JP2009267222A - Manufacturing method of substrate with transparent conductive film for thin-film photoelectric converter - Google Patents

Manufacturing method of substrate with transparent conductive film for thin-film photoelectric converter Download PDF

Info

Publication number
JP2009267222A
JP2009267222A JP2008117074A JP2008117074A JP2009267222A JP 2009267222 A JP2009267222 A JP 2009267222A JP 2008117074 A JP2008117074 A JP 2008117074A JP 2008117074 A JP2008117074 A JP 2008117074A JP 2009267222 A JP2009267222 A JP 2009267222A
Authority
JP
Japan
Prior art keywords
transparent electrode
electrode layer
photoelectric conversion
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008117074A
Other languages
Japanese (ja)
Other versions
JP4904311B2 (en
Inventor
Hiroko Tawada
裕子 多和田
Toshiaki Sasaki
敏明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008117074A priority Critical patent/JP4904311B2/en
Publication of JP2009267222A publication Critical patent/JP2009267222A/en
Application granted granted Critical
Publication of JP4904311B2 publication Critical patent/JP4904311B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of manufacturing a transparent electrode for photoelectric converter with less fluctuations in the electrical characteristics on a substrate and superior light confinement effect, and capable of improving the performance of a thin-film photoelectric converter by using the method. <P>SOLUTION: The method for manufacturing a substrate with transparent conductive film for photoelectric converter includes: a process, wherein a first transparent electrode layer having surface roughness where zinc oxide is doped with impurities at a certain concentration is formed, in the order starting from the substrate side, by using a low pressure CVD method; and a process, wherein a second transparent electrode layer is formed by increasing the amount of raw material gas of zinc in a range that is 1.2-3 times higher, as compared with that in the first transparent electrode layer. The time for forming the second transparent electrode layer is in a range of 1/25 to 1/5 of the time for the formation of the first transparent electrode layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、薄膜光電変換装置用透明導電膜の製造方法とそれを用いた薄膜光電変換装置の改善に関する。   The present invention relates to a method for producing a transparent conductive film for a thin film photoelectric conversion device and improvement of a thin film photoelectric conversion device using the same.

光電変換装置は、受光センサや太陽電池などの様々な分野で用いられている。特に、太陽電池においては、低コスト化と高効率化を両立するために、原料使用量が少ない薄膜太陽電池が注目され、その開発が精力的に行われている。なかでも、ガラス等の安価な基体上に400℃以下の低温プロセスを用いて良質の半導体層を形成する方法が、低コストを実現可能な方法として期待されている。   Photoelectric conversion devices are used in various fields such as light receiving sensors and solar cells. In particular, in a solar cell, in order to achieve both low cost and high efficiency, a thin film solar cell with a small amount of raw material used has attracted attention and its development has been energetically performed. Among these, a method of forming a high-quality semiconductor layer on a low-priced substrate such as glass using a low-temperature process of 400 ° C. or lower is expected as a method capable of realizing low cost.

薄膜太陽電池は、一般に、透光性基板上に順に積層された透明電極、1以上の半導体薄膜光電変換ユニット、および裏面電極を含む。そして、1つの光電変換ユニットは導電型層であるp型層とn型層で挟まれたi型層(光電変換層ともいう)を含む。   A thin-film solar cell generally includes a transparent electrode, one or more semiconductor thin-film photoelectric conversion units, and a back electrode that are sequentially stacked on a light-transmitting substrate. One photoelectric conversion unit includes an i-type layer (also referred to as a photoelectric conversion layer) sandwiched between a p-type layer which is a conductive type layer and an n-type layer.

このような構成の薄膜太陽電池における透明電極の材料としては、従来酸化錫(SnO)や酸化インジウム錫(ITO)等の透明導電膜が使用されている。しかし、最近では薄膜太陽電池の製造コストをより低減させるために、低コストの酸化亜鉛(ZnO)を用いることが進められている。 Conventionally, a transparent conductive film such as tin oxide (SnO 2 ) or indium tin oxide (ITO) has been used as a transparent electrode material in the thin film solar cell having such a configuration. Recently, however, low-cost zinc oxide (ZnO) has been used to further reduce the manufacturing cost of thin-film solar cells.

さらに、薄膜太陽電池は、従来のバルクの単結晶や多結晶シリコンを使用した太陽電池に比べて光電変換層を薄くすることが可能であるが、反面、薄膜全体の光吸収が膜厚によって制限されてしまうという問題がある。そこで、光電変換層を含む光電変換ユニットに入射した光をより有効に利用するために、光電変換ユニットに接する透明導電膜あるいは金属層の表面を凹凸化(テクスチャ化)し、その界面で光を散乱した後、光電変換ユニット内へ入射させることで光路長を延長せしめ、光電変換層内での光吸収量を増加させる工夫がなされている。この技術は「光閉じ込め」と呼ばれており、高い光電変換効率を有する薄膜太陽電池を実用化する上で、重要な要素技術となっている。   In addition, thin-film solar cells can make the photoelectric conversion layer thinner than solar cells using conventional bulk single crystals or polycrystalline silicon. However, the light absorption of the entire thin film is limited by the film thickness. There is a problem of being done. Therefore, in order to use light incident on the photoelectric conversion unit including the photoelectric conversion layer more effectively, the surface of the transparent conductive film or metal layer in contact with the photoelectric conversion unit is made uneven (textured), and light is transmitted at the interface. After scattering, the optical path length is extended by making it enter into a photoelectric conversion unit, and the device which makes the light absorption amount in a photoelectric converting layer increase is made | formed. This technology is called “optical confinement” and is an important elemental technology for practical use of a thin film solar cell having high photoelectric conversion efficiency.

(先行例1)例えば、特許文献1に開示されている光電変換装置用透明導電膜は、低圧CVD法を用いてZnO膜を形成するものであり、透明導電膜のウェットエッチングを行わずかつその膜厚を増加させずに、表面凹凸が効果的に大きくできるため、この透明導電膜を薄膜光電変換装置に適用すれば、光電変換特性の改善された薄膜光電変換装置を提供できると開示している。この低圧CVD法は高圧熱CVD法に比べて、200℃以下の低温プロセスのため、低コスト化が図れる。また、ガラスやプラスチックフィルムなどの安価な基体を用いることができる。さらに、低圧CVD法は、スパッタ法に比べて1桁以上速い製膜速度にて製膜が可能であるとともに、原料の利用効率が高いことから、製造コストの面でも薄膜太陽電池にとって好ましい。   (Prior Example 1) For example, the transparent conductive film for photoelectric conversion device disclosed in Patent Document 1 is a film that forms a ZnO film by using a low-pressure CVD method, and does not perform wet etching of the transparent conductive film. Since the surface irregularities can be effectively increased without increasing the film thickness, it is disclosed that if this transparent conductive film is applied to a thin film photoelectric conversion device, a thin film photoelectric conversion device with improved photoelectric conversion characteristics can be provided. Yes. Since this low-pressure CVD method is a low-temperature process of 200 ° C. or lower compared with the high-pressure thermal CVD method, cost can be reduced. In addition, an inexpensive base such as glass or plastic film can be used. Further, the low-pressure CVD method is preferable for a thin film solar cell in terms of manufacturing cost because it can be formed at a film forming speed one digit or more faster than the sputtering method and the utilization efficiency of raw materials is high.

一方、ZnO膜は透明電極の材料として用いられるSnO膜やITO膜と比較すると、水分に暴露されることによって電気的特性が悪化しやすいという問題がある。さらに、非特許文献1では、非晶質薄膜太陽電池用のZnO膜を、ガラス基板上に130℃の低温条件下で光MOCVD法によって形成しているが、そのままでは未反応のHOがZnO膜中に残留することが開示されている。ゆえに、300℃のAr雰囲気下でアニールすることにより、この残留しているHOをZnO膜中から取り除くことができ、非晶質薄膜太陽電池の特性が改善できることを示している。
特開2007−288043号公報 W. W. Wenas et al., Technical Digest of the International PVSEC-7, A-I-4, 1993
On the other hand, the ZnO film has a problem that its electrical characteristics are likely to be deteriorated by exposure to moisture as compared with a SnO 2 film or an ITO film used as a material for a transparent electrode. Furthermore, in Non-Patent Document 1, a ZnO film for an amorphous thin-film solar cell is formed on a glass substrate by a photo-MOCVD method under a low temperature condition of 130 ° C. However, as it is, unreacted H 2 O is formed. It is disclosed that it remains in the ZnO film. Therefore, it is shown that by annealing in an Ar atmosphere at 300 ° C., the remaining H 2 O can be removed from the ZnO film, and the characteristics of the amorphous thin film solar cell can be improved.
JP 2007-288043 A WW Wenas et al., Technical Digest of the International PVSEC-7, AI-4, 1993

本発明の目的は、薄膜太陽電池等に用いられる光電変換装置用透明電極の表面凹凸を光閉じ込めに効果的なものとし、光電変換装置の性能を改善する光電変換装置用透明電極を安価な製造方法で提供し、さらにそれを用いて光電変換装置の性能を向上させることにある。   The object of the present invention is to make the surface unevenness of a transparent electrode for a photoelectric conversion device used for a thin film solar cell effective for light confinement, and to manufacture a transparent electrode for a photoelectric conversion device that improves the performance of the photoelectric conversion device at low cost. It is to provide a method, and further to improve the performance of the photoelectric conversion device using the method.

低圧CVD法を用いて、200℃以下の低温プロセスを用いた表面凹凸を有するZnO膜を検討したところ、得られた透明導電膜は、数ヶ月間放置することにより、電気特性の一つであるシート抵抗が上昇し、透明電極としての特性が悪化するという課題が明らかになった。   When a ZnO film having surface irregularities using a low-temperature process of 200 ° C. or lower was examined using a low-pressure CVD method, the obtained transparent conductive film is one of electrical characteristics when left for several months. The subject that sheet resistance rose and the characteristic as a transparent electrode deteriorated became clear.

この課題は、非特許文献1に記載の300℃のAr雰囲気下でアニールする方法で改善されるが、300℃処理のため設備コストが増加し、透明電極自体が200℃以下の低温プロセスで製造できる利点を活かせないため、ZnO膜での低コスト化を実現する上で問題となる。   This problem is improved by the method of annealing in an Ar atmosphere at 300 ° C. described in Non-Patent Document 1, but the equipment cost increases because of the 300 ° C. treatment, and the transparent electrode itself is manufactured at a low temperature process of 200 ° C. Since the advantages that can be made cannot be utilized, there is a problem in realizing cost reduction with the ZnO film.

