JP2000252501A - Manufacture of silicon thin film optoelectric transducer device - Google Patents

Manufacture of silicon thin film optoelectric transducer device

Info

Publication number
JP2000252501A
JP2000252501A JP11050590A JP5059099A JP2000252501A JP 2000252501 A JP2000252501 A JP 2000252501A JP 11050590 A JP11050590 A JP 11050590A JP 5059099 A JP5059099 A JP 5059099A JP 2000252501 A JP2000252501 A JP 2000252501A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
silicon
type layer
layer
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11050590A
Other languages
Japanese (ja)
Inventor
Masashi Yoshimi
雅士 吉見
Kenji Yamamoto
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP11050590A priority Critical patent/JP2000252501A/en
Publication of JP2000252501A publication Critical patent/JP2000252501A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of forming a transparent electrode of controlled and rugged surface structure on a substrate and improving a manufactured silicon thin film optoelectric transducer in efficiency. SOLUTION: A transparent electrode 2, a polycrystalline silicon thin film optoelectric transducer unit 11 which comprises a certain conductivity-type layer 111, a substantially intrinsic semiconductor polycrystalline silicon optoelectric transducer layer 112, and an opposite conductivity-type layer 113, and a back electrode 12 which includes a light reflecting metal electrode 122 are successively formed on a substrate 1 for the formation of a silicon thin film optoelectric transducer device, where the transparent electrode 2 is formed of ZnO through an MOCVD method at a base temperature of 200 deg.C or below, 0.3 to 3 μm in average film thickness, and possessed of a roughened surface which is 50 to 500 nm in average height difference.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシリコン系薄膜光電
変換装置の製造方法に関し、特に製造されるシリコン系
薄膜光電変換装置の特性を改善できる方法に関する。な
お、本願明細書において、「結晶質」および「微結晶」
の用語は、部分的に非晶質を含む場合をも意味するもの
とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a silicon-based thin film photoelectric conversion device, and more particularly to a method for improving characteristics of a manufactured silicon-based thin film photoelectric conversion device. In the present specification, “crystalline” and “microcrystal”
The term "" also means the case where the amorphous part is partially contained.

【0002】[0002]

【従来の技術】近年、たとえば多結晶シリコンや微結晶
シリコンのような結晶質シリコンを含む薄膜を利用した
光電変換装置の開発が精力的に行なわれている。これら
の光電変換装置の開発では、安価な基板上に低温プロセ
スで良質の結晶質シリコン薄膜を形成することによる低
コスト化と高性能化の両立が目的となっている。こうし
た光電変換装置は、太陽電池、光センサなど、さまざま
な用途への応用が期待されている。
2. Description of the Related Art In recent years, photoelectric conversion devices using thin films containing crystalline silicon such as polycrystalline silicon and microcrystalline silicon have been vigorously developed. In the development of these photoelectric conversion devices, the objective is to achieve both low cost and high performance by forming a high-quality crystalline silicon thin film on an inexpensive substrate by a low-temperature process. Such photoelectric conversion devices are expected to be applied to various uses such as solar cells and optical sensors.

【0003】光電変換装置の一例として、基板上に、透
明電極と、一導電型層、結晶質シリコン系光電変換層お
よび逆導電型層を含む光電変換ユニットと、光反射性金
属電極を含む裏面電極とを順次形成した構造を有するも
のが知られている。この光電変換装置では、光電変換層
が薄いと光吸収係数が小さい長波長領域の光が十分に吸
収されないため、光電変換量は本質的に光電変換層の膜
厚によって制約を受ける。そこで、光電変換層を含む光
電変換ユニットに入射した光をより有効に利用するため
に、光入射側の透明電極に表面凹凸(表面テクスチャ)
構造を設けて光を光電変換ユニット内へ散乱させ、さら
に金属電極で反射した光を乱反射させる工夫がなされて
いる。
As an example of a photoelectric conversion device, a transparent electrode, a photoelectric conversion unit including a layer of one conductivity type, a crystalline silicon-based photoelectric conversion layer, and a layer of opposite conductivity type are provided on a substrate, and a back surface including a light-reflective metal electrode. An electrode having a structure in which electrodes and electrodes are sequentially formed is known. In this photoelectric conversion device, when the photoelectric conversion layer is thin, light in a long wavelength region having a small light absorption coefficient is not sufficiently absorbed, and thus the amount of photoelectric conversion is essentially limited by the thickness of the photoelectric conversion layer. Therefore, in order to more effectively use light incident on the photoelectric conversion unit including the photoelectric conversion layer, the transparent electrode on the light incident side has surface irregularities (surface texture).
A structure is provided to scatter light into the photoelectric conversion unit and diffusely reflect the light reflected by the metal electrode.

【0004】従来、シリコン系薄膜光電変換装置には、
ガラス基板上に表面凹凸を有する透明電極が形成された
もの(例えば旭硝子社製のU−type SnO2膜な
ど)が広く用いられている。しかし、このようなガラス
基板は透明電極を形成するために400℃以上の高温プ
ロセスを要するなどの理由によりコストが高い。
Conventionally, silicon-based thin film photoelectric conversion devices include:
A glass substrate on which a transparent electrode having surface irregularities is formed (for example, a U-type SnO 2 film manufactured by Asahi Glass Co., Ltd.) is widely used. However, such a glass substrate is expensive because a high-temperature process of 400 ° C. or higher is required to form a transparent electrode.

