the insulating layer is 0.2 to 0.4 μm in Ra, and
A range of 0.8 to 2.0 μm is desirable.

【0015】図1(b)に示すように、絶縁層表面に突
出した無機粉末の高さおよび隣り合う間隔が共に1μm弱
の時、テクスチャー効果による光電変換効率の向上が最
大となる。絶縁層表面に突出した無機粉末の高さが0.2
〜2.0μmでも光電変換効率の向上は顕著であるが、その
範囲外では向上の度合は小さくなる。絶縁層表面に突出
した無機粉末の隣り合う間隔が0.2〜2.0μmでも光電変
換効率の向上は顕著であるが、その範囲外では向上の度
合は小さくなる。従って、絶縁層表面に突出した無機粉
末の高さおよび隣り合う間隔は共に0.2〜2.0μmとする
のが望ましい。可視光反射特性が高い粉末を無機粉末3
として使用すると、太陽電池を構成したときの入射光の
絶縁層内部での多重反射が促進され、光電変換効率が向
上する。可視光反射特性が高い粉末としては、Al2O3、S
iO2、TiO2、ZnO、MgO、CaCO3、MgCO3等が使用される。
As shown in FIG. 1B, when the height of the inorganic powder protruding from the surface of the insulating layer and the interval between adjacent inorganic powders are both less than 1 μm, the improvement in photoelectric conversion efficiency due to the texture effect is maximized. The height of the inorganic powder protruding from the insulating layer surface is 0.2
Even when the thickness is up to 2.0 μm, the improvement of the photoelectric conversion efficiency is remarkable, but outside the range, the degree of improvement is small. Even if the interval between adjacent inorganic powders protruding from the surface of the insulating layer is 0.2 to 2.0 μm, the improvement in photoelectric conversion efficiency is remarkable, but outside the range, the degree of improvement is small. Therefore, the height of the inorganic powder protruding from the surface of the insulating layer and the interval between adjacent inorganic powders are desirably 0.2 to 2.0 μm. Powders with high visible light reflection characteristics were converted to inorganic powder 3
When it is used, multiple reflection of incident light inside the insulating layer when a solar cell is formed is promoted, and the photoelectric conversion efficiency is improved. Al 2 O 3 , S
iO 2 , TiO 2 , ZnO, MgO, CaCO 3 , MgCO 3 and the like are used.

【0016】[0016]

【実施例】[実施例1]アルミニウムイソプロポキシ
ド:1.0モル、オルトケイ酸テトラエチル:2.5モル、ナ
トリウムメトキシド:1.0モル、トリイソプロパノール
アミン:4.0モル及び水:7.0モルをブチルセロソルブ:
15モルに溶解し、粒径0.3μmのAl2O3:30mass%を加え、
24時間撹拌してゼオライト系膜用のゾル-ゲル浴を調整
した。得られたゾル-ゲル浴は白色で、100時間撹拌放置
しても安定であった。
[Example 1] [Example 1] 1.0 mol of aluminum isopropoxide, 2.5 mol of tetraethyl orthosilicate, 1.0 mol of sodium methoxide, 4.0 mol of triisopropanolamine and 7.0 mol of water: butyl cellosolve:
Dissolved in 15 mol, added Al 2 O 3 with a particle size of 0.3 μm: 30 mass%,
The mixture was stirred for 24 hours to prepare a sol-gel bath for the zeolite-based membrane. The resulting sol-gel bath was white, and was stable even after stirring for 100 hours.

【0017】板厚0.15mmのステンレス鋼板を脱脂し、ゾ
ル-ゲル液をロールコーターでコーティングし、400℃で
1分間焼成して酸化物層を形成した。得られた酸化物皮
膜は、厚み1.3μmで均一且つ緻密な構造をもった白色膜
であり、表面粗さがRa 0.22μm、Rmax 1.44μmであっ
た。
A stainless steel plate having a thickness of 0.15 mm was degreased, coated with a sol-gel solution using a roll coater, and fired at 400 ° C. for 1 minute to form an oxide layer. The resulting oxide film was a white film having a uniform and dense structure with a thickness of 1.3 μm, and had surface roughnesses of Ra 0.22 μm and Rmax 1.44 μm.