上記問題に鑑み、低圧CVD法を用いた透明導電膜自体の形成方法において、電気特性の変動が少なく、薄膜光電変換装置に十分な透明電極を得る方法を鋭意検討の結果、ZnO透明導電膜の表面側すなわち光電変換ユニット側の層において、亜鉛原料およびドーパント量を基板側よりも増加させた条件で形成することにより、電気特性の変動が少なくかつ光閉じ込め効果の高い透明電極を形成できる場合があることを本発明者らは見出し、本発明を考案するに至った。   In view of the above problems, in a method for forming a transparent conductive film itself using a low-pressure CVD method, a method for obtaining a transparent electrode with little variation in electrical characteristics and sufficient for a thin film photoelectric conversion device has been intensively studied. In the layer on the surface side, that is, on the photoelectric conversion unit side, by forming the zinc raw material and the dopant amount on the condition that the amount of the dopant is increased from that on the substrate side, there may be a case where a transparent electrode with little fluctuation in electrical characteristics and high light confinement effect can be formed. The present inventors have found that there is, and have come up with the present invention.

上記課題を解決するために、本発明の第1は、光電変換装置用透明導電膜付き基板の製造方法であって、低圧CVD法を用いて、基板側から順に、一定の濃度で酸化亜鉛に不純物をドープした表面凹凸を有する第一透明電極層を形成する工程と、該第一透明電極層よりも亜鉛の原料ガス量を1.2〜3倍の範囲で増加させて第二透明電極層を形成する工程とを備え、第二透明電極層を形成する時間は、該第一透明電極層を形成する時間の1/25〜1/5の範囲であることを特徴とする光電変換装置用透明導電膜付き基板の製造方法、である。   In order to solve the above problems, a first aspect of the present invention is a method for manufacturing a substrate with a transparent conductive film for a photoelectric conversion device, which is converted to zinc oxide at a constant concentration in order from the substrate side using a low-pressure CVD method. A step of forming a first transparent electrode layer having surface irregularities doped with impurities, and a second transparent electrode layer by increasing the amount of zinc source gas in a range of 1.2 to 3 times that of the first transparent electrode layer The time for forming the second transparent electrode layer is in the range of 1/25 to 1/5 of the time for forming the first transparent electrode layer. It is a manufacturing method of a board | substrate with a transparent conductive film.

本発明は、また、光電変換装置用透明導電膜付き基板の製造方法であって、低圧CVD法を用いて、基板側から順に、一定の濃度で酸化亜鉛に不純物をドープした表面凹凸を有する第一透明電極層を形成する工程と、該第一透明電極層よりも亜鉛の原料ガス量を1.2〜3倍の範囲に増加させ、かつ不純物ドープ量を1.2〜3倍の範囲に増加させて第二透明電極層を形成する工程とを備え、第二透明電極層を形成する時間は、該第一透明電極層を形成する時間の1/25〜1/5の範囲であることを特徴とする光電変換装置用透明導電膜付き基板の製造方法である。   The present invention is also a method for producing a substrate with a transparent conductive film for a photoelectric conversion device, wherein the low-pressure CVD method has surface irregularities in which zinc oxide is doped with impurities at a constant concentration in order from the substrate side. A step of forming one transparent electrode layer, and the amount of source gas of zinc is increased to a range of 1.2 to 3 times that of the first transparent electrode layer, and the impurity doping amount is set to a range of 1.2 to 3 times And forming a second transparent electrode layer, and the time for forming the second transparent electrode layer is in the range of 1/25 to 1/5 of the time for forming the first transparent electrode layer. It is a manufacturing method of the board | substrate with a transparent conductive film for photoelectric conversion apparatuses characterized by these.

なお、本願明細書における、「低圧CVD法」の用語は、大気圧より低い圧力の気体を用いた熱化学的気相成長法を意味する。すなはち、低圧CVD法は、減圧CVD法、ロープレッシャーCVD法(Low Pressure CVD法:略称LP−CVD法)とも呼ばれ、大気圧より低い圧力の気体を用いた熱化学的気相成長法と定義される。通常では、「CVD」の用語は「プラズマCVD」、「光CVD」などのようにエネルギー源を明示した場合を除いて「熱CVD」を意味するので、「低圧CVD法」の用語は「低圧熱CVD法」と同義である。また、低圧熱CVD法は、減圧下の有機金属CVD法(略称、MOCVD法)をも包含する。   In the present specification, the term “low pressure CVD method” means a thermochemical vapor deposition method using a gas having a pressure lower than atmospheric pressure. In other words, the low pressure CVD method is also called a low pressure CVD method or a low pressure CVD method (Low Pressure CVD method: abbreviated as LP-CVD method), and a thermochemical vapor deposition method using a gas having a pressure lower than the atmospheric pressure. Is defined. Normally, the term “CVD” means “thermal CVD” except when the energy source is clearly indicated, such as “plasma CVD”, “photo CVD”, etc. It is synonymous with “thermal CVD method”. The low-pressure thermal CVD method also includes a metal organic CVD method under reduced pressure (abbreviation, MOCVD method).

さらに、本願明細書における、「結晶質」と「微結晶」の用語は、当該技術分野において一般的に用いられているように、部分的に非晶質状態を含んでいるものをも意味している。   Further, in the present specification, the terms “crystalline” and “microcrystalline” also mean those partially including an amorphous state as commonly used in the art. ing.

本発明によれば、安価な製造方法で光閉じ込め効果の大きい薄膜光電変換装置に適した透明電極を提供することができ、光電変換装置の性能を改善することができる。   ADVANTAGE OF THE INVENTION According to this invention, the transparent electrode suitable for the thin film photoelectric conversion apparatus with a large light confinement effect with an inexpensive manufacturing method can be provided, and the performance of a photoelectric conversion apparatus can be improved.

以下、本発明の好ましい実施の形態について、図面を参照しつつ説明する。なお、本願明細書の図面において、厚さや長さなどの寸法関係については、図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表してはいない。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the drawings of the present specification, dimensional relationships such as thickness and length are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships.

図1は本発明の一つの実施形態を用いて製造した光電変換装置用透明導電膜を用いた薄膜光電変換装置5の構成を示す模式的な断面図である。図1における光電変換装置5は、透光性絶縁基板1の上に透明電極2を構成する第一透明電極層21および第二透明電極層22と、結晶質光電変換ユニット3を構成する一導電型層31、結晶質真性光電変換層32、逆導電型層33と、裏面電極4を順次堆積した構成を有する。この光電変換装置5に対しては、透光性絶縁基板1側から光電変換されるべき太陽光(hν)が入射される。   FIG. 1 is a schematic cross-sectional view showing a configuration of a thin film photoelectric conversion device 5 using a transparent conductive film for a photoelectric conversion device manufactured using one embodiment of the present invention. The photoelectric conversion device 5 in FIG. 1 has a first transparent electrode layer 21 and a second transparent electrode layer 22 that constitute the transparent electrode 2 on the translucent insulating substrate 1, and one conductivity that constitutes the crystalline photoelectric conversion unit 3. The mold layer 31, the crystalline intrinsic photoelectric conversion layer 32, the reverse conductivity type layer 33, and the back electrode 4 are sequentially deposited. Sunlight (hν) to be subjected to photoelectric conversion is incident on the photoelectric conversion device 5 from the translucent insulating substrate 1 side.

なお、透光性絶縁基板1は光電変換装置を構成した際に光入射側に位置することから、より多くの太陽光を透過させて光電変換ユニットに吸収させるためにできるだけ透明であることが好ましく、その材料としてはガラス板、透光性プラスチックフィルム等が用いられる。同様の意図から、太陽光の光入射面における光反射ロスを低減させるように、透光性絶縁基板1の光入射面に無反射コーティング(図示せず)を行うことが望ましい。   In addition, since the translucent insulating substrate 1 is located on the light incident side when the photoelectric conversion device is configured, it is preferable that the translucent insulating substrate 1 is as transparent as possible so that more sunlight is transmitted and absorbed by the photoelectric conversion unit. As the material, a glass plate, a translucent plastic film or the like is used. For the same purpose, it is desirable to apply a non-reflective coating (not shown) to the light incident surface of the translucent insulating substrate 1 so as to reduce the light reflection loss on the light incident surface of sunlight.

透光性絶縁基板1の透明電極2側は、透明電極2の付着力を向上させるために、透光性絶縁基板1の表面に微細な表面凹凸(図示せず)を付与してもよい。   The transparent electrode 2 side of the translucent insulating substrate 1 may be provided with fine surface irregularities (not shown) on the surface of the translucent insulating substrate 1 in order to improve the adhesion of the transparent electrode 2.

透明電極2は、第一および第二の製膜条件で透明電極層を連続堆積した2層構造で構成され、いずれも主にZnOからなることが好ましい。なぜなら、ZnOはSnOやITOよりも耐プラズマ性が高く、水素を使用した大きなプラズマ密度での光電変換層の堆積環境下でも、ZnO膜が還元されにくい。従って、還元による膜の黒化での入射光の吸収が生じにくく、光電変換層への透過光量が減少する可能性も低いため、薄膜光電変換装置用の透明電極材料として好適である。また、透明電極2は透光性絶縁基板1側から順に、ある一定の濃度で酸化亜鉛に不純物をドープした表面凹凸を有する第一透明電極層21と、第一透明電極層21よりも亜鉛の原料ガス量を1.2〜3倍の範囲で増加させて形成する第二透明電極層22とを積層した構成をなす。第一透明電極層21は、薄膜光電変換装置に適した光閉じ込め効果を得る役割を主に果たし、第二透明電極層は形成した透明導電膜が後に水分に暴露されることによって生じる電気的特性の悪化を抑制する役割を主に果たす。この第二透明電極層22を設けることで、第一透明電極層21を単独で使用する時よりも、光線透過率をほとんど低下させず、より薄膜光電変換装置の特性を改善できる電極設計が可能となる。なお、本発明では透明電極の凹凸の評価指標として、主にヘイズ率を用いている。ヘイズ率とは、(拡散透過率/全光線透過率)×100[%]で表されるものである(JIS K7136)。ヘイズ率の簡易評価方法としては、D65光源もしくはC光源を用いたヘイズメータによる測定が一般的に用いられる。 The transparent electrode 2 has a two-layer structure in which transparent electrode layers are continuously deposited under the first and second film forming conditions, and it is preferable that both are mainly composed of ZnO. This is because ZnO has higher plasma resistance than SnO 2 and ITO, and the ZnO film is difficult to be reduced even in a deposition environment of the photoelectric conversion layer with a large plasma density using hydrogen. Therefore, absorption of incident light due to blackening of the film due to reduction is unlikely to occur, and the possibility that the amount of light transmitted to the photoelectric conversion layer is reduced is low. Therefore, it is suitable as a transparent electrode material for a thin film photoelectric conversion device. In addition, the transparent electrode 2 has, in order from the translucent insulating substrate 1 side, a first transparent electrode layer 21 having surface irregularities in which zinc oxide is doped with an impurity at a certain concentration, and zinc is more than the first transparent electrode layer 21. The second transparent electrode layer 22 formed by increasing the amount of the source gas in a range of 1.2 to 3 times is laminated. The first transparent electrode layer 21 mainly plays a role of obtaining a light confinement effect suitable for a thin film photoelectric conversion device, and the second transparent electrode layer has electrical characteristics generated when the formed transparent conductive film is later exposed to moisture. Mainly plays a role in suppressing the deterioration of By providing the second transparent electrode layer 22, it is possible to design an electrode capable of improving the characteristics of the thin film photoelectric conversion device with almost no decrease in light transmittance than when the first transparent electrode layer 21 is used alone. It becomes. In the present invention, the haze ratio is mainly used as an evaluation index of the unevenness of the transparent electrode. The haze ratio is expressed by (diffuse transmittance / total light transmittance) × 100 [%] (JIS K7136). As a simple evaluation method of the haze ratio, measurement with a haze meter using a D65 light source or a C light source is generally used.

