JP2000252497A - Method for manufacturing thin-film photoelectric conversion device - Google Patents

Method for manufacturing thin-film photoelectric conversion device

Info

Publication number
JP2000252497A
JP2000252497A JP11050586A JP5058699A JP2000252497A JP 2000252497 A JP2000252497 A JP 2000252497A JP 11050586 A JP11050586 A JP 11050586A JP 5058699 A JP5058699 A JP 5058699A JP 2000252497 A JP2000252497 A JP 2000252497A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
film
transparent conductive
conductive film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11050586A
Other languages
Japanese (ja)
Inventor
Hiroko Tawada
裕子 多和田
Kenji Yamamoto
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP11050586A priority Critical patent/JP2000252497A/en
Publication of JP2000252497A publication Critical patent/JP2000252497A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To easily manufacturing a thin-film photoelectric conversion device with improved photoelectric conversion characteristics. SOLUTION: When manufacturing a silicon thin-film photoelectric conversion device by successively forming a reverse-side metal electrode 102, a reverse-side transparent conductive film 103, and a thin-film photoelectric conversion unit 11, and a transparent electrode 2 on a substrate 1, a reverse-side transparent conductive film is formed for 1-30 seconds by the pressure in a reaction chamber that is equal to or more than 5×10-2 Torr at the initial stage of film formation, then the pressure in the reaction chamber is reduced to 1/10 or less of the pressure at the initial stage of film formation, and the remaining reverse-side transparent conductive film is formed when forming the reverse-side transparent conductive film 103 to 10 nm-1 μm by the sputtering method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄膜光電変換装置の
製造方法に関し、特に製造される薄膜光電変換装置の特
性を改善できる方法に関する。なお、本願明細書におい
て、「結晶質」および「微結晶」の用語は、部分的に非
晶質を含む場合をも意味するものとする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film photoelectric conversion device, and more particularly to a method for improving characteristics of a manufactured thin film photoelectric conversion device. In the specification of the present application, the terms “crystalline” and “microcrystal” also mean a case where the material partially contains an amorphous material.

【0002】[0002]

【従来の技術】近年、半導体薄膜を利用した光電変換装
置の開発が精力的に行なわれている。これらの光電変換
装置の開発では、安価な基板上に低温プロセスで良質の
半導体薄膜を形成することによる低コスト化と高性能化
の両立が目的となっている。こうした光電変換装置は、
太陽電池、光センサなど、さまざまな用途への応用が期
待されている。
2. Description of the Related Art In recent years, photoelectric conversion devices using semiconductor thin films have been vigorously developed. In the development of these photoelectric conversion devices, the objective is to achieve both low cost and high performance by forming a high-quality semiconductor thin film on an inexpensive substrate by a low-temperature process. Such a photoelectric conversion device,
It is expected to be applied to various uses such as solar cells and optical sensors.

【0003】光電変換装置の一例として、基板上に、裏
面金属電極、裏面透明導電膜、薄膜光電変換ユニット、
および透明電極を順次積層した構造を有するものが知ら
れている。裏面金属電極と薄膜光電変換ユニットとの間
の裏面透明導電膜は、金属電極と半導体薄膜との熱膨張
係数の相違による熱歪みを緩和して付着性を高め、かつ
金属原子が薄膜光電変換ユニットへ拡散するのを防止す
るために設けられる。この裏面透明導電膜は一般的に1
0nm〜1μmの厚さで高い透過率を有し、しかも1.
5×10-3Ωcm以下の低い抵抗率を有することが要求
される。このような条件を満たす裏面透明導電膜を形成
するには、たとえばスパッタ法を用い2×10-2Tor
r以下の圧力、100〜450℃の下地温度、500〜
1500mW/cm2の放電電力という条件が採用され
る。
As an example of a photoelectric conversion device, a back metal electrode, a back transparent conductive film, a thin film photoelectric conversion unit,
And those having a structure in which transparent electrodes are sequentially laminated. The back transparent conductive film between the back metal electrode and the thin film photoelectric conversion unit relaxes the thermal strain due to the difference in the coefficient of thermal expansion between the metal electrode and the semiconductor thin film to increase the adhesion, and the metal atoms contain the thin film photoelectric conversion unit. It is provided to prevent diffusion to the surface. This transparent conductive film on the back is generally 1
It has high transmittance at a thickness of 0 nm to 1 μm.
It is required to have a low resistivity of 5 × 10 −3 Ωcm or less. In order to form a rear transparent conductive film satisfying such conditions, for example, 2 × 10 −2 Torr by using a sputtering method.
r or lower, base temperature of 100 to 450 ° C, 500 to
The condition of 1500 mW / cm 2 of discharge power is adopted.

【0004】しかし、上記のような成膜条件で裏面透明
導電膜を形成した場合、製造される光電変換装置の光電
変換特性の改善が不十分であることがわかってきた。
However, it has been found that when the transparent conductive film on the back surface is formed under the above film forming conditions, the photoelectric conversion characteristics of the manufactured photoelectric conversion device are not sufficiently improved.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、光電
変換特性が改善された薄膜光電変換装置を簡便に製造で
きる方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for easily manufacturing a thin film photoelectric conversion device having improved photoelectric conversion characteristics.

【0006】[0006]

【課題を解決するための手段】本発明者らは、スパッタ
法により裏面透明導電膜を形成する際に従来多用されて
いる一般的な条件を採用すると、スパッタに伴って発生
する負イオン(O-など)によって裏面金属電極がダメ
ージを受けるとともに、裏面金属電極の表面が酸化さ
れ、その結果として得られる光電変換装置の光電変換特
性を十分に改善できないことを究明した。
Means for Solving the Problems The inventors of the present invention adopt a general condition that has been frequently used in forming a back transparent conductive film by a sputtering method. - ), The back metal electrode is damaged and the surface of the back metal electrode is oxidized, and the photoelectric conversion characteristics of the resulting photoelectric conversion device cannot be sufficiently improved.

【0007】これに対して、本発明者らは、裏面金属電
極上への裏面透明導電膜のスパッタ成膜の際に、成膜初
期だけ低ダメージ条件を用いて薄い裏面透明導電膜を形
成し、その後に高品質膜が得られる条件で残りの厚さの
裏面透明導電膜を形成することにより、高性能の光電変
換特性が得られることを見出した。
On the other hand, the present inventors formed a thin rear transparent conductive film by using a low damage condition only at the initial stage of the film formation when forming the rear transparent conductive film on the rear metal electrode by sputtering. Then, it has been found that a high-performance photoelectric conversion characteristic can be obtained by forming a back transparent conductive film having the remaining thickness under the condition that a high-quality film can be obtained.