【0005】また、表面テクスチャ構造をなす透明電極
を具備した光電変換装置は、たとえば特公平6−128
40号公報、特開平7−283432号公報などに開示
されており、効率が向上することが記載されている。し
かし、これらの光電変換装置では、透明電極が激しい表
面凹凸構造、具体的には凹凸の高低差が大きく凹凸のピ
ッチが小さい表面凹凸構造を有し、凹凸形状により得ら
れる光閉込め効果が十分でないことがわかってきた。
A photoelectric conversion device having a transparent electrode having a surface texture structure is disclosed in, for example, Japanese Patent Publication No. 6-128.
No. 40, JP-A-7-283432, and the like, and describe that the efficiency is improved. However, these photoelectric conversion devices have a surface uneven structure in which the transparent electrode is intense, specifically, a surface uneven structure in which the height difference of the unevenness is large and the pitch of the unevenness is small, and the light confinement effect obtained by the uneven shape is sufficient. It turns out that it is not.

【0006】さらに、ガラス基板上の透明電極として、
MOCVD法により形成されたZnO膜を用いる非晶質
シリコン系薄膜光電変換装置が知られている。しかし、
ZnO膜の表面凹凸構造を制御できたとしても、非晶質
シリコンは赤外光に感度を持たないので、やはり光閉込
め効果の点で不十分である。
Further, as a transparent electrode on a glass substrate,
2. Description of the Related Art An amorphous silicon-based thin film photoelectric conversion device using a ZnO film formed by an MOCVD method is known. But,
Even if the surface irregularity structure of the ZnO film can be controlled, amorphous silicon has no sensitivity to infrared light, and is still insufficient in light confinement effect.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、基板
上に表面凹凸構造の制御された透明電極を形成すること
ができ、製造されるシリコン系薄膜光電変換装置の効率
を改善できる方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a transparent electrode having a controlled surface unevenness on a substrate and improving the efficiency of a silicon-based thin film photoelectric conversion device to be manufactured. To provide.

【0008】[0008]

【課題を解決するための手段】本発明者らは、基板上の
透明電極を形成する際に、下地温度が200℃以下の条
件でMOCVD法を用いれば、表面凹凸構造の制御され
た透明電極を形成することができることを見出した。
Means for Solving the Problems The inventors of the present invention have proposed a method of forming a transparent electrode on a substrate by using the MOCVD method under a base temperature of 200 ° C. or less, so that the transparent electrode having a controlled surface uneven structure can be obtained. Can be formed.

【0009】すなわち、本発明のシリコン系薄膜光電変
換装置の製造方法は、基板上に、透明電極と、一導電型
層、実質的に真性半導体の多結晶シリコン系光電変換層
および逆導電型層を含む多結晶シリコン系薄膜光電変換
ユニットと、光反射性金属電極を含む裏面電極とを順次
形成したシリコン系薄膜光電変換装置を製造するにあた
り、前記透明電極を、下地温度が200℃以下の条件で
MOCVD法により形成することを特徴とする。
That is, a method of manufacturing a silicon-based thin-film photoelectric conversion device according to the present invention comprises the steps of: providing a transparent electrode, a one conductivity type layer, a polycrystalline silicon-based photoelectric conversion layer of a substantially intrinsic semiconductor, and a reverse conductivity type layer on a substrate; In manufacturing a silicon-based thin-film photoelectric conversion device in which a polycrystalline silicon-based thin-film photoelectric conversion unit including a polycrystalline silicon-based thin-film photoelectric conversion unit and a back electrode including a light-reflective metal electrode are sequentially formed, the transparent electrode is formed under the condition that the base temperature is 200 ° C. or lower. And formed by the MOCVD method.

【0010】本発明において、前記透明電極は、平均膜
厚が0.3〜3μm、表面凹凸の平均高低差が50〜5
00nmであるZnOからなることが好ましい。
In the present invention, the transparent electrode has an average film thickness of 0.3 to 3 μm and an average height difference of surface irregularities of 50 to 5 μm.
It is preferably made of ZnO having a thickness of 00 nm.

【0011】本発明において、シリコン系薄膜光電変換
ユニットとしては、結晶質シリコン系光電変換層を含む
p−i−n接合を形成することが好ましい。また、シリ
コン系薄膜光電変換ユニットは、一導電型層、結晶質シ
リコン系光電変換層および逆導電型層を含む光電変換ユ
ニットに加えて、一導電型層、非晶質シリコン系光電変
換層および逆導電型層を含む光電変換ユニットが積層さ
れたタンデム型であってもよい。
In the present invention, as the silicon-based thin-film photoelectric conversion unit, it is preferable to form a pin junction including a crystalline silicon-based photoelectric conversion layer. Further, the silicon-based thin-film photoelectric conversion unit, in addition to the photoelectric conversion unit including one conductivity type layer, a crystalline silicon-based photoelectric conversion layer and a reverse conductivity type layer, one conductivity-type layer, an amorphous silicon-based photoelectric conversion layer and It may be a tandem type in which photoelectric conversion units including layers of opposite conductivity type are stacked.