透明電極2の表面凹凸は、薄膜光電変換装置に適した光閉じ込め効果を得るために、透光性絶縁基板1上に透明電極2を形成した状態で、10〜40%程度のヘイズ率を有することが好ましい。このようなヘイズ率を有する透明電極の表面凹凸の平均高低差は10〜300nm程度である。透明電極2の表面凹凸が小さすぎる場合は、十分な光閉じ込め効果を得ることができず、大きすぎる場合は光電変換装置に電気的および機械的な短絡を生じさせる原因となり、光電変換装置の特性低下を引き起こす。このような透明電極2は大きな設備を要する高圧熱CVD法よりも簡便な蒸着法、低圧CVD法等を用いることができるが、特に低圧CVD法にて形成することが好ましい。なぜなら、ZnOは200℃以下の低温でも光閉じ込め効果を有するテクスチャが形成できるからである。また、低圧CVD法は、スパッタ法に比べて1桁以上速い堆積速度にて製膜が可能であるとともに、原料の利用効率が高いことから、製造コストの面でも好ましい。例えば、本発明の透明電極2である第一透明電極層21は、基板温度が150℃以上、圧力5〜1000Pa、原料ガスとしてジエチル亜鉛(DEZ)、水、ドーピングガス、および希釈ガスで形成される。亜鉛の原料ガスとしてはこの他ジメチル亜鉛を用いることもできる。酸素の原料ガスとしては、酸素、二酸化炭素、一酸化炭素、酸化二窒素、二酸化窒素、二酸化硫黄、五酸化二窒素、アルコール類(R(OH))、ケトン類(R(CO)R’)、エーテル類(ROR’)、アルデヒド類(R(COH))、アミド類((RCO)(NH3−x)、x=1,2,3)、スルホキシド類(R(SO)R’)(ただし、RおよびR’はアルキル基)を用いることもできる。希釈ガスとしては希ガス(He、Ar、Xe、Kr、Rn)、窒素、水素などを用いることができる。ドーピングガスとしてはジボラン(B)、アルキルアルミ、アルキルガリウムなどを用いることができる。DEZと水の比は1:1から1:5、DEZに対するBの比は0.05%以上が好ましい。DEZ、水は常温常圧で液体なので、加熱蒸発、バブリング、噴霧などの方法で気化させてから、供給する。ZnOの膜厚を500〜3000nmにすると、粒径が概ね50〜500nmで、かつ凹凸の平均高低差が概ね10〜300nmの表面凹凸を有する薄膜が得られ、光電変換装置の光閉じ込め効果を得る点で好ましい。なお、ここでいう基板温度とは、基板が製膜装置の加熱部と接している面の温度のことをいう。 The surface unevenness of the transparent electrode 2 has a haze ratio of about 10 to 40% in a state where the transparent electrode 2 is formed on the translucent insulating substrate 1 in order to obtain a light confinement effect suitable for the thin film photoelectric conversion device. It is preferable. The average height difference of the surface irregularities of the transparent electrode having such a haze ratio is about 10 to 300 nm. When the surface unevenness of the transparent electrode 2 is too small, a sufficient light confinement effect cannot be obtained, and when it is too large, an electrical and mechanical short circuit is caused in the photoelectric conversion device. Causes a drop. Such a transparent electrode 2 can be formed by a vapor deposition method, a low pressure CVD method or the like which is simpler than the high pressure thermal CVD method which requires a large facility, but is preferably formed by a low pressure CVD method. This is because ZnO can form a texture having a light confinement effect even at a low temperature of 200 ° C. or lower. The low-pressure CVD method is preferable in terms of manufacturing cost because it can form a film at a deposition rate one digit or more faster than the sputtering method and has high utilization efficiency of raw materials. For example, the first transparent electrode layer 21 which is the transparent electrode 2 of the present invention is formed of a substrate temperature of 150 ° C. or higher, a pressure of 5 to 1000 Pa, and a raw material gas of diethyl zinc (DEZ), water, a doping gas, and a dilution gas. The In addition to this, dimethylzinc can also be used as the zinc source gas. Examples of oxygen source gases include oxygen, carbon dioxide, carbon monoxide, dinitrogen oxide, nitrogen dioxide, sulfur dioxide, dinitrogen pentoxide, alcohols (R (OH)), and ketones (R (CO) R ′). , Ethers (ROR ′), aldehydes (R (COH)), amides ((RCO) x (NH 3−x ), x = 1,2,3), sulfoxides (R (SO) R ′) (However, R and R ′ are alkyl groups). As the dilution gas, a rare gas (He, Ar, Xe, Kr, Rn), nitrogen, hydrogen, or the like can be used. As the doping gas, diborane (B 2 H 6 ), alkylaluminum, alkylgallium, or the like can be used. The ratio of DEZ to water is preferably 1: 1 to 1: 5, and the ratio of B 2 H 6 to DEZ is preferably 0.05% or more. Since DEZ and water are liquids at normal temperature and normal pressure, they are vaporized by methods such as heat evaporation, bubbling, and spraying before being supplied. When the film thickness of ZnO is 500 to 3000 nm, a thin film having surface irregularities having a particle size of approximately 50 to 500 nm and an average height difference of irregularities of approximately 10 to 300 nm is obtained, and the light confinement effect of the photoelectric conversion device is obtained. This is preferable. The substrate temperature here means the temperature of the surface where the substrate is in contact with the heating unit of the film forming apparatus.

引き続き形成する第二透明電極層22は、第一透明電極層21と同様の方法、すなわち低圧CVD法で形成することが好ましい。なぜなら、同じ装置を用いることができ、製膜条件のみで透明導電膜の特性を改善できるからである。この第二透明電極層22は第一透明電極層21の形成条件よりも亜鉛の原料ガス量を1.2〜3倍の範囲に増加させることが好ましい。原料ガス量が少なすぎれば、本発明の十分な効果が得られず、多すぎれば透明電極2の全光線透過率を低下させる原因となる。また、第二透明電極層22を形成する際、同時に不純物ドープ量を1.2〜3倍の範囲に増加させることが好ましい。この範囲で不純物ドープ量を増加させれば、透明導電膜中のキャリア濃度が低下しすぎず、次に形成される光電変換ユニットとの電気的な接合が良好となるからである。逆に、高濃度で不純物ドープされた透明導電膜は、キャリア濃度が高く低抵抗ではあるが、膜の光線透過率が低いために光電変換装置への光吸収を妨げる可能性がある。第二透明電極層22を形成する時間は、第一透明電極層21を形成する時間の1/25〜1/5の範囲であることが好ましい。なぜなら、形成する時間が短すぎれば、本発明の十分な効果が得られず、長すぎれば透明電極2の全光線透過率を低下させる原因となるからである。この範囲の第二透明電極層22であれば、透光性絶縁基板1上に第二透明電極層22までを形成した状態で、概ね透明電極2の好ましいヘイズ率を維持しており、10〜40%程度のヘイズ率を有するため、薄膜光電変換装置に適した光閉じ込め効果が得られる。また、第二透明電極層22を形成することによって、低圧CVD法を用いて形成した第一透明電極層21の表面凹凸に関係する結晶粒界のポスト酸化等やその他の化学変化を防ぐことができる効果がある。   The second transparent electrode layer 22 to be subsequently formed is preferably formed by the same method as that for the first transparent electrode layer 21, that is, the low pressure CVD method. This is because the same apparatus can be used and the characteristics of the transparent conductive film can be improved only by the film forming conditions. The second transparent electrode layer 22 preferably increases the amount of the raw material gas of zinc in a range of 1.2 to 3 times the formation condition of the first transparent electrode layer 21. If the amount of the raw material gas is too small, the sufficient effect of the present invention cannot be obtained, and if it is too large, the total light transmittance of the transparent electrode 2 is reduced. Moreover, when forming the 2nd transparent electrode layer 22, it is preferable to increase the impurity doping amount to the range of 1.2 to 3 times simultaneously. This is because if the impurity doping amount is increased within this range, the carrier concentration in the transparent conductive film does not decrease too much, and the electrical connection with the photoelectric conversion unit to be formed next becomes good. Conversely, a transparent conductive film doped with impurities at a high concentration has a high carrier concentration and a low resistance, but the light transmittance of the film is low, which may hinder light absorption into the photoelectric conversion device. The time for forming the second transparent electrode layer 22 is preferably in the range of 1/25 to 1/5 of the time for forming the first transparent electrode layer 21. This is because if the formation time is too short, sufficient effects of the present invention cannot be obtained, and if it is too long, the total light transmittance of the transparent electrode 2 is reduced. If it is the 2nd transparent electrode layer 22 of this range, the preferable haze rate of the transparent electrode 2 is substantially maintained in the state which formed the 2nd transparent electrode layer 22 on the translucent insulated substrate 1, Since it has a haze ratio of about 40%, an optical confinement effect suitable for a thin film photoelectric conversion device can be obtained. Also, by forming the second transparent electrode layer 22, it is possible to prevent post-oxidation of crystal grain boundaries and other chemical changes related to the surface irregularities of the first transparent electrode layer 21 formed by using the low pressure CVD method. There is an effect that can be done.