【0008】本発明の第1の薄膜光電変換装置の製造方
法は、基板上に、裏面金属電極、裏面透明導電膜、薄膜
光電変換ユニット、および透明電極を順次形成して薄膜
光電変換装置を製造するにあたり、スパッタ法により前
記裏面透明導電膜を成膜する際に、成膜初期に5×10
-2Torr以上の反応室内圧力で1〜30秒間にわたっ
て裏面透明導電膜を成膜した後、反応室内圧力を成膜初
期の1/10以下に下げて残りの厚さの裏面透明導電膜
を成膜することを特徴とする。
According to a first method of manufacturing a thin film photoelectric conversion device of the present invention, a back metal electrode, a back transparent conductive film, a thin film photoelectric conversion unit, and a transparent electrode are sequentially formed on a substrate to manufacture a thin film photoelectric conversion device. When forming the transparent conductive film on the back surface by sputtering, 5 × 10
After forming the back transparent conductive film at a reaction chamber pressure of -2 Torr or more for 1 to 30 seconds, the pressure in the reaction chamber is reduced to 1/10 or less of the initial film formation to form the remaining thickness of the back transparent conductive film. It is characterized by forming a film.

【0009】本発明の第2の薄膜光電変換装置の製造方
法は、基板上に、裏面金属電極、裏面透明導電膜、薄膜
光電変換ユニット、および透明電極を順次形成して薄膜
光電変換装置を製造するにあたり、スパッタ法により前
記裏面透明導電膜を成膜する際に、成膜初期に80〜5
00mW/cm2の放電電力で1〜30秒間にわたって
裏面透明導電膜を成膜した後、放電電力を成膜初期の4
倍以上に上げて残りの厚さの裏面透明導電膜を成膜する
ことを特徴とする。
According to a second method of manufacturing a thin film photoelectric conversion device of the present invention, a back metal electrode, a back transparent conductive film, a thin film photoelectric conversion unit, and a transparent electrode are sequentially formed on a substrate to manufacture the thin film photoelectric conversion device. In forming the back transparent conductive film by sputtering, 80 to 5
After forming the back surface transparent conductive film at a discharge power of 00 mW / cm 2 for 1 to 30 seconds, the discharge power was increased to 4 in the initial stage of film formation.
The method is characterized in that the back surface transparent conductive film having the remaining thickness is formed by increasing the thickness twice or more.

【0010】本発明の第3の薄膜光電変換装置の製造方
法は、基板上に、裏面金属電極、裏面透明導電膜、薄膜
光電変換ユニット、および透明電極を順次形成して薄膜
光電変換装置を製造するにあたり、スパッタ法により前
記裏面透明導電膜を成膜する際に、成膜初期に100℃
以下の成膜温度で1〜30秒間にわたって裏面透明導電
膜を成膜した後、成膜温度を100℃以上に上げて残り
の厚さの裏面透明導電膜を成膜することを特徴とする。
According to a third method of manufacturing a thin film photoelectric conversion device of the present invention, a back metal electrode, a back transparent conductive film, a thin film photoelectric conversion unit, and a transparent electrode are sequentially formed on a substrate to manufacture the thin film photoelectric conversion device. When forming the transparent conductive film on the back surface by sputtering, 100 ° C.
After forming the back transparent conductive film at the following film forming temperature for 1 to 30 seconds, the film forming temperature is raised to 100 ° C. or more, and the back transparent conductive film having the remaining thickness is formed.

【0011】本発明において、裏面透明導電膜の材料は
透明導電性酸化物(TCO)であれば特に限定されない
が、ZnOを主成分とする膜を用いることが好ましい。
In the present invention, the material of the back transparent conductive film is not particularly limited as long as it is a transparent conductive oxide (TCO), but it is preferable to use a film containing ZnO as a main component.

【0012】本発明において、裏面金属電極としては、
Ag、Al、Au、Cu、Ptおよびこれらの合金から
なる群より選択される少なくとも1種が用いられる。
In the present invention, as the back metal electrode,
At least one selected from the group consisting of Ag, Al, Au, Cu, Pt and alloys thereof is used.

【0013】[0013]

【発明の実施の形態】本発明において、光電変換ユニッ
トとしては、例えばアモルファスシリコン系光電変換層
を含む光電変換ユニット、結晶質シリコン系光電変換層
を含む光電変換ユニット、1つ以上のアモルファスシリ
コン系光電変換層と1つ以上の結晶質シリコン系光電変
換層とを積層したタンデム型光電変換ユニット、CdS
/CdTe系光電変換層を含む光電変換ユニット、Cu
InS2系光電変換層を含む光電変換ユニットなどが挙
げられる。以下においては、これらのうちシリコン系薄
膜光電変換ユニットを例にとって、本発明をより詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, as the photoelectric conversion unit, for example, a photoelectric conversion unit including an amorphous silicon-based photoelectric conversion layer, a photoelectric conversion unit including a crystalline silicon-based photoelectric conversion layer, and one or more amorphous silicon-based photoelectric conversion units A tandem-type photoelectric conversion unit in which a photoelectric conversion layer and one or more crystalline silicon-based photoelectric conversion layers are stacked, CdS
/ CdTe photoelectric conversion unit including photoelectric conversion layer, Cu
Examples include a photoelectric conversion unit including an InS 2 -based photoelectric conversion layer. Hereinafter, the present invention will be described in more detail by taking a silicon-based thin-film photoelectric conversion unit as an example.

【0014】図1に示す断面図を参照して、本発明に係
るシリコン系薄膜光電変換装置の一例を説明する。この
シリコン系薄膜光電変換装置は、基板1上に、付着性付
与膜101、裏面金属電極102および裏面透明導電膜
103を含む複合電極10と、一導電型層(たとえばn
層)111、実質的に真性半導体からなる結晶質シリコ
ン系光電変換層(i層)112および逆導電型層(たと
えばp層)113を含む光電変換ユニット11と、透明
電極2と、櫛型金属電極3とを順次積層した構造を有す
る。この光電変換装置に対しては、光電変換されるべき
光hνは透明電極2の側から入射される。
An example of the silicon-based thin-film photoelectric conversion device according to the present invention will be described with reference to the sectional view shown in FIG. The silicon-based thin-film photoelectric conversion device includes a composite electrode 10 including an adhesion-imparting film 101, a back metal electrode 102, and a back transparent conductive film 103 on a substrate 1, and a layer of one conductivity type (for example, n
Layer) 111, a photoelectric conversion unit 11 including a crystalline silicon-based photoelectric conversion layer (i-layer) 112 substantially composed of an intrinsic semiconductor and an opposite conductivity type layer (for example, a p-layer) 113, a transparent electrode 2, a comb-shaped metal It has a structure in which electrodes 3 are sequentially laminated. Light hν to be subjected to photoelectric conversion enters this photoelectric conversion device from the transparent electrode 2 side.