【0012】本発明のように、下地温度が200℃以下
の条件でMOCVD法を用いて透明電極を形成すれば、
その表面凹凸形状を容易に制御でき、このような透明電
極上に赤外光に感度を有する多結晶シリコン系薄膜光電
変換ユニットを形成したときに光閉じ込めに適した表面
凹凸構造を得ることができる。したがって、製造される
多結晶シリコン系薄膜光電変換装置の効率を改善でき
る。
As in the present invention, when a transparent electrode is formed by MOCVD under the condition that the base temperature is 200 ° C. or less,
The surface irregularities can be easily controlled, and a surface irregular structure suitable for light confinement can be obtained when a polycrystalline silicon-based thin film photoelectric conversion unit having sensitivity to infrared light is formed on such a transparent electrode. . Therefore, the efficiency of the manufactured polycrystalline silicon-based thin film photoelectric conversion device can be improved.

【0013】[0013]

【発明の実施の形態】以下、本発明をより詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0014】図1に示す断面図を参照して、本発明に係
るシリコン系薄膜光電変換装置の一例を説明する。この
シリコン系薄膜光電変換装置は、基板1上に、透明電極
2と、一導電型層111、結晶質シリコン系光電変換層
112および逆導電型層113を含む光電変換ユニット
11と、透明導電性酸化膜121および光反射性金属電
極122を含む裏面電極12とを順次積層した構造を有
する。この光電変換装置に対しては、光電変換されるべ
き光hνは基板1側から入射される。
An example of the silicon-based thin-film photoelectric conversion device according to the present invention will be described with reference to the sectional view shown in FIG. The silicon-based thin-film photoelectric conversion device includes a transparent electrode 2, a photoelectric conversion unit 11 including a one-conductivity-type layer 111, a crystalline silicon-based photoelectric conversion layer 112, and a reverse-conductivity-type layer 113 on a substrate 1; It has a structure in which an oxide film 121 and a back electrode 12 including a light-reflective metal electrode 122 are sequentially laminated. In this photoelectric conversion device, light hν to be subjected to photoelectric conversion is incident from the substrate 1 side.

【0015】基板1としては、有機フィルム、セラミッ
クス、または低融点の安価なガラスなどの透明基板を用
いることができる。
As the substrate 1, a transparent substrate such as an organic film, ceramics, or low-melting-point inexpensive glass can be used.

【0016】基板1上に配置される透明電極2の材料
は、500〜1200nmの波長の光に対して80%以
上の高い透過率を有することが好ましく、ITO、Sn
2およびZnOから選択される1以上の層を含む透明
導電性酸化膜が用いられる。
The material of the transparent electrode 2 disposed on the substrate 1 preferably has a high transmittance of 80% or more for light having a wavelength of 500 to 1200 nm.
A transparent conductive oxide film including one or more layers selected from O 2 and ZnO is used.

【0017】本発明においては、下地温度が200℃以
下の条件でMOCVD法により形成することにより、平
均膜厚が0.3〜3μm、表面凹凸の平均高低差が50
〜500nmであるZnOからなる透明電極を形成する
ことが好ましい。
In the present invention, the average film thickness is 0.3 to 3 μm and the average height difference of the surface unevenness is 50 by forming the film by MOCVD under the condition that the base temperature is 200 ° C. or less.
It is preferable to form a transparent electrode made of ZnO having a thickness of about 500 nm.

【0018】MOCVD法によりZnOを成膜するに
は、下地温度を200℃以下に設定し、たとえば原料ガ
スとしてジエチルジンクZn(C252、酸化剤とし
てH2O、ドーパントガスとしてジボランなどを供給
し、5〜100Torrの減圧下で反応させる。下地温
度は100〜150℃に設定することがより好ましい。
200℃以下の下地温度条件においてMOCVD法によ
り平均膜厚が0.3〜3μmのZnOからなる透明電極
を形成すると、その表面凹凸構造を容易に制御でき、表
面凹凸の平均高低差を50〜500nmの範囲にするこ
とができる。
In order to form a ZnO film by the MOCVD method, the base temperature is set to 200 ° C. or less, for example, diethyl zinc Zn (C 2 H 5 ) 2 as a raw material gas, H 2 O as an oxidizing agent, and diborane as a dopant gas. And react under a reduced pressure of 5 to 100 Torr. The base temperature is more preferably set to 100 to 150 ° C.
When a transparent electrode made of ZnO having an average film thickness of 0.3 to 3 μm is formed by MOCVD under a base temperature condition of 200 ° C. or less, the surface uneven structure can be easily controlled, and the average height difference of the surface unevenness is 50 to 500 nm. Range.

【0019】透明電極2上にシリコン系光電変換ユニッ
ト11が形成される。この光電変換ユニット11に含ま
れるすべての半導体層は、下地温度を400℃以下に設
定してプラズマCVD法によって堆積される。プラズマ
CVD法としては、一般によく知られている平行平板型
のRFプラズマCVDを用いてもよいし、周波数150
MHz以下のRF帯からVHF帯までの高周波電源を利
用するプラズマCVD法を用いてもよい。
The silicon-based photoelectric conversion unit 11 is formed on the transparent electrode 2. All the semiconductor layers included in the photoelectric conversion unit 11 are deposited by the plasma CVD method with the base temperature set at 400 ° C. or lower. As the plasma CVD method, a generally well-known parallel plate type RF plasma CVD may be used,
A plasma CVD method using a high-frequency power supply from an RF band below MHz to a VHF band may be used.