透明電極2の平均膜厚は、500〜2000nmであることが好ましく、さらに800〜1800nmであることがより好ましい。なぜなら、ZnO膜が薄すぎれば、光閉じ込め効果に有効に寄与する凹凸を十分に付与すること自体が困難となり、また透明電極として必要な導電性が得にくく、厚すぎればZnO膜自体による光吸収により、ZnOを透過し光電変換ユニットへ到達する光量が減るため、効率が低下するからである。さらに、厚すぎる場合は、製膜時間の増大によりその製膜コストが増大する。この透明電極2の平均膜厚の場合、表面凹凸の平均高低差は概ね10〜100nmを有する。   The average film thickness of the transparent electrode 2 is preferably 500 to 2000 nm, and more preferably 800 to 1800 nm. This is because if the ZnO film is too thin, it will be difficult to sufficiently provide unevenness that effectively contributes to the light confinement effect, and it will be difficult to obtain the necessary conductivity as a transparent electrode. This is because the amount of light that passes through ZnO and reaches the photoelectric conversion unit is reduced, so that the efficiency is lowered. Furthermore, when it is too thick, the film forming cost increases due to an increase in the film forming time. In the case of the average film thickness of the transparent electrode 2, the average height difference of the surface irregularities is approximately 10 to 100 nm.

透明電極2上に形成される光電変換ユニット3は図示したように1つの光電変換ユニットとしてもよいが、複数の光電変換ユニットを積層してもよい。結晶質光電変換ユニット3としては、太陽光の主波長域(400〜1200nm)に吸収を有するものが好ましく、例えば結晶質シリコン系薄膜を真性結晶質光電変換層32とした結晶質シリコン系光電変換ユニットが挙げられる。また、「シリコン系」の材料には、シリコンに加え、シリコンカーバイドやシリコンゲルマニウムなど、シリコンを含むシリコン合金半導体材料も該当するものとする。   The photoelectric conversion unit 3 formed on the transparent electrode 2 may be a single photoelectric conversion unit as illustrated, but a plurality of photoelectric conversion units may be stacked. As the crystalline photoelectric conversion unit 3, one having absorption in the main wavelength range (400 to 1200 nm) of sunlight is preferable. For example, crystalline silicon photoelectric conversion using a crystalline silicon thin film as an intrinsic crystalline photoelectric conversion layer 32 is preferable. A unit. In addition to silicon, “silicon-based” materials include silicon alloy semiconductor materials containing silicon such as silicon carbide and silicon germanium.

結晶質シリコン系光電変換ユニットは、例えばpin型の順にプラズマCVD法により各半導体層を積層して形成される。具体的には、例えば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型微結晶シリコン系層、光電変換層となる真性結晶質シリコン層、および導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型微結晶シリコン系層をこの順に堆積すればよい。しかし、これら各層は上記に限定されず、例えばp型層として非晶質シリコン系膜を用いてもよい。またp型層として、非晶質または微結晶のシリコンカーバイド、シリコンゲルマニウムなどの合金材料を用いてもよい。なお、導電型(p型、n型)微結晶シリコン系層の膜厚は3nm以上100nm以下が好ましく、5nm以上50nm以下がさらに好ましい。   The crystalline silicon-based photoelectric conversion unit is formed by stacking semiconductor layers by plasma CVD, for example, in the order of pin type. Specifically, for example, a p-type microcrystalline silicon-based layer doped with 0.01 atomic% or more of boron, which is a conductivity type determining impurity atom, an intrinsic crystalline silicon layer serving as a photoelectric conversion layer, and a conductivity type determining impurity atom An n-type microcrystalline silicon-based layer doped with 0.01 atomic% or more of certain phosphorus may be deposited in this order. However, these layers are not limited to the above. For example, an amorphous silicon film may be used as the p-type layer. Further, an alloy material such as amorphous or microcrystalline silicon carbide or silicon germanium may be used for the p-type layer. Note that the film thickness of the conductive (p-type, n-type) microcrystalline silicon-based layer is preferably 3 nm to 100 nm, and more preferably 5 nm to 50 nm.

真性結晶質光電変換層32である真性結晶質シリコン層は、プラズマCVD法によって基体温度300℃以下で形成することが好ましい。低温で形成することにより、結晶粒界や粒内における欠陥を終端させて不活性化させる水素原子を多く含ませることが好ましい。具体的には、光電変換層の水素含有量は1〜30原子%の範囲内にあるのが好ましい。この層は、導電型決定不純物原子の密度が1×1018cm−3以下である実質的に真性半導体である薄膜として形成されることが好ましい。さらに、真性結晶質シリコン層に含まれる結晶粒の多くは、透明電極2側から柱状に延びて成長しており、その膜面に対して(110)の優先配向面を有することが好ましい。真性結晶質シリコン層の膜厚は光吸収の観点から1μm以上が好ましく、結晶質薄膜の内部応力による剥離を抑える観点から10μm以下が好ましい。ただし、薄膜結晶質光電変換ユニットとしては、太陽光の主波長域(400〜1200nm)に吸収を有するものが好ましいため、真性結晶質シリコン層に代えて、合金材料である結晶質シリコンカーバイド層(例えば10原子%以下の炭素を含有する結晶質シリコンからなる結晶質シリコンカーバイド層)や結晶質シリコンゲルマニウム層(例えば30原子%以下のゲルマニウムを含有する結晶質シリコンからなる結晶質シリコンゲルマニウム層)を形成してもよい。 The intrinsic crystalline silicon layer that is the intrinsic crystalline photoelectric conversion layer 32 is preferably formed by a plasma CVD method at a substrate temperature of 300 ° C. or lower. By forming at a low temperature, it is preferable to include many hydrogen atoms that terminate and inactivate defects in the grain boundaries and grains. Specifically, the hydrogen content of the photoelectric conversion layer is preferably in the range of 1 to 30 atomic%. This layer is preferably formed as a thin film which is a substantially intrinsic semiconductor having a conductivity type determining impurity atom density of 1 × 10 18 cm −3 or less. Further, most of the crystal grains contained in the intrinsic crystalline silicon layer are grown in a columnar shape from the transparent electrode 2 side, and preferably have a (110) preferential orientation plane with respect to the film surface. The film thickness of the intrinsic crystalline silicon layer is preferably 1 μm or more from the viewpoint of light absorption, and preferably 10 μm or less from the viewpoint of suppressing peeling due to internal stress of the crystalline thin film. However, since the thin film crystalline photoelectric conversion unit preferably has absorption in the main wavelength region of sunlight (400 to 1200 nm), instead of the intrinsic crystalline silicon layer, a crystalline silicon carbide layer (alloy material) ( For example, a crystalline silicon carbide layer made of crystalline silicon containing 10 atomic% or less of carbon or a crystalline silicon germanium layer (for example, a crystalline silicon germanium layer made of crystalline silicon containing 30 atomic% or less of germanium) It may be formed.

光電変換ユニット3の上には、裏面電極4が形成される。裏面電極としては、Al、Ag、Au、Cu、PtおよびCrから選ばれる少なくとも一つの材料からなる少なくとも一層の金属層42をスパッタ法または蒸着法により形成することが好ましい。また、光電変換ユニット3と金属層42との間に、ITO、SnO、ZnO等の導電性酸化物層41を形成するほうが好ましい。この導電性酸化物層41は、光電変換ユニット3と金属層42との間の密着性を高めるとともに、裏面電極4の光反射率を高め、さらに、光電変換ユニット層3の化学変化を防止する機能を有する。 A back electrode 4 is formed on the photoelectric conversion unit 3. As the back electrode, it is preferable to form at least one metal layer 42 made of at least one material selected from Al, Ag, Au, Cu, Pt and Cr by sputtering or vapor deposition. Further, it is preferable to form a conductive oxide layer 41 such as ITO, SnO 2 , or ZnO between the photoelectric conversion unit 3 and the metal layer 42. The conductive oxide layer 41 increases the adhesion between the photoelectric conversion unit 3 and the metal layer 42, increases the light reflectance of the back electrode 4, and further prevents chemical changes in the photoelectric conversion unit layer 3. It has a function.

図示はしていないが、本発明の実施形態の一つとして、透明電極2の上に非晶質光電変換ユニットと結晶質光電変換ユニットを順に積層したタンデム型光電変換装置がある。非晶質光電変換ユニットは、一導電型層、真性非晶質光電変換層および逆導電型層が含まれる。非晶質光電変換ユニットとして非晶質シリコン系材料を選べば、約360〜800nmの光に対して感度を有し、結晶質光電変換ユニットに結晶質シリコン系材料を選べばそれより長い約1200nmまでの光に対して感度を有する。したがって、光入射側から非晶質シリコン系光電変換ユニット、結晶質シリコン系光電変換ユニットの順で配置される太陽電池は、入射光をより広い範囲で有効利用可能な光電変換装置となる。結晶質光電変換ユニットは、前述の実施形態と同様に形成する。   Although not shown, as one embodiment of the present invention, there is a tandem photoelectric conversion device in which an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit are sequentially stacked on a transparent electrode 2. The amorphous photoelectric conversion unit includes a one conductivity type layer, an intrinsic amorphous photoelectric conversion layer, and a reverse conductivity type layer. If an amorphous silicon-based material is selected as the amorphous photoelectric conversion unit, it has sensitivity to light of about 360 to 800 nm, and if a crystalline silicon-based material is selected for the crystalline photoelectric conversion unit, it is longer than about 1200 nm. Sensitivity to light up to. Therefore, the solar cell arranged in the order of the amorphous silicon-based photoelectric conversion unit and the crystalline silicon-based photoelectric conversion unit from the light incident side becomes a photoelectric conversion device that can effectively use incident light in a wider range. The crystalline photoelectric conversion unit is formed in the same manner as in the above embodiment.