【0015】基板1には、ステンレスなどの金属、有機
フィルム、セラミックス、または低融点の安価なガラス
などを用いることができる。
As the substrate 1, a metal such as stainless steel, an organic film, ceramics, or low-melting-point inexpensive glass can be used.

【0016】基板1上に、付着性付与膜101、裏面金
属電極102および裏面透明導電膜103を含む複合電
極10が形成される。付着性付与膜101は必ずしも設
ける必要はないが、付着性付与膜101を設けることに
より基板1と裏面金属電極102との間の付着性を向上
させることができる。付着性付与膜101には、20〜
50nmの厚さを有するTiなどが用いられる。このよ
うなTi層は、たとえば蒸着またはスパッタによって形
成される。裏面金属電極102には、Ag、Au、A
l、CuおよびPtからなる群より選択される金属また
はこれらの合金を用いることが好ましい。裏面金属電極
102は真空蒸着またはスパッタなどの方法によって形
成される。たとえば、下地温度を100〜330℃、よ
り好ましくは200〜300℃に設定し、真空蒸着によ
って光反射性の高いAg層を形成する。
A composite electrode 10 including an adhesion-imparting film 101, a back metal electrode 102, and a back transparent conductive film 103 is formed on a substrate 1. The adhesion-imparting film 101 is not necessarily provided, but by providing the adhesion-imparting film 101, the adhesion between the substrate 1 and the back metal electrode 102 can be improved. 20 to 20
For example, Ti having a thickness of 50 nm is used. Such a Ti layer is formed, for example, by vapor deposition or sputtering. Ag, Au, A
It is preferable to use a metal selected from the group consisting of l, Cu and Pt, or an alloy thereof. The back metal electrode 102 is formed by a method such as vacuum evaporation or sputtering. For example, the base temperature is set to 100 to 330 ° C., more preferably 200 to 300 ° C., and an Ag layer having high light reflectivity is formed by vacuum deposition.

【0017】裏面金属電極102の上表面における凹凸
構造は、種々の方法により形成することができる。例え
ば、金属電極の成膜時の温度条件等を変更することによ
っても変更できる。また、基板1の表面にエッチングな
どによって凹凸構造を形成し、その上に薄い裏面金属電
極102を形成して、裏面金属電極102の表面を基板
1の凹凸構造に沿った凹凸構造にする方法が挙げられ
る。また、基板1上に凹凸表面を有する透明導電性酸化
物層(図示せず)を堆積し、その上に薄い裏面金属電極
102を形成して、裏面金属電極102の表面を透明導
電性酸化物層の凹凸構造に沿った凹凸構造にする方法を
用いてもよい。
The uneven structure on the upper surface of the back metal electrode 102 can be formed by various methods. For example, it can also be changed by changing the temperature conditions and the like when forming the metal electrode. Further, a method of forming an uneven structure on the surface of the substrate 1 by etching or the like, forming a thin back metal electrode 102 thereon, and forming the surface of the back metal electrode 102 into an uneven structure along the uneven structure of the substrate 1 is known. No. In addition, a transparent conductive oxide layer (not shown) having an uneven surface is deposited on the substrate 1, a thin back metal electrode 102 is formed thereon, and the surface of the back metal electrode 102 is A method of forming an uneven structure along the uneven structure of the layer may be used.

【0018】裏面金属電極102上に形成される裏面透
明導電膜103は、ITO、SnO 2、ZnOなどから
選択される少なくとも1以上の層で形成することが好ま
しく、なかでもZnOを主成分とする膜が特に好まし
い。裏面透明導電膜103の平均結晶粒経は100nm
以上であることが好ましい。また、裏面透明導電膜10
3の厚さは10nm〜1μmであることが好ましく、さ
らに50nm〜1μmであることが好ましく、その比抵
抗は1.5×10-3Ωcm以下であることが好ましい。
上述したように、このような条件を満たす裏面透明導電
膜を形成するには、従来は2×10-2Torr以下の圧
力、100〜450℃の下地温度、500〜1500m
W/cm2の放電電力というスパッタ条件が採用されて
いたが、この条件では光電変換特性の改善が不十分にな
る。
The back transparent electrode formed on the back metal electrode 102
The bright conductive film 103 is made of ITO, SnO Two, ZnO etc.
It is preferable to form at least one or more selected layers.
In particular, a film containing ZnO as a main component is particularly preferable.
No. The average crystal grain size of the back transparent conductive film 103 is 100 nm.
It is preferable that it is above. Also, the back transparent conductive film 10
3 preferably has a thickness of 10 nm to 1 μm,
Further, the thickness is preferably 50 nm to 1 μm.
1.5 × 10-3It is preferably Ωcm or less.
As mentioned above, the back transparent conductive material that satisfies these conditions
Conventionally, 2 × 10-2Pressure below Torr
Force, base temperature of 100-450 ° C, 500-1500m
W / cmTwoThe sputtering condition of discharge power is adopted
However, under these conditions, the photoelectric conversion characteristics were not sufficiently improved.
You.

【0019】本発明では、裏面透明導電膜のスパッタ成
膜の際に低ダメージ条件を用いることにより、スパッタ
に伴って発生する負イオン(O-など)による、裏面金
属電極のダメージを抑制するとともに、裏面金属電極の
表面の酸化を低減する。しかし、低ダメージ条件だけで
は裏面透明導電膜の膜質(抵抗率、透過率)が悪くなる
ため、光電変換特性は改善されない。そこで本発明で
は、成膜初期だけ低ダメージ条件を用いて裏面金属電極
の表面に薄い裏面透明導電膜を形成し、その後に高品質
膜が得られる条件で残りの厚さの裏面透明導電膜を形成
することにより、光電変換ユニットのダメージを低減す
るとともに、最終的に得られる光電変換装置の光電変換
特性を改善するようにしている。
In the present invention, by using a low-damage conditions during sputtering of the back transparent conductive film, the negative ions generated in accordance with the sputtering - by (O, etc.), it is possible to suppress the damage to the back metal electrode In addition, the oxidation of the surface of the back metal electrode is reduced. However, the film quality (resistivity, transmittance) of the rear transparent conductive film is deteriorated only under the low damage condition, and the photoelectric conversion characteristics are not improved. Therefore, in the present invention, a thin rear transparent conductive film is formed on the surface of the rear metal electrode using low damage conditions only at the initial stage of film formation, and then the remaining transparent conductive film of the remaining thickness is formed under the condition that a high quality film is obtained. The formation reduces the damage of the photoelectric conversion unit and improves the photoelectric conversion characteristics of the finally obtained photoelectric conversion device.