【0020】光電変換ユニット11には一導電型層11
1、結晶質シリコン系光電変換層112および逆導電型
層113が含まれる。一導電型層111はp型層でもn
型層でもよく、これに対応して逆導電型層113はn型
層またはp型層になる。ただし、光電変換装置では通常
は光の入射側にp型層が配置されるので、図1の構造で
は一般的に一導電型層111はp型層、逆導電型層11
3はn型層である。
The photoelectric conversion unit 11 includes a layer 11 of one conductivity type.
1, a crystalline silicon-based photoelectric conversion layer 112 and a reverse conductivity type layer 113 are included. The one conductivity type layer 111 is n
The opposite conductivity type layer 113 may be an n-type layer or a p-type layer. However, since the p-type layer is usually arranged on the light incident side in the photoelectric conversion device, the one conductivity type layer 111 is generally a p-type layer and the opposite conductivity type layer 11 in the structure of FIG.
3 is an n-type layer.

【0021】一導電型層111は、たとえば導電型決定
不純物原子としてボロンをドープしたp型シリコン系薄
膜からなる。ただし、不純物原子は特に限定されず、p
型層の場合にはアルミニウムなどでもよい。また、一導
電型層111の半導体材料としては、多結晶シリコンも
しくは部分的に非晶質を含む微結晶シリコンまたはシリ
コンカーバイドやシリコンゲルマニウムなどの合金材料
を用いることができる。なお、必要に応じて、堆積され
た一導電型層111にパルスレーザ光を照射(レーザー
アニール)することにより、結晶化分率やキャリア濃度
を制御することもできる。
The one conductivity type layer 111 is made of, for example, a p-type silicon-based thin film doped with boron as a conductivity type determining impurity atom. However, the impurity atoms are not particularly limited.
In the case of a mold layer, aluminum or the like may be used. As the semiconductor material of the one-conductivity-type layer 111, polycrystalline silicon, microcrystalline silicon partially containing amorphous material, or an alloy material such as silicon carbide or silicon germanium can be used. If necessary, the crystallization fraction and the carrier concentration can be controlled by irradiating the deposited one-conductivity-type layer 111 with pulsed laser light (laser annealing).

【0022】一導電型層111上に結晶質シリコン系光
電変換層112が堆積される。この結晶質シリコン系光
電変換層112としては、体積結晶化分率が80%以上
である、ノンドープ(真正半導体)の多結晶シリコン膜
もしくは微結晶シリコン膜または微量の不純物を含む弱
p型もしくは弱n型で光電変換機能を十分に備えたシリ
コン系薄膜材料を用いることができる。この光電変換層
112を構成する半導体材料についても、上記の材料に
限定されず、シリコンカーバイドやシリコンゲルマニウ
ムなどの合金材料を用いることができる。光電変換層1
12の厚さは、必要かつ十分な光電変換が可能なよう
に、一般的に0.5〜20μmの範囲に形成される。こ
の結晶質シリコン系光電変換層112は400℃以下の
低温で形成されるので、結晶粒界や粒内における欠陥を
終端させて不活性化させる水素原子を多く含む。具体的
には、光電変換層112の水素含有量は1〜30原子%
の範囲内にある。さらに、結晶質シリコン系薄膜光電変
換層112に含まれる結晶粒の多くは下地層から上方に
柱状に延びて成長しており、その膜面に平行に(11
0)の優先結晶配向面を有する。そして、X線回折にお
ける(220)回折ピークに対する(111)回折ピー
クの強度比は0.2以下である。
A crystalline silicon-based photoelectric conversion layer 112 is deposited on one conductivity type layer 111. As the crystalline silicon-based photoelectric conversion layer 112, a non-doped (true semiconductor) polycrystalline silicon film or microcrystalline silicon film having a volume crystallization fraction of 80% or more, or a weak p-type or weak An n-type silicon-based thin film material having a sufficient photoelectric conversion function can be used. The semiconductor material forming the photoelectric conversion layer 112 is not limited to the above materials, and an alloy material such as silicon carbide or silicon germanium can be used. Photoelectric conversion layer 1
The thickness of 12 is generally formed in a range of 0.5 to 20 μm so that necessary and sufficient photoelectric conversion can be performed. Since the crystalline silicon-based photoelectric conversion layer 112 is formed at a low temperature of 400 ° C. or lower, it contains many hydrogen atoms that terminate and inactivate defects in crystal grain boundaries and grains. Specifically, the hydrogen content of the photoelectric conversion layer 112 is 1 to 30 atomic%.
Within the range. Further, many of the crystal grains contained in the crystalline silicon-based thin film photoelectric conversion layer 112 extend upward from the base layer in a columnar shape, and grow parallel to the film surface (11).
0) has a preferred crystal orientation plane. The intensity ratio of the (111) diffraction peak to the (220) diffraction peak in X-ray diffraction is 0.2 or less.

【0023】結晶質シリコン系光電変換層112上には
逆導電型層113が形成される。この逆導電型層113
は、たとえば導電型決定不純物原子としてリンがドープ
されたn型シリコン系薄膜からなる。ただし、不純物原
子は特に限定されず、n型層では窒素などでもよい。ま
た、逆導電型層113の半導体材料としては、多結晶シ
リコンもしくは部分的に非晶質を含む微結晶シリコンま
たはシリコンカーバイドやシリコンゲルマニウムなどの
合金材料を用いることができる。
On the crystalline silicon-based photoelectric conversion layer 112, a reverse conductivity type layer 113 is formed. This reverse conductivity type layer 113
Is made of, for example, an n-type silicon-based thin film doped with phosphorus as a conductivity type determining impurity atom. However, the impurity atoms are not particularly limited, and may be nitrogen or the like in the n-type layer. Further, as a semiconductor material of the opposite conductivity type layer 113, polycrystalline silicon, microcrystalline silicon partially containing amorphous, or an alloy material such as silicon carbide or silicon germanium can be used.