非晶質光電変換ユニットは、例えばpin型の順にプラズマCVD法により各半導体層を積層して形成される。具体的には、例えば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型非晶質シリコン系層、光電変換層となる真性非晶質シリコン系層、および導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型非晶質シリコン系層をこの順に堆積すればよい。しかし、これら各層は上記に限定されず、例えばp型層として微結晶シリコン系膜を用いてもよい。またp型層として、非晶質または微結晶のシリコンカーバイド、シリコンナイトライド、シリコンオキサイド、シリコンゲルマニウムなどの合金材料を用いてもよい。真性非晶質半導体層としては、シリコンカーバイド、シリコンゲルマニウムなどの合金材料を用いてもよい。真性非晶質シリコン系層としては、膜中の欠陥密度を低減して薄膜光電変換装置の再結合電流損失を低減するために、膜中に水素を2〜15%含むことが望ましい。また、真性非晶質シリコン系層は、光照射による劣化を低減するために、膜厚50nm以上500nm以下が望ましい。n型層としては、微結晶シリコン系膜を用いてもよい。なお、導電型(p型、n型)微結晶シリコン系層または非晶質シリコン系層の膜厚は3nm以上100nm以下が好ましく、5nm以上50nm以下がさらに好ましい。   The amorphous photoelectric conversion unit is formed by stacking each semiconductor layer by a plasma CVD method in the order of, for example, a pin type. Specifically, for example, a p-type amorphous silicon-based layer doped with 0.01 atomic% or more of boron, which is a conductivity-determining impurity atom, an intrinsic amorphous silicon-based layer that becomes a photoelectric conversion layer, and a conductivity-type determination An n-type amorphous silicon-based layer doped with 0.01 atomic% or more of phosphorus, which is an impurity atom, may be deposited in this order. However, these layers are not limited to the above. For example, a microcrystalline silicon film may be used as the p-type layer. Further, an alloy material such as amorphous or microcrystalline silicon carbide, silicon nitride, silicon oxide, silicon germanium, or the like may be used for the p-type layer. As the intrinsic amorphous semiconductor layer, an alloy material such as silicon carbide or silicon germanium may be used. The intrinsic amorphous silicon-based layer preferably contains 2 to 15% of hydrogen in the film in order to reduce the defect density in the film and reduce the recombination current loss of the thin film photoelectric conversion device. In addition, the intrinsic amorphous silicon-based layer desirably has a thickness of 50 nm to 500 nm in order to reduce deterioration due to light irradiation. A microcrystalline silicon film may be used as the n-type layer. Note that the film thickness of the conductive type (p-type, n-type) microcrystalline silicon-based layer or amorphous silicon-based layer is preferably 3 nm to 100 nm, and more preferably 5 nm to 50 nm.

最後に、薄膜光電変換装置が薄膜太陽電池等の場合は、裏面側は封止樹脂(図示せず)が添付されることにより保護される。   Finally, when the thin film photoelectric conversion device is a thin film solar cell or the like, the back surface side is protected by attaching a sealing resin (not shown).

なお、本発明の本質となるところは、透光性絶縁基板上に透明電極を使用するような他の種類の薄膜太陽電池にも利用できることは言うまでも無い。他の種類の薄膜光電変換装置(一態様として、薄膜太陽電池)とは、例えば、II−VI族化合物半導体であるCdTe太陽電池や、カルコパイライト薄膜であるCIS系太陽電池や、有機半導体を用いた有機太陽電池や、色素増感太陽電池等である。   Needless to say, the essence of the present invention is applicable to other types of thin-film solar cells using a transparent electrode on a translucent insulating substrate. Other types of thin film photoelectric conversion devices (in one aspect, thin film solar cells) are, for example, CdTe solar cells that are II-VI group compound semiconductors, CIS solar cells that are chalcopyrite thin films, and organic semiconductors. Organic solar cells and dye-sensitized solar cells.

すなわち、以下のような技術分野にも、本発明の本質となるところは、利用可能である。   That is, what is essential to the present invention can also be used in the following technical fields.

本発明は、また、
光電変換装置用透明導電膜付き基板の製造方法であって、低圧CVD法を用いて、基板側から順に、一定の濃度で酸化亜鉛に不純物をドープした表面凹凸を有する第一透明電極層を形成する工程と、該第一透明電極層よりも亜鉛の原料ガス量を1.2〜3倍の範囲で増加させて第二透明電極層を形成する工程とを備え、第二透明電極層を形成する時間は、該第一透明電極層を形成する時間の1/25〜1/5の範囲であることを特徴とする光電変換装置用透明導電膜付き基板の製造方法、
である。
The present invention also provides
A method for manufacturing a substrate with a transparent conductive film for a photoelectric conversion device, wherein a first transparent electrode layer having surface irregularities in which zinc oxide is doped with impurities at a constant concentration is formed in order from the substrate side using a low-pressure CVD method And forming a second transparent electrode layer by increasing the amount of zinc source gas in the range of 1.2 to 3 times that of the first transparent electrode layer to form a second transparent electrode layer. The method for producing a substrate with a transparent conductive film for a photoelectric conversion device, characterized in that the time to be is in the range of 1/25 to 1/5 of the time for forming the first transparent electrode layer,
It is.

本発明は、また、
光電変換装置用透明導電膜付き基板の製造方法であって、低圧CVD法を用いて、基板側から順に、一定の濃度で酸化亜鉛に不純物をドープした表面凹凸を有する第一透明電極層を形成する工程と、該第一透明電極層よりも亜鉛の原料ガス量を1.2〜3倍の範囲に増加させ、かつ不純物ドープ量を1.2〜3倍の範囲に増加させて第二透明電極層を形成する工程とを備え、第二透明電極層を形成する時間は、該第一透明電極層を形成する時間の1/25〜1/5の範囲であることを特徴とする光電変換装置用透明導電膜付き基板の製造方法、
である。
The present invention also provides
A method for manufacturing a substrate with a transparent conductive film for a photoelectric conversion device, wherein a first transparent electrode layer having surface irregularities in which zinc oxide is doped with impurities at a constant concentration is formed in order from the substrate side using a low-pressure CVD method And increasing the amount of zinc source gas to a range of 1.2 to 3 times that of the first transparent electrode layer and increasing the impurity doping amount to a range of 1.2 to 3 times the second transparent electrode layer. And a step of forming the second transparent electrode layer, wherein the time for forming the second transparent electrode layer is in the range of 1/25 to 1/5 of the time for forming the first transparent electrode layer. Manufacturing method of substrate with transparent conductive film for apparatus,
It is.

以下、本発明を実施例に基づいて詳細に説明するが、本発明はその趣旨を超えない限り以下の記載例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to the following description examples, unless the meaning is exceeded.

(実施例1)
実施例1として図1に示される光電変換装置用透明電極2を作製した。
Example 1
As Example 1, a transparent electrode 2 for a photoelectric conversion device shown in FIG.

透光性絶縁基板1として厚み0.7mm、125mm角のガラス基板を用い、その上に透明電極2として、低圧CVD法によりBドープZnOを約1.7μmの厚みで形成した。この第一透明電極層21は、基板温度を160℃とし、原料ガスとしてジエチルジンク(DEZ)と水、ドーパントガスとしてジボラン(B)ガスを供給し、減圧条件下CVD法にて形成している。圧力は20Pa、DEZの流量400sccm、水の流量1000sccm、B流量2sccm、アルゴン流量500sccm、水素流量500sccm成膜条件で堆積された。B流量は、DEZ流量に対して0.5%であった。この第一透明電極層21を850秒の時間堆積し、連続して第二透明電極層を50秒形成している。この第二透明電極層22は第一透明電極層21の形成条件におけるDEZ流量を2倍に増加させた点のみ異なる。 A glass substrate having a thickness of 0.7 mm and a 125 mm square was used as the translucent insulating substrate 1, and B-doped ZnO was formed thereon with a thickness of about 1.7 μm as the transparent electrode 2 by low-pressure CVD. The first transparent electrode layer 21 is formed by CVD using a substrate temperature of 160 ° C., supplying diethyl zinc (DEZ) and water as source gases, and diborane (B 2 H 6 ) gas as a dopant gas. is doing. The pressure was 20 Pa, DEZ flow rate 400 sccm, water flow rate 1000 sccm, B 2 H 6 flow rate 2 sccm, argon flow rate 500 sccm, hydrogen flow rate 500 sccm. The B 2 H 6 flow rate was 0.5% with respect to the DEZ flow rate. The first transparent electrode layer 21 is deposited for 850 seconds, and the second transparent electrode layer is continuously formed for 50 seconds. The second transparent electrode layer 22 is different from the second transparent electrode layer 22 only in that the DEZ flow rate in the formation condition of the first transparent electrode layer 21 is doubled.

得られた透明電極2付き基板は、シート抵抗が10Ω/□程度、ヘイズ率は25%であった。得られた透明電極付き基板の全光線透過率をガラス側から光を入射し、分光光度計にて測定した。波長500〜1200nmの範囲で80%以上の透過率を示した。なお、上述の方法で形成した透明電極2付き基板を、別途85℃85%の湿度雰囲気下において24時間暴露したところ、耐湿試験後でシート抵抗が92Ω/□に上昇していた。この時、透明電極層中の酸化亜鉛に対するBドープ濃度は、成膜時のDEZに対するBの流量比の関係に概ね比例する。従って、一定の成膜時間後に流量比を変化させると、透明電極層中のBドープ濃度も流量比に比例して変化する。 The obtained substrate with the transparent electrode 2 had a sheet resistance of about 10Ω / □ and a haze ratio of 25%. The total light transmittance of the obtained substrate with a transparent electrode was measured with a spectrophotometer by entering light from the glass side. A transmittance of 80% or more was exhibited in the wavelength range of 500 to 1200 nm. When the substrate with the transparent electrode 2 formed by the above-described method was separately exposed for 24 hours in a humidity atmosphere of 85 ° C. and 85%, the sheet resistance increased to 92Ω / □ after the moisture resistance test. At this time, the B dope concentration with respect to zinc oxide in the transparent electrode layer is approximately proportional to the relationship of the flow rate ratio of B 2 H 6 to DEZ during film formation. Therefore, when the flow rate ratio is changed after a certain film formation time, the B dope concentration in the transparent electrode layer also changes in proportion to the flow rate ratio.

なお、本実施例中のsccmはstandard cc/minで、1 atm、0℃で規格化されたccmである。   Note that sccm in this example is standard cc / min, which is ccm normalized at 1 atm and 0 ° C.