【0020】具体的な裏面透明導電膜の成膜方法として
は、以下のような(1)〜(3)の方法が挙げられる。
Specific methods for forming the back transparent conductive film include the following methods (1) to (3).

【0021】(1)成膜初期に5×10-2Torr以上
の反応室内圧力で1〜30秒間にわたって裏面透明導電
膜を成膜した後、反応室内圧力を成膜初期の1/10以
下に下げて残りの厚さの裏面透明導電膜を成膜する方
法。この方法では、第2段階の高品質膜が得られる反応
室内圧力の条件は、2×10-2Torr以下、好ましく
は10-3Torrのオーダーである。
(1) After forming a backside transparent conductive film at a reaction chamber pressure of 5 × 10 −2 Torr or more for 1 to 30 seconds at the initial stage of film formation, the pressure in the reaction chamber is reduced to 1/10 or less of the initial stage of film formation. A method of forming a lower-surface transparent conductive film with the remaining thickness lowered. In this method, the pressure in the reaction chamber at which a high-quality film of the second stage can be obtained is 2 × 10 −2 Torr or less, preferably on the order of 10 −3 Torr.

【0022】(2)成膜初期に80〜500mW/cm
2の放電電力で1〜30秒間にわたって裏面透明導電膜
を成膜した後、放電電力を成膜初期の4倍以上に上げて
残りの厚さの裏面透明導電膜を成膜する方法。この方法
では、第2段階の高品質膜が得られる放電電力の条件
は、500〜1500mW/cm2である。
(2) 80 to 500 mW / cm at the beginning of film formation
After forming the back transparent conductive film with discharge power of 2 for 1 to 30 seconds, the discharge power is increased to four times or more of the initial stage of film formation, and the remaining thickness of the back transparent conductive film is formed. In this method, the condition of the discharge power to obtain a high quality film of the second stage is 500 to 1500 mW / cm 2 .

【0023】(3)成膜初期に100℃以下の成膜温度
(下地温度)で1〜30秒間にわたって裏面透明導電膜
を成膜した後、成膜温度(下地温度)を100℃以上に
上げて残りの厚さの裏面透明導電膜を成膜する方法。こ
の方法では、第2段階の高品質膜が得られる成膜温度
(下地温度)の条件は、100〜450℃、さらに好ま
しくは100〜300℃である。
(3) After forming the transparent conductive film on the back surface at a film formation temperature (base temperature) of 100 ° C. or less for an initial period of 1 to 30 seconds, the film formation temperature (base temperature) is raised to 100 ° C. or more. To form a transparent conductive film on the backside with the remaining thickness. In this method, the condition of the film formation temperature (base temperature) at which a high-quality film of the second stage is obtained is 100 to 450 ° C., and more preferably 100 to 300 ° C.

【0024】以下のいずれの方法でも、成膜初期条件
(低ダメージ条件)で1〜30秒間にわたって成膜する
ことにより、1〜10nmの裏面透明導電膜が形成され
る。また、成膜初期条件(低ダメージ条件)から第2段
階の条件(高品質膜成膜条件)へは容易に切り換えるこ
とができるので、従来の製造方法と本発明の製造方法と
で作業性の違いはほとんどない。さらに、上記の(1)
〜(3)の方法を組み合わせて裏面透明導電膜を成膜し
てもよいことは勿論である。
In any of the following methods, a back transparent conductive film of 1 to 10 nm is formed by forming a film for 1 to 30 seconds under initial conditions for film formation (low damage condition). Further, since the initial condition (low damage condition) can be easily changed from the initial condition (low damage condition) to the second stage condition (high quality film forming condition), the workability between the conventional manufacturing method and the manufacturing method of the present invention can be improved. There is little difference. Furthermore, the above (1)
It goes without saying that the back surface transparent conductive film may be formed by combining the methods (3) to (3).

【0025】複合電極10上には光電変換ユニット11
が形成される。この光電変換ユニット11に含まれるす
べての半導体層は、下地温度を400℃以下に設定して
プラズマCVD法によって堆積される。プラズマCVD
法としては、一般によく知られている平行平板型のRF
プラズマCVDを用いてもよいし、周波数150MHz
以下のRF帯からVHF帯までの高周波電源を利用する
プラズマCVDを用いてもよい。
The photoelectric conversion unit 11 is provided on the composite electrode 10.
Is formed. All the semiconductor layers included in the photoelectric conversion unit 11 are deposited by the plasma CVD method with the base temperature set at 400 ° C. or lower. Plasma CVD
The method is generally well-known parallel plate type RF.
Plasma CVD may be used or at a frequency of 150 MHz.
Plasma CVD using a high-frequency power supply in the following RF band to VHF band may be used.

【0026】光電変換ユニット11には一導電型層11
1、光電変換層112および逆導電型層113が含まれ
る。一導電型層111はn型層でもp型層でもよく、こ
れに対応して逆導電型層113はp型層またはn型層に
なる。光電変換層112は実質的にノンドープの真性半
導体からなる。ただし、光電変換装置では通常は光の入
射側にp型層が配置されるので、図1の構造では一般的
に一導電型層111はn型層、逆導電型層113はp型
層である。
The photoelectric conversion unit 11 has a one conductivity type layer 11
1, a photoelectric conversion layer 112 and a reverse conductivity type layer 113 are included. One conductivity type layer 111 may be an n-type layer or a p-type layer, and correspondingly, reverse conductivity type layer 113 may be a p-type layer or an n-type layer. The photoelectric conversion layer 112 is substantially made of a non-doped intrinsic semiconductor. However, since a p-type layer is usually arranged on the light incident side in the photoelectric conversion device, the one conductivity type layer 111 is generally an n-type layer and the opposite conductivity type layer 113 is a p-type layer in the structure of FIG. is there.

【0027】裏面透明導電膜103上には一導電型層1
11が形成される。一導電型層111は、たとえば導電
型決定不純物原子としてリンがドープされたn型シリコ
ン系薄膜からなる。ただし、不純物原子は特に限定され
ず、n型層では窒素などでもよい。また、一導電型層1
11の半導体材料は特に限定されず、アモルファスシリ
コン、アモルファスシリコンカーバイドやアモルファス
シリコンゲルマニウムなどの合金材料、多結晶シリコン
もしくは部分的に非晶質を含む微結晶シリコンまたはそ
の合金材料を用いることもできる。なお、必要に応じ
て、堆積された一導電型層111にパルスレーザ光を照
射(レーザーアニール)することにより、結晶化分率や
キャリア濃度を制御することもできる。
On the back transparent conductive film 103, one conductive type layer 1 is formed.
11 is formed. One conductivity type layer 111 is made of, for example, an n-type silicon-based thin film doped with phosphorus as a conductivity type determining impurity atom. However, the impurity atoms are not particularly limited, and may be nitrogen or the like in the n-type layer. In addition, one conductivity type layer 1
The semiconductor material of No. 11 is not particularly limited, and amorphous silicon, an alloy material such as amorphous silicon carbide or amorphous silicon germanium, polycrystalline silicon, microcrystalline silicon partially containing amorphous, or an alloy material thereof can also be used. If necessary, the crystallization fraction and the carrier concentration can be controlled by irradiating the deposited one-conductivity-type layer 111 with pulsed laser light (laser annealing).