【0024】ここで、透明電極2の表面が実質的に平坦
である場合でも、その上に堆積される光電変換ユニット
11の表面は微細な凹凸を含む表面テクスチャ構造を示
す。また、透明電極2の表面が凹凸を含む表面テクスチ
ャ構造を有する場合、光電変換ユニット11の表面は、
透明電極2の表面に比べて、テクスチャ構造における凹
凸のピッチが小さくなる。これは、光電変換ユニット1
1を構成する結晶質シリコン系光電変換層112の堆積
時に結晶配向に基づいてテクスチャ構造が生じることに
よる。このため光電変換ユニット11の表面は広範囲の
波長領域の光を反射させるのに適した微細な表面凹凸テ
クスチャ構造となり、光電変換装置における光閉じ込め
効果も大きくなる。
Here, even when the surface of the transparent electrode 2 is substantially flat, the surface of the photoelectric conversion unit 11 deposited thereon has a surface texture structure including fine irregularities. When the surface of the transparent electrode 2 has a surface texture structure including irregularities, the surface of the photoelectric conversion unit 11
The pitch of the irregularities in the texture structure is smaller than that of the surface of the transparent electrode 2. This is the photoelectric conversion unit 1
This is because a texture structure is generated on the basis of the crystal orientation when the crystalline silicon-based photoelectric conversion layer 112 constituting 1 is deposited. For this reason, the surface of the photoelectric conversion unit 11 has a fine surface uneven texture structure suitable for reflecting light in a wide wavelength range, and the light confinement effect in the photoelectric conversion device is increased.

【0025】光電変換ユニット11上には透明導電性酸
化膜121と光反射性金属電極122とを含む裏面電極
12が形成される。透明導電性酸化膜121は、必要に
応じて形成されるが、光電変換ユニット11と光反射性
金属電極122との付着性を高め、光反射性金属電極1
22の反射効率を高め、光電変換ユニット11を化学変
化から防止する機能を有する。
A back electrode 12 including a transparent conductive oxide film 121 and a light-reflective metal electrode 122 is formed on the photoelectric conversion unit 11. The transparent conductive oxide film 121 is formed as necessary, but enhances the adhesion between the photoelectric conversion unit 11 and the light-reflective metal electrode 122 and increases the light-reflective metal electrode 1.
22 has a function of increasing the reflection efficiency and preventing the photoelectric conversion unit 11 from being chemically changed.

【0026】透明導電性酸化膜121は、ITO、Sn
2、ZnOなどから選択される少なくとも1種で形成
することが好ましく、ZnOを主成分とする膜が特に好
ましい。光電変換ユニット11に隣接する透明導電性酸
化膜121の平均結晶粒径は100nm以上であること
が好ましい。この条件を満たすためには、下地温度を1
00〜450℃に設定して透明導電性酸化膜121を形
成することが望ましい。なお、ZnOを主成分とする透
明導電性酸化膜121の膜厚は50nm〜1μmである
ことが好ましく、比抵抗は1.5×10-3Ωcm以下で
あることが好ましい。
The transparent conductive oxide film 121 is made of ITO, Sn
It is preferably formed of at least one kind selected from O 2 and ZnO, and a film containing ZnO as a main component is particularly preferable. The average crystal grain size of the transparent conductive oxide film 121 adjacent to the photoelectric conversion unit 11 is preferably 100 nm or more. To satisfy this condition, the base temperature must be set to 1
It is preferable to form the transparent conductive oxide film 121 at a temperature of 00 to 450 ° C. The thickness of the transparent conductive oxide film 121 containing ZnO as a main component is preferably 50 nm to 1 μm, and the specific resistance is preferably 1.5 × 10 −3 Ωcm or less.

【0027】光反射性金属電極122は真空蒸着または
スパッタなどの方法によって形成することができる。光
反射性金属電極122は、Ag、Au、Al、Cuおよ
びPtから選択される1種、またはこれらを含む合金で
形成することが好ましい。たとえば、光反射性の高いA
gを100〜330℃、より好ましくは200〜300
℃の温度で真空蒸着によって形成することが好ましい。
The light-reflective metal electrode 122 can be formed by a method such as vacuum evaporation or sputtering. The light-reflective metal electrode 122 is preferably formed of one kind selected from Ag, Au, Al, Cu and Pt, or an alloy containing these. For example, A with high light reflectivity
g at 100 to 330 ° C, more preferably 200 to 300 ° C.
It is preferably formed by vacuum evaporation at a temperature of ° C.