【0018】[実施例2]溶融Al(55%)-Znめっき鋼
板を基板とし、実施例1と同じ条件でコーティングし
た。得られた酸化物皮膜は、厚み1.4μmで均一且つ緻密
な構造をもった白色膜であり、表面粗さがRa 0.24μm、
Rmax 1.51μmであった。
Example 2 A hot-dip Al (55%)-Zn plated steel sheet was used as a substrate and coated under the same conditions as in Example 1. The obtained oxide film is a white film having a uniform and dense structure with a thickness of 1.4 μm, the surface roughness is Ra 0.24 μm,
Rmax was 1.51 μm.

【0019】[実施例3]ステンレス鋼板を基板とし、
ゾルーゲル浴に加える無機粉末を粒径1.8μmのAl 2O3:5
0mass%とする以外は、実施例1と同じ条件でコーティン
グした。得られた酸化物皮膜は、厚み1.3μmで均一且つ
緻密な構造をもった白色膜であり、絶縁層表面に突出し
た無機粉末の高さが0.9μm、隣り合う間隔が0.9μmに制
御されていた。また、表面粗さはRa 0.28μm、Rmax 1.7
7μmであった。
Example 3 A stainless steel plate was used as a substrate,
1.8μm particle size Al powder TwoOThree:Five
Coating was performed under the same conditions as in Example 1 except that it was set to 0 mass%.
I did it. The resulting oxide film has a uniform thickness of 1.3 μm and
A white film with a dense structure that protrudes from the surface of the insulating layer.
The height of the inorganic powder is 0.9 μm and the distance between adjacent
Was being controlled. The surface roughness is Ra 0.28 μm, Rmax 1.7
It was 7 μm.

【0020】[比較例1]メチルエトキシシラン:1.0モ
ル、リン酸:0.05モル、水:4.0モルをブタノール:7.0
モルに溶解した後、1mass%のヒドロキシプロピルセル
ロースと、粒径0.2μmのTiO2:20mass%を加え、24時間
攪拌してシリカ系膜用のゾルーゲル浴を調整した。得ら
れたゾルーゲル浴は白色で、100時間攪拌放置しても安
定であった。
[Comparative Example 1] Methylethoxysilane: 1.0 mol, phosphoric acid: 0.05 mol, water: 4.0 mol, butanol: 7.0
After dissolving in a mole, 1 mass% of hydroxypropylcellulose and 0.2 μm of TiO 2 having a particle size of 20 mass% were added and stirred for 24 hours to prepare a sol-gel bath for a silica-based film. The resulting sol-gel bath was white, and was stable even after stirring for 100 hours.

【0021】ゼオライト系膜用に替えてシリカ系膜用の
ゾルーゲル浴を用いる以外は、実施例1と同じ条件でコ
ーティングした。得られた酸化物皮膜は、厚み1.2μmで
均一且つ緻密な構造をもった白色膜であり、表面粗さが
Ra 0.20μm、Rmax 1.21μmであった。
Coating was performed under the same conditions as in Example 1 except that a sol-gel bath for a silica-based membrane was used instead of the zeolite-based membrane. The resulting oxide film is a white film having a uniform and dense structure with a thickness of 1.2 μm and a surface roughness of
Ra 0.20 μm and Rmax 1.21 μm.

【0022】[比較例2]無機粉末を粒径0.2μmとする以
外は、実施例1と同じ条件でコーティングした。得られ
た酸化物皮膜は、厚み1.2μmで均一且つ緻密な構造をも
った白色膜であり、表面粗さがRa =0.21μm、Rmax 1.38
μmであった。
Comparative Example 2 Coating was performed under the same conditions as in Example 1 except that the particle size of the inorganic powder was 0.2 μm. The obtained oxide film was a white film having a uniform and dense structure with a thickness of 1.2 μm, and the surface roughness was Ra = 0.21 μm, Rmax 1.38.
μm.

【0023】[比較例3]無機粉末の添加濃度を80mass%
とする以外は、実施例3と同じ条件でコーティングし
た。得られた酸化物皮膜は、厚み1.4μmで均一且つ緻密
な構造をもった白色膜であり、表面粗さがRa 0.35μm、
Rmax 2.25μmであった。
Comparative Example 3 The additive concentration of the inorganic powder was 80 mass%.
Coating was performed under the same conditions as in Example 3 except that The resulting oxide film is a white film having a uniform and dense structure with a thickness of 1.4 μm, the surface roughness is Ra 0.35 μm,
Rmax was 2.25 μm.