【0028】一導電型層111上には、実質的にノンド
ープの真性半導体からなる結晶質(多結晶または微結
晶)シリコン系光電変換層112が堆積される。この結
晶質(多結晶または微結晶)シリコン系の光電変換層と
しては、体積結晶化分率が80%以上である、多結晶シ
リコン膜もしくは微結晶シリコン膜または微量の不純物
を含む弱p型もしくは弱n型で光電変換機能を十分に備
えたシリコン系薄膜材料を用いることができる。この光
電変換層112を構成する半導体材料も特に限定され
ず、シリコンカーバイドやシリコンゲルマニウムなどの
合金材料を用いることもできる。
On the one conductivity type layer 111, a crystalline (polycrystalline or microcrystalline) silicon-based photoelectric conversion layer 112 substantially composed of a non-doped intrinsic semiconductor is deposited. As the crystalline (polycrystalline or microcrystalline) silicon-based photoelectric conversion layer, a polycrystalline silicon film or a microcrystalline silicon film having a volume crystallization fraction of 80% or more or a weak p-type or It is possible to use a silicon-based thin film material that is weak n-type and has a sufficient photoelectric conversion function. The semiconductor material forming the photoelectric conversion layer 112 is not particularly limited, and an alloy material such as silicon carbide or silicon germanium can be used.

【0029】この光電変換層112の厚さは、必要かつ
十分な光電変換が可能なように、一般的に0.5〜20
μmの範囲に形成される。また、結晶質シリコン系光電
変換層は、400℃以下の低温で形成すると、結晶粒界
や粒内における欠陥を終端させて不活性化させる水素原
子を多く含むようになる。具体的には、光電変換層の水
素含有量は1〜30原子%の範囲内になる。さらに、結
晶質シリコン系光電変換層に含まれる結晶粒の多くは下
地層から上方に柱状に延びて成長しており、その膜面に
平行に(110)の優先結晶配向面を有する。そして、
X線回折における(220)回折ピークに対する(11
1)回折ピークの強度比は0.2以下である。
The thickness of the photoelectric conversion layer 112 is generally 0.5 to 20 so that necessary and sufficient photoelectric conversion can be performed.
It is formed in the range of μm. In addition, when the crystalline silicon-based photoelectric conversion layer is formed at a low temperature of 400 ° C. or lower, a large amount of hydrogen atoms that terminate and inactivate defects at crystal grain boundaries and grains are included. Specifically, the hydrogen content of the photoelectric conversion layer is in the range of 1 to 30 atomic%. Furthermore, many of the crystal grains contained in the crystalline silicon-based photoelectric conversion layer extend upward from the underlayer in a columnar shape, and have a (110) preferential crystal orientation plane parallel to the film surface. And
(11) for the (220) diffraction peak in X-ray diffraction
1) The intensity ratio of the diffraction peak is 0.2 or less.

【0030】光電変換層112上には逆導電型層113
が形成される。この逆導電型層113は、たとえば導電
型決定不純物原子としてボロンをドープしたp型シリコ
ン系薄膜からなる。ただし、不純物原子は特に限定され
ず、p型層の場合にはアルミニウムなどでもよい。ま
た、逆導電型層113の半導体材料としては、アモルフ
ァスシリコン、アモルファスシリコンカーバイドやアモ
ルファスシリコンゲルマニウム等の合金材料、多結晶シ
リコンもしくは部分的に非晶質を含む微結晶シリコンま
たはその合金材料を用いることもできる。
On the photoelectric conversion layer 112, a layer 113 of the opposite conductivity type is provided.
Is formed. The opposite conductivity type layer 113 is made of, for example, a p-type silicon-based thin film doped with boron as a conductivity type determining impurity atom. However, the impurity atoms are not particularly limited, and may be aluminum or the like in the case of a p-type layer. As the semiconductor material of the opposite conductivity type layer 113, amorphous silicon, an alloy material such as amorphous silicon carbide or amorphous silicon germanium, polycrystalline silicon, microcrystalline silicon partially containing amorphous, or an alloy material thereof is used. Can also.

【0031】ここで、複合電極10の表面が実質的に平
坦である場合でも、その上に堆積される光電変換ユニッ
ト11の表面TBは微細な凹凸を含む表面テクスチャ構
造を示す。また、複合電極10の表面TAが凹凸を含む
表面テクスチャ構造を有する場合、光電変換ユニット1
1の表面TBは、複合電極10の表面TAに比べて、テク
スチャ構造における凹凸のピッチが小さくなる。これ
は、光電変換ユニット11を構成する結晶質シリコン系
光電変換層112の堆積時に結晶配向に基づいてテクス
チャ構造が生じることによる。このため光電変換ユニッ
ト11の表面TBは広範囲の波長領域の光を反射させる
のに適した微細な表面凹凸テクスチャ構造となり、光電
変換装置における光閉じ込め効果も大きくなる。
[0031] Here, even when the surface of the composite electrode 10 is substantially flat, the surface T B of the photoelectric conversion unit 11 which is deposited thereon exhibits a textured surface structure including fine unevenness. Further, if the surface T A of the composite electrode 10 has a surface texture structure including irregularities, photoelectric conversion unit 1
1 of the surface T B, as compared to the surface T A of the composite electrode 10, the pitch of the unevenness in the texture structure is reduced. This is because a texture structure is generated based on the crystal orientation when the crystalline silicon-based photoelectric conversion layer 112 constituting the photoelectric conversion unit 11 is deposited. Therefore the surface T B of the photoelectric conversion unit 11 becomes a fine surface irregularities textured structure suitable to reflect light of a wide range of wavelength regions, the greater the light confinement effect in the photoelectric conversion device.

【0032】光電変換ユニット11上には透明電極2が
前面電極として形成される。この透明電極2は、IT
O、SnO2およびZnOからなる群より選択される1
以上の透明導電性酸化物(TCO)で形成される。さら
に、この透明電極2上に櫛型金属電極(グリッド電極)
3が形成される。この櫛型金属電極3は、Al、Ag、
Au、CuおよびPtからなる群より選択される金属ま
たはこれらの合金で形成される。
The transparent electrode 2 is formed on the photoelectric conversion unit 11 as a front electrode. This transparent electrode 2 is made of IT
1 selected from the group consisting of O, SnO 2 and ZnO
The transparent conductive oxide (TCO) is formed of the above. Further, a comb-shaped metal electrode (grid electrode) is formed on the transparent electrode 2.
3 is formed. This comb-shaped metal electrode 3 is made of Al, Ag,
It is formed of a metal selected from the group consisting of Au, Cu and Pt, or an alloy thereof.