(実施例2)
実施例2においても、実施例1と同様に透明電極2付き基板を作製した。ただし、実施例1と異なるのは、第二透明電極層22の堆積時間を100秒とした点である。この条件で得られた透明電極2付き基板は、シート抵抗が9.5Ω/□程度、ヘイズ率は28%であった。また、得られた透明電極2付き基板で85℃85%の湿度雰囲気下において24時間暴露したところ、耐湿試験後でシート抵抗が80Ω/□に上昇していた。実施例1の基板とシート抵抗の変動率を比較すると、第二透明電極層22の形成時間を長くすることにより改善が見られた。
(Example 2)
Also in Example 2, a substrate with a transparent electrode 2 was produced in the same manner as in Example 1. However, the difference from Example 1 is that the deposition time of the second transparent electrode layer 22 is set to 100 seconds. The substrate with the transparent electrode 2 obtained under these conditions had a sheet resistance of about 9.5Ω / □ and a haze ratio of 28%. Further, when the obtained substrate with the transparent electrode 2 was exposed for 24 hours in a humidity atmosphere of 85 ° C. and 85%, the sheet resistance increased to 80Ω / □ after the moisture resistance test. When the variation rate of the sheet resistance was compared with the substrate of Example 1, the improvement was observed by increasing the formation time of the second transparent electrode layer 22.

(実施例3)
実施例3においても、実施例2と同様に透明電極2付き基板を作製した。ただし、実施例2と異なるのは、第二透明電極層22を形成時、DEZ流量と同時にB流量を2倍に変更した点である。この条件で得られた透明電極2付き基板は、シート抵抗が9.3Ω/□程度、ヘイズ率は23%であった。また、得られた透明電極2付き基板で85℃85%の湿度雰囲気下において24時間暴露したところ、耐湿試験後でシート抵抗が45Ω/□に上昇していた。実施例2の基板とシート抵抗の変動率を比較すると、第二透明電極層22の形成時にB流量を増加させることにより、更なる改善が見られた。
(Example 3)
Also in Example 3, a substrate with a transparent electrode 2 was produced in the same manner as in Example 2. However, the difference from Example 2 is that when the second transparent electrode layer 22 was formed, the B 2 H 6 flow rate was changed to double at the same time as the DEZ flow rate. The substrate with the transparent electrode 2 obtained under these conditions had a sheet resistance of about 9.3Ω / □ and a haze ratio of 23%. Further, when the obtained substrate with transparent electrode 2 was exposed for 24 hours in a humidity atmosphere of 85 ° C. and 85%, the sheet resistance increased to 45Ω / □ after the moisture resistance test. When the variation rate of the sheet resistance and the substrate of Example 2 was compared, further improvement was seen by increasing the B 2 H 6 flow rate during the formation of the second transparent electrode layer 22.

(実施例4)
実施例4においても、実施例2と同様に透明電極2付き基板を作製した。ただし、実施例2と異なるのは、第二透明電極層22を形成時の温度を165℃に変更した点である。この条件で得られた透明電極2付き基板は、シート抵抗が10.5Ω/□程度、ヘイズ率は28%であった。また、得られた透明電極2付き基板で85℃85%の湿度雰囲気下において24時間暴露したところ、耐湿試験後でシート抵抗が45Ω/□に上昇していた。実施例2の基板とシート抵抗の変動率を比較すると、第二透明電極層22の形成温度を高くすることにより改善が見られた。
Example 4
Also in Example 4, a substrate with a transparent electrode 2 was produced in the same manner as in Example 2. However, the difference from Example 2 is that the temperature at the time of forming the second transparent electrode layer 22 was changed to 165 ° C. The substrate with the transparent electrode 2 obtained under these conditions had a sheet resistance of about 10.5Ω / □ and a haze ratio of 28%. Further, when the obtained substrate with transparent electrode 2 was exposed for 24 hours in a humidity atmosphere of 85 ° C. and 85%, the sheet resistance increased to 45Ω / □ after the moisture resistance test. When the variation rate of the sheet resistance and the substrate of Example 2 were compared, improvement was seen by increasing the formation temperature of the second transparent electrode layer 22.

(実施例5)
実施例5においても、実施例2と同様に透明電極2付き基板を作製した。ただし、実施例2と異なるのは、第二透明電極層22を形成時の温度を170℃に変更し、さらに第一透明電極層21の形成時間を750秒に変更した点である。透明電極2の成膜速度は、基板温度に依存するため、成膜温度の変更と同時に成膜時間の調整を行った。この条件で得られた透明電極2付き基板は、シート抵抗が10Ω/□程度、ヘイズ率は25%であった。また、得られた透明電極2付き基板で85℃85%の湿度雰囲気下において24時間暴露したところ、耐湿試験後でシート抵抗が33Ω/□に上昇していた。実施例2および実施例4の基板とシート抵抗の変動率を比較すると、第二透明電極層22の形成温度を高くすることにより改善が見られた。
(Example 5)
Also in Example 5, a substrate with a transparent electrode 2 was produced in the same manner as in Example 2. However, the difference from Example 2 is that the temperature at the time of forming the second transparent electrode layer 22 was changed to 170 ° C., and the formation time of the first transparent electrode layer 21 was changed to 750 seconds. Since the film formation speed of the transparent electrode 2 depends on the substrate temperature, the film formation time was adjusted simultaneously with the change of the film formation temperature. The substrate with the transparent electrode 2 obtained under these conditions had a sheet resistance of about 10Ω / □ and a haze ratio of 25%. Further, when the obtained substrate with the transparent electrode 2 was exposed for 24 hours in a humidity atmosphere of 85 ° C. and 85%, the sheet resistance increased to 33Ω / □ after the moisture resistance test. When the variation rate of the sheet resistance was compared with the substrates of Example 2 and Example 4, the improvement was observed by increasing the formation temperature of the second transparent electrode layer 22.

(実施例6)
実施例6においては、実施例5と同様に透明電極2付き基板を作製した。ただし、実施例5と異なるのは、第二透明電極層22を形成時、DEZ流量と同時にB流量を2倍に変更した点である。この条件で得られた透明電極2付き基板は、シート抵抗が9.5Ω/□程度、ヘイズ率は21%であった。また、得られた透明電極2付き基板で85℃85%の湿度雰囲気下において24時間暴露したところ、耐湿試験後でシート抵抗が21Ω/□に上昇していた。実施例5の基板とシート抵抗の変動率を比較すると、第二透明電極層22の形成時にB流量を増加させることにより、更なる改善が見られた。
(Example 6)
In Example 6, a substrate with a transparent electrode 2 was produced in the same manner as in Example 5. However, the difference from Example 5 is that when the second transparent electrode layer 22 was formed, the B 2 H 6 flow rate was changed to double simultaneously with the DEZ flow rate. The substrate with the transparent electrode 2 obtained under these conditions had a sheet resistance of about 9.5Ω / □ and a haze ratio of 21%. Further, when the obtained substrate with the transparent electrode 2 was exposed for 24 hours in a humidity atmosphere of 85 ° C. and 85%, the sheet resistance increased to 21Ω / □ after the moisture resistance test. When the variation rate of the sheet resistance and the substrate of Example 5 was compared, further improvement was seen by increasing the B 2 H 6 flow rate during the formation of the second transparent electrode layer 22.

(比較例1)
比較例1は、実施例1とほぼ同様に透明電極2付き基板を作製した。ただし、実施例1と異なるのは、第二透明電極層22を形成せず、第一透明電極層21の形成時間を実施例1における第一透明電極層21と第二透明電極層22の形成時間の合計と等しくした点である。この条件で得られた透明電極2付き基板は、シート抵抗が12Ω/□程度、ヘイズ率は28%であった。また、得られた透明電極2付き基板で85℃85%の湿度雰囲気下において24時間暴露したところ、耐湿試験後でシート抵抗が180Ω/□まで上昇していた。
(Comparative Example 1)
In Comparative Example 1, a substrate with a transparent electrode 2 was produced in substantially the same manner as in Example 1. However, the difference from Example 1 is that the second transparent electrode layer 22 is not formed, and the formation time of the first transparent electrode layer 21 is the same as the formation of the first transparent electrode layer 21 and the second transparent electrode layer 22 in Example 1. The point equal to the total time. The substrate with the transparent electrode 2 obtained under these conditions had a sheet resistance of about 12Ω / □ and a haze ratio of 28%. Further, when the obtained substrate with the transparent electrode 2 was exposed for 24 hours in an atmosphere of 85 ° C. and 85% humidity, the sheet resistance increased to 180Ω / □ after the moisture resistance test.

(比較例2)
比較例2は、特許文献1の実施例1を模擬して透明電極2付き基板を作製した。本比較例1と異なるのは、第一透明電極層21の成膜初期の基板温度を170℃として、約200nm形成し、その後は基板温度を160℃とした点である。比較例1と同様に、第二透明電極層22は形成していない。この条件で得られた透明電極2付き基板は、シート抵抗が13Ω/□程度、ヘイズ率は27%であった。また、得られた透明電極2付き基板で85℃85%の湿度雰囲気下において24時間暴露したところ、耐湿試験後でシート抵抗が120Ω/□まで上昇していた。
(Comparative Example 2)
In Comparative Example 2, a substrate with a transparent electrode 2 was produced by simulating Example 1 of Patent Document 1. The difference from the comparative example 1 is that the substrate temperature at the initial film formation of the first transparent electrode layer 21 is set to 170 ° C., about 200 nm is formed, and the substrate temperature is set to 160 ° C. Similar to Comparative Example 1, the second transparent electrode layer 22 is not formed. The substrate with the transparent electrode 2 obtained under these conditions had a sheet resistance of about 13Ω / □ and a haze ratio of 27%. Further, when the obtained substrate with the transparent electrode 2 was exposed for 24 hours in a humidity atmosphere of 85 ° C. and 85%, the sheet resistance increased to 120Ω / □ after the moisture resistance test.

(比較例3)
比較例3は、比較例1とほぼ同様に透明電極2付き基板を作製した。ただし、比較例1と異なるのは、第一および二透明電極層の形成温度を170℃とし、それに伴い膜厚が1.7μm程度となるよう形成時間を調整した点である。この条件で得られた透明電極2付き基板は、シート抵抗が14Ω/□程度、ヘイズ率は28%であった。また、得られた透明電極2付き基板で85℃85%の湿度雰囲気下において24時間暴露したところ、耐湿試験後でシート抵抗が82Ω/□まで上昇していた。
(Comparative Example 3)
In Comparative Example 3, a substrate with a transparent electrode 2 was produced in substantially the same manner as Comparative Example 1. However, the difference from Comparative Example 1 is that the formation time of the first and second transparent electrode layers was set to 170 ° C., and the formation time was adjusted so that the film thickness was about 1.7 μm. The substrate with the transparent electrode 2 obtained under these conditions had a sheet resistance of about 14Ω / □ and a haze ratio of 28%. Further, when the obtained substrate with the transparent electrode 2 was exposed for 24 hours in a humidity atmosphere of 85 ° C. and 85%, the sheet resistance increased to 82Ω / □ after the moisture resistance test.