【0028】次に、図2に示す断面図を参照して、本発
明に係るタンデム型シリコン系薄膜光電変換装置を説明
する。このタンデム型シリコン系薄膜光電変換装置は、
基板1上に、透明電極2と、微結晶または非晶質シリコ
ン系の一導電型層211、実質的に真正半導体である非
晶質シリコン系光電変換層212および微結晶または非
晶質シリコン系の逆導電型層213を含む前方光電変換
ユニット21と、図1の光電変換ユニット11に対応す
る一導電型層221、結晶質シリコン系光電変換層22
2および逆導電型層223を含む後方光電変換ユニット
22と、透明導電性酸化膜231および光反射性金属電
極232を含む裏面電極23とを順次積層した構造を有
する。前方光電変換ユニット21および後方光電変換ユ
ニット22を構成する各層は、いずれもプラズマCVD
法により形成される。
Next, a tandem silicon-based thin film photoelectric conversion device according to the present invention will be described with reference to the sectional view shown in FIG. This tandem silicon-based thin film photoelectric conversion device
On a substrate 1, a transparent electrode 2, a microcrystalline or amorphous silicon-based one conductivity type layer 211, an amorphous silicon-based photoelectric conversion layer 212 substantially a true semiconductor, and a microcrystalline or amorphous silicon-based The front photoelectric conversion unit 21 including the opposite conductive type layer 213, the one conductive type layer 221 corresponding to the photoelectric conversion unit 11 of FIG. 1, and the crystalline silicon based photoelectric conversion layer 22
2 and a rear photoelectric conversion unit 22 including the opposite conductivity type layer 223, and a back electrode 23 including the transparent conductive oxide film 231 and the light reflective metal electrode 232 are sequentially laminated. Each of the layers constituting the front photoelectric conversion unit 21 and the rear photoelectric conversion unit 22 is formed by plasma CVD.
It is formed by a method.

【0029】[0029]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0030】(実施例1)以下のようにして図1に示す
シリコン系薄膜光電変換装置を作製した。まずガラス基
板1上にZnOからなる透明電極2を形成した。この透
明電極2は、MOCVD法により、下地温度を150℃
に設定し、原料ガスであるジエチルジンクZn(C
252と酸化剤であるH2Oの流量比を2:3にすると
ともにドーパントガスとして1%のジボランを供給し、
反応室内圧力5TorrでZnOを成膜することにより
形成した。この条件で成膜されたZnOからなる透明電
極2の厚さは1.5μmであり、その表面の凹凸の平均
高低差は180nmであった。
Example 1 A silicon-based thin-film photoelectric conversion device shown in FIG. 1 was manufactured as follows. First, a transparent electrode 2 made of ZnO was formed on a glass substrate 1. This transparent electrode 2 was heated at a base temperature of 150 ° C. by MOCVD.
And the raw material gas diethyl zinc Zn (C
The flow rate ratio of 2 H 5 ) 2 to H 2 O, which is an oxidizing agent, was set to 2: 3, and 1% diborane was supplied as a dopant gas.
It was formed by depositing ZnO at a reaction chamber pressure of 5 Torr. The thickness of the transparent electrode 2 made of ZnO formed under these conditions was 1.5 μm, and the average height difference of the surface irregularities was 180 nm.

【0031】次に、プラズマCVD法により、厚さ10
nmのボロンドープの一導電型層(p型層)111、厚
さ3μmのノンドープの多結晶シリコン系光電変換層
(i型層)112、および厚さ15nmのリンドープの
逆導電型層(n型層)113を成膜してp−i−n接合
の多結晶シリコン系光電変換ユニット11を形成した。
Next, a thickness of 10
nm-doped one-conductivity-type layer (p-type layer) 111, a 3 μm-thick non-doped polycrystalline silicon-based photoelectric conversion layer (i-type layer) 112, and a 15-nm-thick phosphorus-doped reverse conductivity-type layer (n-type layer) ) 113 was formed to form a polycrystalline silicon-based photoelectric conversion unit 11 having a pin junction.

【0032】次いで、それぞれスパッタ法により、Zn
Oからなる厚さ100nmの透明導電性酸化膜121、
およびAgからなる厚さ300nmの光反射性金属電極
122を成膜して、裏面電極12を形成した。
Next, Zn was deposited by sputtering, respectively.
A transparent conductive oxide film 121 made of O and having a thickness of 100 nm;
A light-reflective metal electrode 122 of Ag and Ag having a thickness of 300 nm was formed to form the back electrode 12.

【0033】得られたシリコン系薄膜光電変換装置に、
AM1.5の光を100mW/cm 2の光量で入射して
出力特性を測定したところ、光電変換効率は7.8%、
短絡電流密度は25.3mA/cm2であった。
In the obtained silicon-based thin film photoelectric conversion device,
100 mW / cm of AM1.5 light TwoWith the amount of light
When the output characteristics were measured, the photoelectric conversion efficiency was 7.8%,
Short-circuit current density is 25.3 mA / cmTwoMet.

【0034】(実施例2)以下のようにして図2に示す
タンデム型シリコン系薄膜光電変換装置を作製した。ま
ずガラス基板1上に、実施例1と同一の条件で、ZnO
からなる透明電極2を形成した。次に、プラズマCVD
法により、ボロンドープの一導電型層(p型層)21
1、ノンドープの非晶質シリコン系光電変換層(i型
層)212、およびリンドープの逆導電型層(n型層)
213を成膜してp−i−n接合の非晶質シリコン系の
前方光電変換ユニット21を形成した。また、実施例1
と同様にして、プラズマCVD法により、ボロンドープ
の一導電型層(p型層)221、ノンドープの多結晶シ
リコン系光電変換層(i型層)222、およびリンドー
プの逆導電型層(n型層)223を成膜してp−i−n
接合の多結晶シリコン系の後方光電変換ユニット22を
形成した。
Example 2 A tandem-type silicon-based thin-film photoelectric conversion device shown in FIG. 2 was manufactured as follows. First, ZnO was deposited on a glass substrate 1 under the same conditions as in Example 1.
Was formed. Next, plasma CVD
The boron-doped one conductivity type layer (p-type layer) 21
1. Non-doped amorphous silicon-based photoelectric conversion layer (i-type layer) 212 and phosphorus-doped reverse conductivity type layer (n-type layer)
213 was formed to form a pin junction amorphous silicon-based front photoelectric conversion unit 21. Example 1
In the same manner as described above, a boron-doped one conductivity type layer (p-type layer) 221, a non-doped polycrystalline silicon-based photoelectric conversion layer (i-type layer) 222, and a phosphorus-doped reverse conductivity type layer (n-type layer) are formed by plasma CVD. ) 223 to form a pin
A bonded polycrystalline silicon-based rear photoelectric conversion unit 22 was formed.