【0033】[0033]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0034】(実施例1)図1に示される多結晶シリコ
ン系光電変換装置を製造した。まず、ガラス基板1上に
複合電極10を形成した。この複合電極10は、厚さ2
0nmのTiからなる付着性付与膜101、厚さ300
nmのAgからなる裏面金属電極102、および厚さ1
00nmのAlドープZnOからなる裏面透明導電膜1
03からなっている。Agからなる裏面金属電極102
は真空蒸着により堆積した。上記のAlドープZnOか
らなる裏面透明導電膜103は、RFマグネトロンスパ
ッタ法により以下に示す2段階の条件で成膜した。ただ
し、スパッタガスとしてArガスを用い、下地温度15
0℃およびRF電力密度850mW/cm2は一定とし
て変化させていない。まず、成膜初期に1×10-1To
rrの反応室内圧力で10秒間スパッタして厚さ約2n
mのZnOを成膜した。その後、反応室内圧力を3×1
-3Torrに下げて残りの厚さのZnOを成膜した。
Example 1 A polycrystalline silicon photoelectric conversion device shown in FIG. 1 was manufactured. First, the composite electrode 10 was formed on the glass substrate 1. This composite electrode 10 has a thickness of 2
Adhesion-imparting film 101 made of 0 nm Ti, thickness 300
back metal electrode 102 made of Ag having a thickness of 1 nm and a thickness of 1
Back transparent conductive film 1 made of 00 nm Al-doped ZnO
It consists of 03. Back metal electrode 102 made of Ag
Was deposited by vacuum evaporation. The back transparent conductive film 103 made of Al-doped ZnO was formed by the RF magnetron sputtering method under the following two-stage conditions. However, Ar gas was used as the sputtering gas,
0 ° C. and the RF power density of 850 mW / cm 2 were not varied. First, 1 × 10 −1 To
Sputter for 10 seconds at rr reaction chamber pressure to a thickness of about 2n
m of ZnO was formed. Thereafter, the pressure in the reaction chamber was increased to 3 × 1
The film thickness of ZnO was reduced to 0 -3 Torr and the remaining thickness was formed.

【0035】上記の複合電極10上に、プラズマCVD
法により、一導電型層(n層)111、ノンドープの結
晶質シリコン系光電変換層(i層)112、逆導電型層
(p層)113を含む光電変換ユニット11を形成し
た。光電変換ユニット11に含まれるノンドープの結晶
質シリコン系光電変換層112は、下地温度を300℃
に設定してRFプラズマCVD法によって1.4μmの
厚さに堆積した。この光電変換層112について、2次
イオン質量分析法によって求めた水素含有量は2.3原
子%であり、X線回折における(220)回折ピークに
対する(111)回折ピークの強度比は0.084であ
った。この光電変換ユニット11上に、スパッタ法によ
り、厚さ80nmのITOからなる透明電極2と、Ag
からなる電流取り出しのための櫛型金属電極3とを形成
した。
Plasma CVD is performed on the composite electrode 10 described above.
The photoelectric conversion unit 11 including the one conductivity type layer (n layer) 111, the undoped crystalline silicon-based photoelectric conversion layer (i layer) 112, and the opposite conductivity type layer (p layer) 113 was formed by the method. The non-doped crystalline silicon-based photoelectric conversion layer 112 included in the photoelectric conversion unit 11 has a base temperature of 300 ° C.
And deposited to a thickness of 1.4 μm by RF plasma CVD. The hydrogen content of the photoelectric conversion layer 112 determined by secondary ion mass spectrometry was 2.3 atomic%, and the intensity ratio of the (111) diffraction peak to the (220) diffraction peak in X-ray diffraction was 0.084. Met. A transparent electrode 2 made of ITO having a thickness of 80 nm is formed on the photoelectric conversion unit 11 by sputtering.
And a comb-shaped metal electrode 3 for extracting current.

【0036】得られた光電変換装置に、AM1.5の光
を100mW/cm2の光量で入射したときの短絡電流
密度は22.8mA/cm2であった。
The short circuit current density when the light of AM 1.5 was incident on the obtained photoelectric conversion device at a light amount of 100 mW / cm 2 was 22.8 mA / cm 2 .

【0037】(比較例1)AlドープZnOからなる裏
面透明導電膜103をスパッタ法により成膜する際に、
最初から成膜終了時まで反応室内圧力を3×10-3To
rrの一定圧力に設定した以外は実施例1と同様にして
図1に示す光電変換装置を製造した。
(Comparative Example 1) When the back transparent conductive film 103 made of Al-doped ZnO was formed by sputtering,
From the beginning to the end of film formation, the pressure in the reaction chamber is 3 × 10 −3 To
The photoelectric conversion device shown in FIG. 1 was manufactured in the same manner as in Example 1 except that the pressure was set to a constant rr.

【0038】得られた光電変換装置に、AM1.5の光
を100mW/cm2の光量で入射したときの短絡電流
密度は22.1mA/cm2であり、実施例1よりも低
かった。
The short-circuit current density when the light of AM 1.5 was incident on the obtained photoelectric conversion device at a light quantity of 100 mW / cm 2 was 22.1 mA / cm 2 , which was lower than that of Example 1.

【0039】次に、図2に実施例1および比較例1の光
電変換装置における光吸収特性を示す。この図におい
て、横軸は光の波長、縦軸は光電変換装置の外部量子効
率である。また、一点鎖線の曲線および実線の曲線は、
それぞれ実施例1および比較例1の光電変換装置におけ
る分光感度特性を表わしている。
Next, FIG. 2 shows light absorption characteristics of the photoelectric conversion devices of Example 1 and Comparative Example 1. In this figure, the horizontal axis is the wavelength of light, and the vertical axis is the external quantum efficiency of the photoelectric conversion device. In addition, the dash-dot line curve and the solid line curve
5 shows spectral sensitivity characteristics of the photoelectric conversion devices of Example 1 and Comparative Example 1, respectively.

【0040】図2から、実施例1の光電変換装置では、
比較例1と比較して、特に500〜600nmの波長領
域における外部量子効率が高くなっている。これはAl
ドープZnOからなる裏面透明導電膜103を、裏面金
属電極のダメージおよび酸化を低減できる低ダメージ条
件、および高品質膜を成膜できる条件の2段階で成膜し
たことによる効果である。
FIG. 2 shows that in the photoelectric conversion device of the first embodiment,
Compared with Comparative Example 1, the external quantum efficiency is particularly high in the wavelength region of 500 to 600 nm. This is Al
This is an effect obtained by forming the back transparent conductive film 103 made of doped ZnO in two stages: a low damage condition capable of reducing damage and oxidation of the back metal electrode, and a condition capable of forming a high quality film.

【0041】(実施例2)AlドープZnOからなる裏
面透明導電膜103をRFマグネトロンスパッタ法によ
り以下に示す2段階の条件で成膜した以外は実施例1と
同様にして図1に示す光電変換装置を製造した。ただ
し、スパッタガスとしてArガスを用い、下地温度15
0℃および反応室内圧力3×10-3Torrは一定とし
て変化させていない。まず、成膜初期に200mW/c
2のRF電力密度で10秒間スパッタして厚さ約2n
mのZnOを成膜した。その後、RF電力密度を850
mW/cm2に上げて残りの厚さのZnOを成膜した。
Example 2 The photoelectric conversion shown in FIG. 1 was performed in the same manner as in Example 1 except that the back transparent conductive film 103 made of Al-doped ZnO was formed by RF magnetron sputtering under the following two-stage conditions. The device was manufactured. However, Ar gas was used as the sputtering gas,
0 ° C. and the pressure in the reaction chamber, 3 × 10 −3 Torr, were not changed and kept constant. First, 200 mW / c at the beginning of film formation
Sputtering at RF power density of m 2 for 10 seconds to a thickness of about 2n
m of ZnO was formed. Thereafter, the RF power density was increased to 850.
The film thickness was increased to mW / cm 2 , and the remaining thickness of ZnO was deposited.

【0042】得られた光電変換装置に、AM1.5の光
を100mW/cm2の光量で入射したときの短絡電流
密度は22.5mA/cm2であった。
The short-circuit current density when light of AM 1.5 was incident on the obtained photoelectric conversion device at a light amount of 100 mW / cm 2 was 22.5 mA / cm 2 .

【0043】(実施例3)AlドープZnOからなる裏
面透明導電膜103をRFマグネトロンスパッタ法によ
り以下に示す2段階の条件で成膜した以外は実施例1と
同様にして図1に示す光電変換装置を製造した。ただ
し、スパッタガスとしてArガスを用い、反応室内圧力
3×10-3TorrおよびRF電力密度850mW/c
2は一定として変化させていない。まず、成膜初期に
50℃の下地温度で10秒間スパッタして厚さ約2nm
のZnOを成膜した。その後、下地温度を150℃に上
げて残りの厚さのZnOを成膜した。
Example 3 The photoelectric conversion shown in FIG. 1 was performed in the same manner as in Example 1 except that the back transparent conductive film 103 made of Al-doped ZnO was formed by RF magnetron sputtering under the following two-stage conditions. The device was manufactured. However, Ar gas was used as a sputtering gas, the reaction chamber pressure was 3 × 10 −3 Torr, and the RF power density was 850 mW / c.
m 2 is not changed and kept constant. First, at the initial stage of film formation, sputtering is performed for 10 seconds at a base temperature of 50 ° C. to a thickness of about 2 nm.
Was formed. Thereafter, the base temperature was raised to 150 ° C., and a ZnO film having the remaining thickness was formed.

【0044】得られた光電変換装置に、AM1.5の光
を100mW/cm2の光量で入射したときの短絡電流
密度は22.9mA/cm2であった。
The short-circuit current density when light of AM 1.5 was incident on the obtained photoelectric conversion device at a light quantity of 100 mW / cm 2 was 22.9 mA / cm 2 .

【0045】[0045]

【発明の効果】以上詳述したように本発明によれば、光
電変換特性が改善されたシリコン系薄膜光電変換装置を
簡便に製造できる方法を提供できる。
As described above in detail, according to the present invention, it is possible to provide a method for easily manufacturing a silicon-based thin film photoelectric conversion device having improved photoelectric conversion characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るシリコン系薄膜光電変換装置の一
例を示す断面図。
FIG. 1 is a sectional view showing an example of a silicon-based thin-film photoelectric conversion device according to the present invention.

【図2】実施例1および比較例1の光電変換装置におけ
る光吸収特性を示す図。
FIG. 2 is a diagram showing light absorption characteristics of the photoelectric conversion devices of Example 1 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1…基板 10…複合電極 101…付着性付与膜、102…裏面金属電極、103
…裏面透明導電膜 11…光電変換ユニット 111…一導電型層、112…結晶質シリコン系光電変
換層、113…逆導電型層 2…透明電極 3…櫛型金属電極
DESCRIPTION OF SYMBOLS 1 ... Substrate 10 ... Composite electrode 101 ... Adhesion imparting film, 102 ... Backside metal electrode, 103
... back transparent conductive film 11 ... photoelectric conversion unit 111 ... one conductivity type layer, 112 ... crystalline silicon-based photoelectric conversion layer, 113 ... reverse conductivity type layer 2 ... transparent electrode 3 ... comb-shaped metal electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F051 AA03 AA04 AA05 AA09 AA10 CB15 CB27 CB29 DA04 FA02 FA06 FA15 FA19 GA02 GA03 GA05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F051 AA03 AA04 AA05 AA09 AA10 CB15 CB27 CB29 DA04 FA02 FA06 FA15 FA19 GA02 GA03 GA05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、裏面金属電極、裏面透明導電
膜、薄膜光電変換ユニット、および透明電極を順次形成
して薄膜光電変換装置を製造するにあたり、スパッタ法
により前記裏面透明導電膜を成膜する際に、成膜初期に
5×10-2Torr以上の反応室内圧力で1〜30秒間
にわたって裏面透明導電膜を成膜した後、反応室内圧力
を成膜初期の1/10以下に下げて残りの厚さの裏面透
明導電膜を成膜することを特徴とする薄膜光電変換装置
の製造方法。
1. A method of manufacturing a thin film photoelectric conversion device by sequentially forming a back metal electrode, a back transparent conductive film, a thin film photoelectric conversion unit, and a transparent electrode on a substrate, forming the back transparent conductive film by a sputtering method. When forming the film, after forming the backside transparent conductive film at a reaction chamber pressure of 5 × 10 −2 Torr or more for 1 to 30 seconds at the initial stage of the film formation, the pressure in the reaction chamber is reduced to 1/10 or less of the initial stage of the film formation. A method of manufacturing a thin film photoelectric conversion device, wherein a back transparent conductive film having a remaining thickness is formed.
【請求項2】 基板上に、裏面金属電極、裏面透明導電
膜、薄膜光電変換ユニット、および透明電極を順次形成
して薄膜光電変換装置を製造するにあたり、スパッタ法
により前記裏面透明導電膜を成膜する際に、成膜初期に
80〜500mW/cm2の放電電力で1〜30秒間に
わたって裏面透明導電膜を成膜した後、放電電力を成膜
初期の4倍以上に上げて残りの厚さの裏面透明導電膜を
成膜することを特徴とする薄膜光電変換装置の製造方
法。
2. A method for manufacturing a thin film photoelectric conversion device by sequentially forming a back metal electrode, a back transparent conductive film, a thin film photoelectric conversion unit, and a transparent electrode on a substrate, forming the back transparent conductive film by a sputtering method. At the time of film formation, after forming a back surface transparent conductive film for 1 to 30 seconds with a discharge power of 80 to 500 mW / cm 2 at the initial stage of film formation, the discharge power is increased to 4 times or more of the initial film formation and the remaining thickness is increased. A method for manufacturing a thin-film photoelectric conversion device, comprising: forming a transparent conductive film on the back surface.
【請求項3】 基板上に、裏面金属電極、裏面透明導電
膜、薄膜光電変換ユニット、および透明電極を順次形成
して薄膜光電変換装置を製造するにあたり、スパッタ法
により前記裏面透明導電膜を成膜する際に、成膜初期に
100℃以下の成膜温度で1〜30秒間にわたって裏面
透明導電膜を成膜した後、成膜温度を100℃以上に上
げて残りの厚さの裏面透明導電膜を成膜することを特徴
とする薄膜光電変換装置の製造方法。
3. A backside transparent conductive film is formed by a sputtering method when a backside metal electrode, a backside transparent conductive film, a thin film photoelectric conversion unit, and a transparent electrode are sequentially formed on a substrate to manufacture a thin film photoelectric conversion device. When forming a film, a backside transparent conductive film is formed at a film formation temperature of 100 ° C. or less at an initial stage of film formation for 1 to 30 seconds, and then the film formation temperature is increased to 100 ° C. or more and the remaining thickness of the back surface transparent conductive film is A method for manufacturing a thin film photoelectric conversion device, comprising forming a film.
【請求項4】 前記裏面透明導電膜がZnOを主成分と
する膜であることを特徴とする請求項1ないし3のいず
れか記載の薄膜光電変換装置の製造方法。
4. The method for manufacturing a thin-film photoelectric conversion device according to claim 1, wherein the back transparent conductive film is a film containing ZnO as a main component.
【請求項5】 前記裏面金属電極が、Ag、Al、A
u、Cu、Ptおよびこれらの合金からなる群より選択
される少なくとも1種からなることを特徴とする請求項
1ないし3いずれか記載の薄膜光電変換装置の製造方
法。
5. The method according to claim 1, wherein the back metal electrode is made of Ag, Al, A
4. The method for manufacturing a thin-film photoelectric conversion device according to claim 1, comprising at least one selected from the group consisting of u, Cu, Pt and an alloy thereof.
JP11050586A 1999-02-26 1999-02-26 Method for manufacturing thin-film photoelectric conversion device Pending JP2000252497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11050586A JP2000252497A (en) 1999-02-26 1999-02-26 Method for manufacturing thin-film photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11050586A JP2000252497A (en) 1999-02-26 1999-02-26 Method for manufacturing thin-film photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2000252497A true JP2000252497A (en) 2000-09-14

Family

ID=12863089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11050586A Pending JP2000252497A (en) 1999-02-26 1999-02-26 Method for manufacturing thin-film photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2000252497A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261302A (en) * 2001-02-28 2002-09-13 Kyocera Corp THIN-FILM CRYSTALLINE Si SOLAR CELL
WO2009119129A1 (en) * 2008-03-28 2009-10-01 三菱重工業株式会社 Photoelectric conversion device and method for manufacturing the same
JP2014534637A (en) * 2011-10-28 2014-12-18 ダウ グローバル テクノロジーズ エルエルシー Method for producing chalcogenide solar cell
CN109036705A (en) * 2018-06-21 2018-12-18 浙江浙能技术研究院有限公司 A method of three dimensional thin film electrode is made using fixed abrasive

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261302A (en) * 2001-02-28 2002-09-13 Kyocera Corp THIN-FILM CRYSTALLINE Si SOLAR CELL
WO2009119129A1 (en) * 2008-03-28 2009-10-01 三菱重工業株式会社 Photoelectric conversion device and method for manufacturing the same
JP2014534637A (en) * 2011-10-28 2014-12-18 ダウ グローバル テクノロジーズ エルエルシー Method for producing chalcogenide solar cell
CN109036705A (en) * 2018-06-21 2018-12-18 浙江浙能技术研究院有限公司 A method of three dimensional thin film electrode is made using fixed abrasive

Similar Documents

Publication Publication Date Title
JP3056200B1 (en) Method of manufacturing thin film photoelectric conversion device
JP2908067B2 (en) Substrate for solar cell and solar cell
WO1999063600A1 (en) Silicon-base thin-film photoelectric device
JP5093503B2 (en) Thin film solar cell and surface electrode for thin film solar cell
JP2000252500A (en) Silicon thin-film photoelectric conversion device
JP2000261011A (en) Silicon-based thin-film photoelectric transducer
JP2000058892A (en) Silicon based thin film photoelectric converter
JP2000174310A (en) Manufacture of silicon-based thin-film photoelectric conversion device
JP2000252497A (en) Method for manufacturing thin-film photoelectric conversion device
JP5093502B2 (en) Thin film solar cell and surface electrode for thin film solar cell
JPH11186574A (en) Silicon-based thin-film photoelectric converter
JP3762086B2 (en) Tandem silicon thin film photoelectric conversion device
JP5056651B2 (en) Thin film solar cell and surface electrode for thin film solar cell
JP2000252501A (en) Manufacture of silicon thin film optoelectric transducer device
JP2000252504A (en) Silicon thin film optoelectric transducer device and manufacture thereof
JP3745076B2 (en) Tandem silicon thin film photoelectric conversion device
JP2001015780A (en) Rear surface electrode for silicon-system thin-film photoelectric conversion device and silicon-system thin- film photoelectric conversion device provided therewith
JP3364137B2 (en) Method for manufacturing silicon-based thin film photoelectric conversion device
JPH11214727A (en) Tandem type silicon thin-film photoelectric conversion device
JP3746607B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JP2000232234A (en) Silicon thin film photoelectric conversion device
JP3753528B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JPH10294482A (en) Silicon-based thin film photoelectric converter
JP2000269529A (en) Silicon system thin film photoelectric conversion device
JP2002222969A (en) Laminated solar battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term