表1は上述の実施例1〜6および比較例1〜3による透明電極2の主要な形成条件とそれぞれの透明電極2の耐湿試験前後でのシート抵抗変動の結果をまとめたものである。   Table 1 summarizes the main formation conditions of the transparent electrode 2 according to the above-described Examples 1 to 6 and Comparative Examples 1 to 3, and the results of sheet resistance fluctuation before and after the moisture resistance test of each transparent electrode 2.

Figure 2009267222
Figure 2009267222

表1の結果から分かるように、実施例1〜6のいずれにおいても、比較例1との比較から、シート抵抗の変動を抑制できることがわかった。また、DEZ流量のみを増加させるよりも、DEZ流量と同時にB流量を増加させたほうが抵抗変動を抑制する効果が高いことがわかる。また、同じ形成温度で比較すると本方法がより抵抗変動を抑制する効果が高いこともわかる。 As can be seen from the results in Table 1, in any of Examples 1 to 6, it was found from the comparison with Comparative Example 1 that the variation in sheet resistance can be suppressed. It can also be seen that increasing the B 2 H 6 flow rate simultaneously with the DEZ flow rate is more effective in suppressing resistance fluctuations than increasing only the DEZ flow rate. It can also be seen that the method is more effective in suppressing resistance fluctuations when compared at the same formation temperature.

引き続き、上記実施例および比較例で得られたいくつかの透明電極2付き基板を用いて、薄膜光電変換装置5の特性評価を行った。   Then, the characteristic evaluation of the thin film photoelectric conversion apparatus 5 was performed using the some board | substrate with the transparent electrode 2 obtained by the said Example and comparative example.

(実施例7)
実施例7では、上記実施例2で得られた透明電極2付き基板を用いて、以下の薄膜光電変換装置5を形成した。
(Example 7)
In Example 7, the following thin film photoelectric conversion device 5 was formed using the substrate with the transparent electrode 2 obtained in Example 2 above.

第二透明電極層22の上に、厚さ15nmのp型微結晶シリコン層31、厚さ1.5μmの真性結晶質シリコン光電変換層32、及び厚さ15nmのn型微結晶シリコン層33からなる結晶質シリコン光電変換ユニット3を順次プラズマCVD法で形成した。その後、裏面電極4として厚さ90nmのAlドープされたZnO41と厚さ200nmのAg42をスパッタ法にて順次形成した。   On the second transparent electrode layer 22, a p-type microcrystalline silicon layer 31 with a thickness of 15 nm, an intrinsic crystalline silicon photoelectric conversion layer 32 with a thickness of 1.5 μm, and an n-type microcrystalline silicon layer 33 with a thickness of 15 nm. The resulting crystalline silicon photoelectric conversion units 3 were sequentially formed by the plasma CVD method. Thereafter, Al-doped ZnO 41 having a thickness of 90 nm and Ag 42 having a thickness of 200 nm were sequentially formed as the back electrode 4 by sputtering.

以上のようにして得られた光電変換装置5にAM1.5の光を100mW/cm光量で照射して出力特性を測定したところ、開放電圧(Voc)が0.550V、短絡電流密度(Jsc)が25.0mA/cm、曲線因子(F.F.)が0.730、そして変換効率が10.0%であった。 When the photoelectric conversion device 5 obtained as described above was irradiated with AM 1.5 light at 100 mW / cm 2 and measured for output characteristics, the open circuit voltage (Voc) was 0.550 V and the short-circuit current density (Jsc). ) Was 25.0 mA / cm 2 , the fill factor (FF) was 0.730, and the conversion efficiency was 10.0%.

(実施例8)
実施例8では、上記実施例5で得られた透明電極2付き基板を用いて、実施例7と同様に薄膜光電変換装置5を形成した。
(Example 8)
In Example 8, the thin film photoelectric conversion device 5 was formed in the same manner as in Example 7 using the substrate with the transparent electrode 2 obtained in Example 5 above.

得られた光電変換装置5にAM1.5の光を100mW/cm光量で照射して出力特性を測定したところ、開放電圧(Voc)が0.548V、短絡電流密度(Jsc)が25.2mA/cm、曲線因子(F.F.)が0.723、そして変換効率が10.0%であった。 When the output characteristics were measured by irradiating the obtained photoelectric conversion device 5 with AM1.5 light at 100 mW / cm 2 light amount, the open circuit voltage (Voc) was 0.548 V, and the short-circuit current density (Jsc) was 25.2 mA. / Cm 2 , fill factor (FF) was 0.723, and conversion efficiency was 10.0%.

(比較例4)
比較例4では、上記比較例1で得られた透明電極2付き基板を用いて、実施例7と同様に薄膜光電変換装置5を形成した。
(Comparative Example 4)
In Comparative Example 4, the thin film photoelectric conversion device 5 was formed in the same manner as in Example 7 using the substrate with the transparent electrode 2 obtained in Comparative Example 1 above.

得られた光電変換装置5にAM1.5の光を100mW/cm光量で照射して出力特性を測定したところ、開放電圧(Voc)が0.521V、短絡電流密度(Jsc)が24.6mA/cm、曲線因子(F.F.)が0.701、そして変換効率が9.0%であった。 When the output characteristics were measured by irradiating the obtained photoelectric conversion device 5 with AM 1.5 light at 100 mW / cm 2 light amount, the open circuit voltage (Voc) was 0.521 V, and the short-circuit current density (Jsc) was 24.6 mA. / Cm 2 , fill factor (FF) was 0.701, and conversion efficiency was 9.0%.

(比較例5)
比較例5では、上記比較例3で得られた透明電極2付き基板を用いて、実施例7と同様に薄膜光電変換装置5を形成した。
(Comparative Example 5)
In Comparative Example 5, the thin film photoelectric conversion device 5 was formed in the same manner as in Example 7 using the substrate with the transparent electrode 2 obtained in Comparative Example 3.

得られた光電変換装置5にAM1.5の光を100mW/cm光量で照射して出力特性を測定したところ、開放電圧(Voc)が0.496V、短絡電流密度(Jsc)が23.2mA/cm、曲線因子(F.F.)が0.680、そして変換効率が7.8%であった。 When the output characteristics were measured by irradiating the obtained photoelectric conversion device 5 with AM 1.5 light at 100 mW / cm 2 light amount, the open circuit voltage (Voc) was 0.496 V, and the short circuit current density (Jsc) was 23.2 mA. / Cm 2 , fill factor (FF) was 0.680, and conversion efficiency was 7.8%.

表2は上述の実施例7〜8および比較例4〜5の薄膜光電変換装置5の測定結果をまとめたものである。   Table 2 summarizes the measurement results of the thin film photoelectric conversion devices 5 of Examples 7 to 8 and Comparative Examples 4 to 5 described above.

Figure 2009267222
Figure 2009267222

表2の結果から分かるように、実施例のいずれにおいても、比較例を上回る変換効率の光電変換装置を得た。実施例7と比較例4の結果から、第二透明電極層22を形成することによって、VocとF.F.の向上が確認できることから、透明電極と導電型層との間の接合状態が改善されていることがわかる。また、実施例8と比較例5の結果から、透明電極の形成温度が透明導電膜特性に与える影響が大きいことに加え、光電変換特性にも与える影響が大きく、本製造方法を用いることにより、薄膜光電変換装置に適した透明電極2付き基板を安定して提供できることがわかる。   As can be seen from the results in Table 2, in any of the examples, a photoelectric conversion device having a conversion efficiency exceeding the comparative example was obtained. From the results of Example 7 and Comparative Example 4, by forming the second transparent electrode layer 22, Voc and F.R. F. It can be seen that the bonding state between the transparent electrode and the conductive type layer is improved. Further, from the results of Example 8 and Comparative Example 5, in addition to the large influence of the formation temperature of the transparent electrode on the transparent conductive film characteristics, the influence on the photoelectric conversion characteristics is also large. By using this production method, It turns out that the board | substrate with the transparent electrode 2 suitable for a thin film photoelectric conversion apparatus can be provided stably.

以上、詳細に説明したように、本発明によれば、効果的な透明電極の表面凹凸を有し、光閉じ込め効果の優れた光電変換装置用透明導電膜を安価な製造方法で提供することができる。   As described above in detail, according to the present invention, it is possible to provide a transparent conductive film for a photoelectric conversion device having an effective surface concavity and convexity and an excellent light confinement effect by an inexpensive manufacturing method. it can.

本発明の一実施形態である光電変換装置用透明導電膜を用いた薄膜光電変換装置の断面図Sectional drawing of the thin film photoelectric conversion apparatus using the transparent conductive film for photoelectric conversion apparatuses which is one Embodiment of this invention

符号の説明Explanation of symbols

1 透光性絶縁基板
2 透明電極
21 第一透明電極層
22 第二透明電極層
3 光電変換ユニット
31 一導電型層
32 真性光電変換層
33 逆導電型層
4 裏面電極
41 導電性酸化物層
42 金属層
5 光電変換装置
DESCRIPTION OF SYMBOLS 1 Translucent insulated substrate 2 Transparent electrode 21 1st transparent electrode layer 22 2nd transparent electrode layer 3 Photoelectric conversion unit 31 One conductivity type layer 32 Intrinsic photoelectric conversion layer 33 Reverse conductivity type layer 4 Back surface electrode 41 Conductive oxide layer 42 Metal layer 5 Photoelectric conversion device

Claims (2)