【0035】次いで、それぞれスパッタ法により、Zn
Oからなる厚さ100nmの透明導電性酸化膜231、
およびAgからなる厚さ300nmの光反射性金属電極
232を成膜して、裏面電極23を形成した。
Next, Zn was deposited by sputtering, respectively.
A transparent conductive oxide film 231 made of O and having a thickness of 100 nm;
A light-reflective metal electrode 232 made of Ag and Ag having a thickness of 300 nm was formed to form the back electrode 23.

【0036】得られたタンデム型シリコン系薄膜光電変
換装置に、AM1.5の光を100mW/cm2の光量
で入射して出力特性を測定したところ、光電変換効率は
13.3%であった。
When the light characteristics of AM1.5 were incident on the obtained tandem-type silicon-based thin-film photoelectric conversion device at an amount of 100 mW / cm 2 and the output characteristics were measured, the photoelectric conversion efficiency was 13.3%. .

【0037】[0037]

【発明の効果】以上詳述したように本発明の方法を用い
れば、基板上に表面凹凸構造の制御された透明電極を形
成することができ、製造されるシリコン系薄膜光電変換
装置の効率を改善できる。
As described above in detail, by using the method of the present invention, it is possible to form a transparent electrode having a controlled surface unevenness on a substrate, and to improve the efficiency of a silicon-based thin film photoelectric conversion device to be manufactured. Can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るシリコン系薄膜光電変換装置の一
例を示す断面図。
FIG. 1 is a sectional view showing an example of a silicon-based thin-film photoelectric conversion device according to the present invention.

【図2】本発明に係るタンデム型シリコン系薄膜光電変
換装置の一例を示す断面図。
FIG. 2 is a sectional view showing an example of a tandem silicon-based thin film photoelectric conversion device according to the present invention.

【符号の説明】[Explanation of symbols]

1…基板 2…透明電極 11…光電変換ユニット 111…一導電型層、112…結晶質シリコン系光電変
換層、113…逆導電型層 12…裏面電極 121…透明導電性酸化膜、122…光反射性金属電極 21…前方光電変換ユニット 211…一導電型層、212…非晶質シリコン系光電変
換層、213…逆導電型層 22…後方光電変換ユニット 221…一導電型層、222…結晶質シリコン系光電変
換層、223…逆導電型層 23…裏面電極 231…透明導電性酸化膜、232…光反射性金属電極
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Transparent electrode 11 ... Photoelectric conversion unit 111 ... One conductivity type layer, 112 ... Crystalline silicon photoelectric conversion layer, 113 ... Reverse conductivity type layer 12 ... Backside electrode 121 ... Transparent conductive oxide film, 122 ... Light Reflective metal electrode 21: front photoelectric conversion unit 211: one conductivity type layer, 212: amorphous silicon-based photoelectric conversion layer, 213: reverse conductivity type layer 22: rear photoelectric conversion unit 221: one conductivity type layer, 222: crystal Silicon-based photoelectric conversion layer, 223 reverse conductivity type layer 23 back electrode 231 transparent conductive oxide film, 232 light-reflective metal electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、透明電極と、一導電型層、実
質的に真性半導体の多結晶シリコン系光電変換層および
逆導電型層を含む多結晶シリコン系薄膜光電変換ユニッ
トと、光反射性金属電極を含む裏面電極とを順次形成し
たシリコン系薄膜光電変換装置を製造するにあたり、 前記透明電極を、下地温度が200℃以下の条件でMO
CVD法により形成することを特徴とするシリコン系薄
膜光電変換装置の製造方法。
1. A polycrystalline silicon-based thin-film photoelectric conversion unit including a transparent electrode, a one-conductivity-type layer, a substantially intrinsic semiconductor polycrystalline silicon-based photoelectric conversion layer and a reverse-conductivity-type layer on a substrate, and light reflection. In manufacturing a silicon-based thin-film photoelectric conversion device in which a back electrode including a conductive metal electrode is sequentially formed, the transparent electrode is subjected to MO under the condition that the base temperature is 200 ° C. or lower.
A method for manufacturing a silicon-based thin-film photoelectric conversion device, wherein the method is formed by a CVD method.
【請求項2】 前記透明電極は、平均膜厚が0.3〜3
μm、表面凹凸の平均高低差が50〜500nmである
ZnOからなることを特徴とする請求項1記載のシリコ
ン系薄膜光電変換装置の製造方法。
2. The transparent electrode has an average thickness of 0.3 to 3
2. The method for manufacturing a silicon-based thin-film photoelectric conversion device according to claim 1, wherein the silicon-based thin-film photoelectric conversion device is made of ZnO having an average height difference of 50 to 500 nm with a surface roughness of 50 μm.
【請求項3】 前記一導電型層、結晶質シリコン系光電
変換層および逆導電型層を含む光電変換ユニットに加え
て、一導電型層、非晶質シリコン系光電変換層および逆
導電型層を含む光電変換ユニットが積層されたタンデム
型であることを特徴とする請求項1または2記載のシリ
コン系薄膜光電変換装置の製造方法。
3. In addition to the photoelectric conversion unit including the one conductivity type layer, the crystalline silicon-based photoelectric conversion layer, and the opposite conductivity type layer, the one conductivity type layer, the amorphous silicon-based photoelectric conversion layer, and the opposite conductivity type layer 3. The method according to claim 1, wherein the photoelectric conversion units each include a tandem-type photoelectric conversion unit.
JP11050590A 1999-02-26 1999-02-26 Manufacture of silicon thin film optoelectric transducer device Pending JP2000252501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11050590A JP2000252501A (en) 1999-02-26 1999-02-26 Manufacture of silicon thin film optoelectric transducer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11050590A JP2000252501A (en) 1999-02-26 1999-02-26 Manufacture of silicon thin film optoelectric transducer device

Publications (1)

Publication Number Publication Date
JP2000252501A true JP2000252501A (en) 2000-09-14

Family

ID=12863197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11050590A Pending JP2000252501A (en) 1999-02-26 1999-02-26 Manufacture of silicon thin film optoelectric transducer device

Country Status (1)

Country Link
JP (1) JP2000252501A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311704A (en) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd Substrate for thin film photoelectric converter and thin film photoelectric converter using the same
JP2006269931A (en) * 2005-03-25 2006-10-05 Sanyo Electric Co Ltd Photovoltaic device
JP2009071034A (en) * 2007-09-13 2009-04-02 Kaneka Corp Thin film photoelectric converion device and its manufacturing method
JP2009267222A (en) * 2008-04-28 2009-11-12 Kaneka Corp Manufacturing method of substrate with transparent conductive film for thin-film photoelectric converter
US7781668B2 (en) 2004-03-25 2010-08-24 Kaneka Corporation Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
WO2011002086A1 (en) * 2009-07-03 2011-01-06 株式会社カネカ Crystalline silicon type solar cell and process for manufacture thereof
JP5156641B2 (en) * 2006-11-20 2013-03-06 株式会社カネカ Substrate with transparent conductive film for photoelectric conversion device and method for manufacturing photoelectric conversion device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311704A (en) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd Substrate for thin film photoelectric converter and thin film photoelectric converter using the same
US7781668B2 (en) 2004-03-25 2010-08-24 Kaneka Corporation Substrate for thin-film solar cell, method for producing the same, and thin-film solar cell employing it
JP2012028827A (en) * 2004-03-25 2012-02-09 Kaneka Corp Substrate for thin film solar cell and manufacturing method of thin film solar cell
JP2006269931A (en) * 2005-03-25 2006-10-05 Sanyo Electric Co Ltd Photovoltaic device
JP5156641B2 (en) * 2006-11-20 2013-03-06 株式会社カネカ Substrate with transparent conductive film for photoelectric conversion device and method for manufacturing photoelectric conversion device
JP2009071034A (en) * 2007-09-13 2009-04-02 Kaneka Corp Thin film photoelectric converion device and its manufacturing method
JP2009267222A (en) * 2008-04-28 2009-11-12 Kaneka Corp Manufacturing method of substrate with transparent conductive film for thin-film photoelectric converter
WO2011002086A1 (en) * 2009-07-03 2011-01-06 株式会社カネカ Crystalline silicon type solar cell and process for manufacture thereof
US8546685B2 (en) 2009-07-03 2013-10-01 Kaneka Corporation Crystalline silicon based solar cell and method for manufacturing thereof
JP5514207B2 (en) * 2009-07-03 2014-06-04 株式会社カネカ Crystalline silicon solar cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3056200B1 (en) Method of manufacturing thin film photoelectric conversion device
JP4222500B2 (en) Silicon-based thin film photoelectric conversion device
JP2908067B2 (en) Substrate for solar cell and solar cell
EP1100130B3 (en) Silicon-base thin-film photoelectric device
EP0940857B1 (en) Thin film photoelectric transducer
WO2003065462A1 (en) Tandem thin-film photoelectric transducer and its manufacturing method
JP2000252500A (en) Silicon thin-film photoelectric conversion device
JP5093503B2 (en) Thin film solar cell and surface electrode for thin film solar cell
JP5243697B2 (en) Transparent conductive film for photoelectric conversion device and manufacturing method thereof
JP2962897B2 (en) Photovoltaic element
JP5291633B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof
JP2000261011A (en) Silicon-based thin-film photoelectric transducer
JP2000058892A (en) Silicon based thin film photoelectric converter
JP2000252501A (en) Manufacture of silicon thin film optoelectric transducer device
JP5056651B2 (en) Thin film solar cell and surface electrode for thin film solar cell
JP5093502B2 (en) Thin film solar cell and surface electrode for thin film solar cell
JP2000252504A (en) Silicon thin film optoelectric transducer device and manufacture thereof
JP2846508B2 (en) Photovoltaic element
JP2000232234A (en) Silicon thin film photoelectric conversion device
JP2003008036A (en) Solar battery and its manufacturing method
JP2001015780A (en) Rear surface electrode for silicon-system thin-film photoelectric conversion device and silicon-system thin- film photoelectric conversion device provided therewith
JP2000269529A (en) Silicon system thin film photoelectric conversion device
JPH10294482A (en) Silicon-based thin film photoelectric converter
JP2000252497A (en) Method for manufacturing thin-film photoelectric conversion device
JP2000252499A (en) Manufacture of thin-film photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623