【0024】[比較例4]無機粉末を粒径2.7μmとする以
外は、実施例3と同じ条件でコーティングした。得られ
た酸化物皮膜は、厚み1.4μmで均一且つ緻密な構造をも
った白色膜であり、表面粗さがRa 0.32μm、Rmax 1.90
μmであった。
Comparative Example 4 Coating was performed under the same conditions as in Example 3 except that the particle size of the inorganic powder was 2.7 μm. The resulting oxide film is a white film having a uniform and dense structure with a thickness of 1.4 μm, the surface roughness is Ra 0.32 μm, Rmax 1.90
μm.

【0025】[比較例5]Al2O3に替えてCuOを添加したゾ
ルーゲル浴を用いる以外は、実施例3と同じ条件でコー
ティングした。得られた酸化物皮膜は、厚み1.4μmで均
一且つ緻密な構造をもった灰色膜であり、表面粗さがRa
0.30μm、Rmax 1.89μmであった。
Comparative Example 5 Coating was carried out under the same conditions as in Example 3 except that a sol-gel bath containing CuO was used instead of Al 2 O 3 . The resulting oxide film is a gray film having a uniform and dense structure with a thickness of 1.4 μm and a surface roughness of Ra.
0.30 μm and Rmax 1.89 μm.

【0026】実施例1〜3および比較例1〜5で酸化物
層が形成された金属板を太陽電池用基板として使用し、
常法に従って次のようにして太陽電池を形成した。
The metal plates on which the oxide layers were formed in Examples 1 to 3 and Comparative Examples 1 to 5 were used as solar cell substrates,
A solar cell was formed in the following manner according to a conventional method.

【0027】先ず、加熱した基板表面に酸化インジウム
及び酸化錫の混合物を蒸着させ、下部電極を所定間隔で
形成した。そして、下部電極上に非晶質Si膜をフ゜ラス゛マCV
D法で形成し、下部電極に対応する透光性上部電極とし
て酸化インジウム膜を非晶質Si膜上にスパッタリング法
で形成した。更に、透光性上部電極の上に高分子樹脂を
一様に塗布し、焼成することにより、透光性パシベーシ
ョン膜を形成した。
First, a mixture of indium oxide and tin oxide was deposited on the heated substrate surface to form lower electrodes at predetermined intervals. Then, an amorphous Si film is formed on the lower electrode by plasma CV.
An indium oxide film was formed on the amorphous Si film by a sputtering method as a light-transmitting upper electrode corresponding to the lower electrode by the D method. Further, a high-molecular resin was uniformly applied on the light-transmitting upper electrode and baked to form a light-transmitting passivation film.

【0028】得られた各太陽電池について、山下電装株
式会社製のソーラシミュレータを用いて光電変換効率を
測定した。実施例1及び2の基板を使用した太陽電池で
は、10%の光電変換効率を示した。また、絶縁層表面
に突出した無機粉末の高さおよび隣り合う間隔が共に1
μm弱に制御されていた実施例3では、11%と高い光
電変換効率が得られた。これに対し、比較例1の基板を
使用した場合、金属質の電極と絶縁膜との界面に剥離が
生じたため、太陽電池を構成できなかった。比較例2の
基板を使用した太陽電池では、テクスチャー効果が小さ
いため光電変換効率が9%と低くかった。比較例3の基
板を使用した太陽電池では、添加した無機粉末が凝集し
て粗度を粗くし、凝集物が起点となってクラックが発生
しているため、光電変換効率も0〜6%と低い範囲でば
らついた。比較例4の基板を使用した太陽電池では、比
較例3の場合と同様、添加した無機粉末が凝集して粗度
を粗くし、凝集物が起点となってクラックが発生してい
るため、光電変換効率も1〜7%と低い範囲でばらつい
た。比較例5の基板を使用した太陽電池では、添加した
CuOの可視光反射率が低いため、光電変換効率も6%と
低い値を示した。
For each of the obtained solar cells, the photoelectric conversion efficiency was measured using a solar simulator manufactured by Yamashita Denso Co., Ltd. The solar cells using the substrates of Examples 1 and 2 exhibited a photoelectric conversion efficiency of 10%. In addition, the height of the inorganic powder protruding from the surface of the insulating layer and the interval between adjacent inorganic powders are both 1
In Example 3, in which the control was made to be slightly less than μm, a high photoelectric conversion efficiency of 11% was obtained. On the other hand, when the substrate of Comparative Example 1 was used, a solar cell could not be formed because the interface between the metallic electrode and the insulating film was peeled off. In the solar cell using the substrate of Comparative Example 2, the photoelectric conversion efficiency was as low as 9% because the texture effect was small. In the solar cell using the substrate of Comparative Example 3, the added inorganic powder agglomerated to make the roughness coarse, and the agglomerate was used as a starting point to cause cracks. Therefore, the photoelectric conversion efficiency was also 0 to 6%. It varied in the low range. In the solar cell using the substrate of Comparative Example 4, as in the case of Comparative Example 3, the added inorganic powder was aggregated to make the roughness coarse, and a crack was generated from the aggregate as a starting point. The conversion efficiency also varied in a low range of 1 to 7%. In the solar cell using the substrate of Comparative Example 5, it was added.
Since the visible light reflectance of CuO was low, the photoelectric conversion efficiency also showed a low value of 6%.

【0029】この対比から明かなように、実施例1〜3
で絶縁層が形成された金属板は、何れも高性能の太陽電
池用基板として使用されることが判る。
As is apparent from this comparison, Examples 1 to 3 were used.
It can be seen that any of the metal plates on which the insulating layer is formed is used as a high-performance solar cell substrate.

【0030】[0030]

【発明の効果】以上に説明したように、本発明の太陽電
池用基板は、絶縁層として有効な酸化物層をゾル-ゲル
法で金属板の表面に形成しているため、従来の有機系絶
縁層に比較して耐熱性、耐湿性に優れ、非晶質Si堆積時
等にガスを発生することがなく、しかも優れた密着性で
金属質の電極を形成できる。ゾル-ゲル法で形成される
酸化物層は、従来の無機系絶縁層に比較すると非常に簡
便な方法で形成され、優れた絶縁特性を呈する絶縁層と
なる。しかも、絶縁膜には無機粉末が分散しており、絶
縁層表面および内部で光が拡散反射するテクスチャー効
果により光電変換効率が向上する。特に、絶縁層表面に
突出した無機粉末の高さおよび隣り合う間隔を共に0.2
〜2.0μmに制御し、絶縁層の表面粗度をRaで0.2〜0.4μ
m、Rnaxで0.8〜2.0μmに制御するとき、テクスチャー効
果が大きくなり、光電変換効率の高い太陽電池用の基板
として使用される。
As described above, in the solar cell substrate of the present invention, an oxide layer effective as an insulating layer is formed on the surface of a metal plate by a sol-gel method. It is superior in heat resistance and moisture resistance as compared with the insulating layer, does not generate gas when depositing amorphous Si, and can form a metal electrode with excellent adhesion. An oxide layer formed by a sol-gel method is formed by a very simple method as compared with a conventional inorganic insulating layer, and becomes an insulating layer having excellent insulating properties. In addition, inorganic powder is dispersed in the insulating film, and photoelectric conversion efficiency is improved by a texture effect in which light is diffusely reflected on the surface and inside of the insulating layer. In particular, the height of the inorganic powder protruding from the surface of the insulating layer and the interval between adjacent inorganic powders are both set to 0.2.
~ 2.0μm, and the surface roughness of the insulation layer is Ra 0.2 ~ 0.4μ
When m and Rnax are controlled to 0.8 to 2.0 μm, the texture effect becomes large, and it is used as a substrate for a solar cell having high photoelectric conversion efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ゾル-ゲル法で金属板表面に形成された無機
粉末を含む酸化物層の各断面図。(a)無機粉末を含む
酸化物層の断面図。(b)絶縁層表面に突出した無機粉
末の高さおよび隣り合う間隔を共に1μm弱に制御した酸
化物層の断面図。
FIG. 1 is a cross-sectional view of an oxide layer containing an inorganic powder formed on a metal plate surface by a sol-gel method. (A) Cross-sectional view of an oxide layer containing an inorganic powder. (B) A cross-sectional view of the oxide layer in which the height of the inorganic powder protruding from the surface of the insulating layer and the distance between adjacent inorganic powders are both controlled to be less than 1 μm.

【符号の説明】[Explanation of symbols]

1 金属板 2 ゾル-ゲル法による酸化物層 3 無機粉末 Reference Signs List 1 metal plate 2 oxide layer by sol-gel method 3 inorganic powder

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属板を基材とし、金属アルコキシドを
主成分とする浴を用いたゾルーゲル法による絶縁層が前
記基板の表面に形成され、粒径が0.2〜2.0μmの絶縁性
無機粉末を25〜75mass%の割合で前記絶縁層に分散する
ことで、絶縁信頼性および光電変換効率を向上した太陽
電池用絶縁基板。
An insulating layer is formed on a surface of the substrate by a sol-gel method using a metal plate as a base material and a bath containing a metal alkoxide as a main component, and the insulating inorganic powder having a particle size of 0.2 to 2.0 μm is formed. An insulating substrate for a solar cell having improved insulation reliability and photoelectric conversion efficiency by being dispersed in the insulating layer at a ratio of 25 to 75 mass%.
【請求項2】 絶縁層の表面粗さがRaで0.2〜0.4μm、R
maxで0.8〜2.0μmの範囲にあり、該絶縁層表面に突出し
た絶縁性無機粉末の高さが0.2〜2.0μm、隣り合う間隔
が0.2〜2.0μmである請求項1記載の太陽電池用絶縁基
板。
2. An insulating layer having a surface roughness Ra of 0.2 to 0.4 μm,
The solar cell insulation according to claim 1, wherein the maximum is in the range of 0.8 to 2.0 µm, the height of the insulating inorganic powder protruding from the surface of the insulating layer is 0.2 to 2.0 µm, and the interval between adjacent ones is 0.2 to 2.0 µm. substrate.
【請求項3】 絶縁層の厚みが0.5〜10μmの酸化物層で
ある請求項1又は2記載の太陽電池用絶縁基板。
3. The insulating substrate for a solar cell according to claim 1, wherein the insulating layer is an oxide layer having a thickness of 0.5 to 10 μm.
【請求項4】 無機粉末が可視光反射率70%以上の無機
化合物である請求項3記載の太陽電池用絶縁基板。
4. The insulating substrate for a solar cell according to claim 3, wherein the inorganic powder is an inorganic compound having a visible light reflectance of 70% or more.
【請求項5】 アルコキシシラン、式(1)の構造を持つ
オルガノアルコキシシラン、アルミニウムアルコキシ
ド、チタンアルコキシド、アルカリ金属又はアルカリ土
類金属のアルコキシドの1種類又は2種以上と、水及び
増粘剤を有機溶媒に溶解させ、無機粉末を分散させた溶
液に金属板を接触させ、金属板に付着した溶液を乾燥・
焼成して絶縁層を形成することを特徴とする太陽電池用
絶縁基板の製造方法。 【式1】 X:ビニル基、エポキシ基、アミノ基、メタクリロキシ
基又はメルカプト基 R:アルキル基
5. An alkoxysilane, one or more of an organoalkoxysilane having the structure of the formula (1), an aluminum alkoxide, a titanium alkoxide, an alkoxide of an alkali metal or an alkaline earth metal, water and a thickener. The metal plate is brought into contact with the solution in which the inorganic powder is dispersed by dissolving in an organic solvent, and the solution adhering to the metal plate is dried.
A method for manufacturing an insulating substrate for a solar cell, comprising sintering to form an insulating layer. (Equation 1) X: vinyl group, epoxy group, amino group, methacryloxy group or mercapto group R: alkyl group
JP10358530A 1998-12-17 1998-12-17 Insulation base material for solar cell and manufacturing method for the board Withdrawn JP2000183376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10358530A JP2000183376A (en) 1998-12-17 1998-12-17 Insulation base material for solar cell and manufacturing method for the board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10358530A JP2000183376A (en) 1998-12-17 1998-12-17 Insulation base material for solar cell and manufacturing method for the board

Publications (1)

Publication Number Publication Date
JP2000183376A true JP2000183376A (en) 2000-06-30

Family

ID=18459807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10358530A Withdrawn JP2000183376A (en) 1998-12-17 1998-12-17 Insulation base material for solar cell and manufacturing method for the board

Country Status (1)

Country Link
JP (1) JP2000183376A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093854A1 (en) * 2004-03-25 2005-10-06 Kaneka Corporation Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
JP2005311292A (en) * 2004-03-25 2005-11-04 Kaneka Corp Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same
WO2006046397A1 (en) * 2004-10-28 2006-05-04 Kaneka Corporation Substrate for thin film photoelectric converter and integrated thin film photoelectric converter employing it
JP2006128478A (en) * 2004-10-29 2006-05-18 Mitsubishi Heavy Ind Ltd Photoelectric converter
JP2007088044A (en) * 2005-09-20 2007-04-05 Nippon Steel Materials Co Ltd Coated stainless steel foil and thin film solar cell
JP2008302098A (en) * 2007-06-11 2008-12-18 Fujifilm Corp Ultrasonic probe, backing for ultrasonic probe, and method for producing the backing
US8129611B2 (en) 2004-12-10 2012-03-06 Mitsubishi Heavy Industries, Ltd. Light-scattering film and optical device using the same
JP2013213180A (en) * 2011-09-06 2013-10-17 Sumitomo Chemical Co Ltd Polymer, organic thin film using the polymer, and organic thin film element
JP2015144243A (en) * 2013-12-25 2015-08-06 東京応化工業株式会社 Method for forming surface-coating film, and solar battery having surface-coating film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093854A1 (en) * 2004-03-25 2005-10-06 Kaneka Corporation Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
JP2005311292A (en) * 2004-03-25 2005-11-04 Kaneka Corp Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same
US7781668B2 (en) 2004-03-25 2010-08-24 Kaneka Corporation Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
WO2006046397A1 (en) * 2004-10-28 2006-05-04 Kaneka Corporation Substrate for thin film photoelectric converter and integrated thin film photoelectric converter employing it
JP2006128478A (en) * 2004-10-29 2006-05-18 Mitsubishi Heavy Ind Ltd Photoelectric converter
US8129611B2 (en) 2004-12-10 2012-03-06 Mitsubishi Heavy Industries, Ltd. Light-scattering film and optical device using the same
JP2007088044A (en) * 2005-09-20 2007-04-05 Nippon Steel Materials Co Ltd Coated stainless steel foil and thin film solar cell
JP2008302098A (en) * 2007-06-11 2008-12-18 Fujifilm Corp Ultrasonic probe, backing for ultrasonic probe, and method for producing the backing
US7612486B2 (en) * 2007-06-11 2009-11-03 Fujifilm Corporation Ultrasonic probe, backing material for ultrasonic probe, and method of manufacturing the same
JP2013213180A (en) * 2011-09-06 2013-10-17 Sumitomo Chemical Co Ltd Polymer, organic thin film using the polymer, and organic thin film element
JP2015144243A (en) * 2013-12-25 2015-08-06 東京応化工業株式会社 Method for forming surface-coating film, and solar battery having surface-coating film

Similar Documents

Publication Publication Date Title
JP5814512B2 (en) OPTICAL MEMBER, ITS MANUFACTURING METHOD, AND OPTICAL SYSTEM
RU2531752C2 (en) Thin-film silicon solar cell having improved undercoat
JPS6215496B2 (en)
JP2013537873A (en) Glass substrate coated with antireflection layer
US20010024685A1 (en) Method for forming a protective coating and substrates coated with the same
CN106098806A (en) A kind of optoelectronic film strengthening adhesive force and application thereof
JP7242720B2 (en) Glass plate with coating film and method for producing the same
JP2000183376A (en) Insulation base material for solar cell and manufacturing method for the board
JPWO2011070714A1 (en) Cover glass for photoelectric conversion device and manufacturing method thereof
JPWO2016051750A1 (en) Low reflection coating, glass plate, glass substrate, and photoelectric conversion device
JP2002234754A (en) Method for producing toughened functional film-coated glass article
JPH08508582A (en) Method for forming thin coating layer having optical properties and abrasion resistance
CN106045333B (en) A kind of low radiation coated glass and preparation method thereof
EP0818561B1 (en) Protection coatings produced by sol-gel on silver reflectors
CN105624663A (en) Method for preparing blackening thermal control coating with high absorptivity and high emissivity on surface of red copper
JPH11261090A (en) Solar battery substrate and its manufacture
JPH0570178A (en) Heat ray-reflecting film and its production
JPH11121773A (en) Insulating substrate for solar cells and manufacture thereof
JPH1140829A (en) Solar cell insulating board and manufacture thereof
US5271768A (en) Coating for forming an oxide coating
JP2002097365A (en) Insulating substrate for thin-film polycrystal silicon solar battery, and method for producing the same
US20180145189A1 (en) Coated glass for solar reflectors
JPH11238891A (en) Insulating substrate for solar cell
JP6487933B2 (en) Low reflection coating, glass plate with low reflection coating, glass plate with low reflection coating, glass substrate, photoelectric conversion device, and method of manufacturing low reflection coating
KR100378019B1 (en) A composition for a protective layer of a transparent conductive layer and a method for preparing conductive layer from the composition

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307