光電変換装置用透明導電膜付き基板の製造方法であって、低圧CVD法を用いて、基板側から順に、一定の濃度で酸化亜鉛に不純物をドープした表面凹凸を有する第一透明電極層を形成する工程と、該第一透明電極層よりも亜鉛の原料ガス量を1.2〜3倍の範囲で増加させて第二透明電極層を形成する工程とを備え、第二透明電極層を形成する時間は、該第一透明電極層を形成する時間の1/25〜1/5の範囲であることを特徴とする光電変換装置用透明導電膜付き基板の製造方法。   A method for manufacturing a substrate with a transparent conductive film for a photoelectric conversion device, wherein a first transparent electrode layer having surface irregularities in which zinc oxide is doped with impurities at a constant concentration is formed in order from the substrate side using a low-pressure CVD method And forming a second transparent electrode layer by increasing the amount of zinc source gas in the range of 1.2 to 3 times that of the first transparent electrode layer to form a second transparent electrode layer. The manufacturing time of the board | substrate with a transparent conductive film for photoelectric conversion apparatuses characterized by the time to perform being the range of 1 / 25-1 / 5 of the time which forms this 1st transparent electrode layer. 光電変換装置用透明導電膜付き基板の製造方法であって、低圧CVD法を用いて、基板側から順に、一定の濃度で酸化亜鉛に不純物をドープした表面凹凸を有する第一透明電極層を形成する工程と、該第一透明電極層よりも亜鉛の原料ガス量を1.2〜3倍の範囲に増加させ、かつ不純物ドープ量を1.2〜3倍の範囲に増加させて第二透明電極層を形成する工程とを備え、第二透明電極層を形成する時間は、該第一透明電極層を形成する時間の1/25〜1/5の範囲であることを特徴とする光電変換装置用透明導電膜付き基板の製造方法。   A method for manufacturing a substrate with a transparent conductive film for a photoelectric conversion device, wherein a first transparent electrode layer having surface irregularities in which zinc oxide is doped with impurities at a constant concentration is formed in order from the substrate side using a low-pressure CVD method And increasing the amount of zinc source gas to a range of 1.2 to 3 times that of the first transparent electrode layer and increasing the impurity doping amount to a range of 1.2 to 3 times the second transparent electrode layer. And a step of forming the second transparent electrode layer, wherein the time for forming the second transparent electrode layer is in the range of 1/25 to 1/5 of the time for forming the first transparent electrode layer. The manufacturing method of the board | substrate with a transparent conductive film for apparatuses.
JP2008117074A 2008-04-28 2008-04-28 Method for manufacturing substrate with transparent conductive film for thin film photoelectric conversion device Expired - Fee Related JP4904311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008117074A JP4904311B2 (en) 2008-04-28 2008-04-28 Method for manufacturing substrate with transparent conductive film for thin film photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117074A JP4904311B2 (en) 2008-04-28 2008-04-28 Method for manufacturing substrate with transparent conductive film for thin film photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2009267222A true JP2009267222A (en) 2009-11-12
JP4904311B2 JP4904311B2 (en) 2012-03-28

Family

ID=41392668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117074A Expired - Fee Related JP4904311B2 (en) 2008-04-28 2008-04-28 Method for manufacturing substrate with transparent conductive film for thin film photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP4904311B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157405A1 (en) * 2011-05-13 2012-11-22 三洋電機株式会社 Photoelectric conversion device
WO2013019029A1 (en) * 2011-07-29 2013-02-07 Lg Innotek Co., Ltd. Solar cell and method of fabricating the same
JP2013540358A (en) * 2010-10-05 2013-10-31 エルジー イノテック カンパニー リミテッド Photovoltaic power generation apparatus and manufacturing method thereof
KR101351419B1 (en) * 2010-11-12 2014-01-15 엘지디스플레이 주식회사 Apparatus manufacturing for flat panel display device and mathod for manufacturing the same
US8981214B2 (en) 2010-05-04 2015-03-17 Samsung Electronics Co., Ltd. Organic solar cell and method of making the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101783784B1 (en) 2011-11-29 2017-10-11 한국전자통신연구원 solar cell module and manufacturing method of the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058890A (en) * 1998-08-07 2000-02-25 Mitsubishi Heavy Ind Ltd Solar cell and fabrication thereof
JP2000252501A (en) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd Manufacture of silicon thin film optoelectric transducer device
JP2000252500A (en) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd Silicon thin-film photoelectric conversion device
JP2000294812A (en) * 1999-04-07 2000-10-20 Sanyo Electric Co Ltd Photoelectric converter element and its manufacture
JP2002025350A (en) * 2000-07-11 2002-01-25 Sanyo Electric Co Ltd Substrate with transparent conductive film and manufacturing method of the same, etching method using the same, and light electromotive force device
JP2002134773A (en) * 2000-10-24 2002-05-10 Canon Inc Photovoltaic element
JP2002217428A (en) * 2001-01-22 2002-08-02 Sanyo Electric Co Ltd Photoelectric conversion device and its manufacturing method
JP2004311704A (en) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd Substrate for thin film photoelectric converter and thin film photoelectric converter using the same
JP2005311292A (en) * 2004-03-25 2005-11-04 Kaneka Corp Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same
JP2006332440A (en) * 2005-05-27 2006-12-07 Showa Shell Sekiyu Kk Method and apparatus for continuously film-forming high-resistant buffer layer/window layer (transparent conductive film) of cis-based thin film solar cell
JP2007288043A (en) * 2006-04-19 2007-11-01 Kaneka Corp Transparent conductive film for photoelectric converter and manufacturing method thereof
WO2008062685A1 (en) * 2006-11-20 2008-05-29 Kaneka Corporation Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
JP2008277387A (en) * 2007-04-26 2008-11-13 Kaneka Corp Method of manufacturing photoelectric conversion device
JP2009135337A (en) * 2007-11-30 2009-06-18 Showa Shell Sekiyu Kk Laminate structure, integrated structure and manufacturing method, of cis-based solar cell

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000058890A (en) * 1998-08-07 2000-02-25 Mitsubishi Heavy Ind Ltd Solar cell and fabrication thereof
JP2000252501A (en) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd Manufacture of silicon thin film optoelectric transducer device
JP2000252500A (en) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd Silicon thin-film photoelectric conversion device
JP2000294812A (en) * 1999-04-07 2000-10-20 Sanyo Electric Co Ltd Photoelectric converter element and its manufacture
JP2002025350A (en) * 2000-07-11 2002-01-25 Sanyo Electric Co Ltd Substrate with transparent conductive film and manufacturing method of the same, etching method using the same, and light electromotive force device
JP2002134773A (en) * 2000-10-24 2002-05-10 Canon Inc Photovoltaic element
JP2002217428A (en) * 2001-01-22 2002-08-02 Sanyo Electric Co Ltd Photoelectric conversion device and its manufacturing method
JP2004311704A (en) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd Substrate for thin film photoelectric converter and thin film photoelectric converter using the same
JP2005311292A (en) * 2004-03-25 2005-11-04 Kaneka Corp Substrate for thin film solar cell, manufacturing method therefor, and thin film solar cell using the same
JP2006332440A (en) * 2005-05-27 2006-12-07 Showa Shell Sekiyu Kk Method and apparatus for continuously film-forming high-resistant buffer layer/window layer (transparent conductive film) of cis-based thin film solar cell
JP2007288043A (en) * 2006-04-19 2007-11-01 Kaneka Corp Transparent conductive film for photoelectric converter and manufacturing method thereof
WO2008062685A1 (en) * 2006-11-20 2008-05-29 Kaneka Corporation Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
JP2008277387A (en) * 2007-04-26 2008-11-13 Kaneka Corp Method of manufacturing photoelectric conversion device
JP2009135337A (en) * 2007-11-30 2009-06-18 Showa Shell Sekiyu Kk Laminate structure, integrated structure and manufacturing method, of cis-based solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8981214B2 (en) 2010-05-04 2015-03-17 Samsung Electronics Co., Ltd. Organic solar cell and method of making the same
JP2013540358A (en) * 2010-10-05 2013-10-31 エルジー イノテック カンパニー リミテッド Photovoltaic power generation apparatus and manufacturing method thereof
KR101351419B1 (en) * 2010-11-12 2014-01-15 엘지디스플레이 주식회사 Apparatus manufacturing for flat panel display device and mathod for manufacturing the same
TWI476852B (en) * 2010-11-12 2015-03-11 Lg Display Co Ltd Apparatus for fabricating a flat panel dipslay device and method thereof
US9310655B2 (en) 2010-11-12 2016-04-12 Lg Display Co., Ltd. Apparatus for fabricating a flat panel display device and method thereof
WO2012157405A1 (en) * 2011-05-13 2012-11-22 三洋電機株式会社 Photoelectric conversion device
WO2013019029A1 (en) * 2011-07-29 2013-02-07 Lg Innotek Co., Ltd. Solar cell and method of fabricating the same
KR101305802B1 (en) * 2011-07-29 2013-09-06 엘지이노텍 주식회사 Solar cell and method of fabricating the same

Also Published As

Publication number Publication date
JP4904311B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP5156641B2 (en) Substrate with transparent conductive film for photoelectric conversion device and method for manufacturing photoelectric conversion device
JP4928337B2 (en) Method for manufacturing photoelectric conversion device
EP2110859B1 (en) Laminate type photoelectric converter and method for fabricating the same
WO2013061637A1 (en) Photoelectric conversion device and method for manufacturing same, and photoelectric conversion module
JP5243697B2 (en) Transparent conductive film for photoelectric conversion device and manufacturing method thereof
WO2006057160A1 (en) Thin film photoelectric converter
JP4904311B2 (en) Method for manufacturing substrate with transparent conductive film for thin film photoelectric conversion device
JP4939058B2 (en) Method for producing transparent conductive film and method for producing tandem-type thin film photoelectric conversion device
JP4713819B2 (en) Substrate for thin film photoelectric conversion device and thin film photoelectric conversion device using the same
JP5291633B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof
JP5719846B2 (en) Transparent electrode for thin film solar cell, substrate with transparent electrode for thin film solar cell and thin film solar cell using the same, and method for producing transparent electrode for thin film solar cell
JP5270889B2 (en) Method for manufacturing thin film photoelectric conversion device
JP2008283075A (en) Manufacturing method of photoelectric conversion device
JP5469298B2 (en) Transparent conductive film for photoelectric conversion device and method for producing the same
Li et al. Influence of boron doping amount on properties of ZnO: B films grown by LPCVD technique and its correlation to a-Si: H/μc-Si: H tandem solar cells
JP5827224B2 (en) Thin film solar cell and manufacturing method thereof
CN217606831U (en) High-efficiency heterojunction solar cell
JP2011014736A (en) Thin film photoelectric conversion device and method of manufacturing the same
JP2009010108A (en) Method for manufacturing photoelectric conversion device
JP5613296B2 (en) Transparent conductive film for photoelectric conversion device, photoelectric conversion device, and manufacturing method thereof
WO2012081656A1 (en) Photoelectric conversion device and method for manufacturing same
JP5307280B2 (en) Thin film photoelectric conversion element
JP6226858B2 (en) Thin film solar cell and manufacturing method thereof
JP5339294B2 (en) Method for manufacturing photoelectric conversion device
CN118693175A (en) Heterojunction cell without TCO layer on front surface, preparation method thereof and photovoltaic module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Ref document number: 4904311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees