WO2012029250A1 - Parallel stacked photoelectric conversion device and series integrated photoelectric conversion device - Google Patents

Parallel stacked photoelectric conversion device and series integrated photoelectric conversion device Download PDF

Info

Publication number
WO2012029250A1
WO2012029250A1 PCT/JP2011/004679 JP2011004679W WO2012029250A1 WO 2012029250 A1 WO2012029250 A1 WO 2012029250A1 JP 2011004679 W JP2011004679 W JP 2011004679W WO 2012029250 A1 WO2012029250 A1 WO 2012029250A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
optical adjustment
parallel
conversion unit
adjustment layer
Prior art date
Application number
PCT/JP2011/004679
Other languages
French (fr)
Japanese (ja)
Inventor
恒 宇津
満 市川
崇 口山
玄介 小泉
山本 憲治
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2012531674A priority Critical patent/JP5905824B2/en
Publication of WO2012029250A1 publication Critical patent/WO2012029250A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

In order to provide a highly efficient solar cell in which photoelectric conversion units are electrically connected to each other in series and in parallel, a parallel stacked photoelectric conversion device of the present invention has a plurality of stacked series elements that are electrically connected to each other in parallel, wherein the device is characterized in that each of the series elements comprises at least one photoelectric conversion unit and has an optical adjustment layer between at least two adjacent series elements, the optical adjustment layer has reflection wavelength selectivity and transmission wavelength selectivity, the reflection wavelength selected according to the reflection wavelength selectivity has a selection wavelength within the spectral sensitivity of the series elements on the light incidence side of the optical adjustment layer, and the transmission wavelength selected according to transmission wavelength selectivity has a selection wavelength within the spectral sensitivity of all the photoelectric conversion units on the rear side of the optical adjustment layer.

Description

並列光電変換積層デバイスとその直列集積光電変換装置Parallel photoelectric conversion laminated device and series integrated photoelectric conversion device
 本発明は、電気的に直列、及び並列に接続した光電変換ユニット間に、光学調整層を導入した並列光電変換積層デバイス及び、該並列光電変換積層デバイスを用いた直列集積光電変換装置に関する。 The present invention relates to a parallel photoelectric conversion stacked device in which an optical adjustment layer is introduced between photoelectric conversion units electrically connected in series and in parallel, and a series integrated photoelectric conversion apparatus using the parallel photoelectric conversion stacked device.
 近年、太陽電池の低コスト化、高効率化が益々求められていく中、使用原材料を抑制できる薄膜太陽電池が注目され、盛んな研究開発が行われている。 In recent years, as the cost and efficiency of solar cells have been increasingly demanded, thin-film solar cells that can control the raw materials used have attracted attention and are actively researched and developed.
 現在、薄膜シリコン系太陽電池においては、従来の非晶質シリコン薄膜太陽電池に加えて結晶質シリコン薄膜太陽電池も開発され、これらを積層したハイブリッド太陽電池と称される積層型薄膜太陽電池も実用化されている。ここで、上記のシリコン薄膜太陽電池は、それに含まれるp型とn型の導電型層が非晶質か結晶質かに拘わらず、i型の光電変換層が非晶質なものは非晶質シリコン薄膜太陽電池と称され、i型層が結晶質のものは結晶質シリコン薄膜太陽電池と称される。なお、本願における「結晶質」との用語は、薄膜太陽電池素子の技術分野で一般に用いられている様に、部分的に非晶質状態を含むものをも含むものとする。 Currently, in addition to conventional amorphous silicon thin-film solar cells, crystalline silicon thin-film solar cells have also been developed as thin-film silicon solar cells. It has become. Here, the silicon thin film solar cell described above is amorphous when the i-type photoelectric conversion layer is amorphous regardless of whether the p-type and n-type conductive layers included therein are amorphous or crystalline. A crystalline silicon thin film solar cell is referred to as a crystalline silicon thin film solar cell. In addition, the term “crystalline” in the present application includes those partially including an amorphous state as commonly used in the technical field of thin film solar cell elements.
 ところで、化合物系光電変換ユニットとシリコン系光電変換ユニットのタンデム型太陽電池デバイスの一例として、特許文献1には、シリコン系およびCIS系薄膜光電変換ユニットを直列接続することにより短絡電流値を高い値でバランスさせ、高い開放電圧を有する、変換効率の高い多接合型光電変換装置を提供することを目的として、多接合型薄膜光電変換装置において、二つのシリコン系薄膜光電変換ユニット、及びCIS系薄膜光電変換ユニットを備え、中間層を介してこれらを直列接続している。シリコン系薄膜光電変換装置では光電変換が難しい1100nm以上の近赤外光の光電変換が可能であり、太陽光スペクトルを幅広く利用することが可能である点から、より高効率な多接合型薄膜光電変換装置を提供することができると開示されている。 By the way, as an example of a tandem solar cell device of a compound-based photoelectric conversion unit and a silicon-based photoelectric conversion unit, Patent Document 1 discloses a high short-circuit current value by connecting silicon-based and CIS-based thin-film photoelectric conversion units in series. In order to provide a multi-junction photoelectric conversion device having a high open-circuit voltage and a high conversion efficiency, in the multi-junction thin-film photoelectric conversion device, two silicon-based thin-film photoelectric conversion units and a CIS-based thin film are provided. A photoelectric conversion unit is provided, and these are connected in series via an intermediate layer. The silicon-based thin film photoelectric conversion device is capable of photoelectric conversion of near-infrared light of 1100 nm or more, which is difficult to perform photoelectric conversion, and can use a wide range of solar spectrum. It is disclosed that a conversion device can be provided.
特開2010-87205号公報JP 2010-87205 A
 ところが、シリコン系光電変換ユニットと化合物系光電変換ユニットを直列に接続すると、それぞれの光電変換ユニットの電流値をそろえる必要があり、また、より高度な光学調整が成されていなかった。 However, when a silicon-based photoelectric conversion unit and a compound-based photoelectric conversion unit are connected in series, the current values of the respective photoelectric conversion units need to be aligned, and more advanced optical adjustment has not been performed.
 本発明は、光電変換ユニットを電気的に直列、及び並列に接続した太陽電池素子において、光学調整層を導入することで、各光電変換ユニットにおける光吸収量を適切に配分した高効率太陽電池素子の提供を目的とする。 The present invention relates to a solar cell element in which photoelectric conversion units are electrically connected in series and in parallel. By introducing an optical adjustment layer, a high-efficiency solar cell element in which light absorption amount in each photoelectric conversion unit is appropriately distributed. The purpose is to provide.
 本発明の並列光電変換積層デバイスは、特定の光学調整層、及び、直並列構造を有しており、以下の構成を有するものである。 The parallel photoelectric conversion laminated device of the present invention has a specific optical adjustment layer and a series-parallel structure, and has the following configuration.
 積層されてなる複数の直列素子が、電気的に並列接続されてなる並列光電変換積層デバイスであって、該直列素子が一つ以上の光電変換ユニットを含み、少なくとも二つの隣り合う直列素子間に光学調整層を有し、該光学調整層が反射波長選択性及び、透過波長選択性を有し、該反射波長選択性によって選択される反射波長が、該光学調整層より光入射側の該直列素子の分光感度の範囲内に選択波長を有し、該透過波長選択性によって選択される透過波長が、該光学調整層より裏面側にある全ての光電変換ユニットにおける分光感度の範囲内に選択波長を有することを特徴とする並列光電変換積層デバイスに関する。 A plurality of stacked serial elements are parallel photoelectric conversion stacked devices electrically connected in parallel, the serial elements including one or more photoelectric conversion units, and between at least two adjacent serial elements. An optical adjustment layer, the optical adjustment layer has reflection wavelength selectivity and transmission wavelength selectivity, and the reflection wavelength selected by the reflection wavelength selectivity is greater than the series on the light incident side from the optical adjustment layer. The wavelength selected within the spectral sensitivity range of the element, and the transmission wavelength selected by the transmission wavelength selectivity is selected within the spectral sensitivity range of all photoelectric conversion units on the back side of the optical adjustment layer. It is related with the parallel photoelectric conversion laminated device characterized by having.
 前記光学調整層における前記反射波長選択性によって選択される反射光の反射率が80%以上であり、かつ、前記透過波長選択性によって選択される透過光の透過率が90%以上であることを特徴とする前記並列光電変換積層デバイスに関する。 The reflectance of the reflected light selected by the reflection wavelength selectivity in the optical adjustment layer is 80% or more, and the transmittance of the transmitted light selected by the transmission wavelength selectivity is 90% or more. It is related with the said parallel photoelectric conversion laminated device characterized.
 前記光学調整層の光入射面側と裏面側の両方に透明導電膜が製膜されていることを特徴とする前記並列光電変換積層デバイスに関する。 The present invention relates to the parallel photoelectric conversion laminated device, wherein a transparent conductive film is formed on both the light incident surface side and the back surface side of the optical adjustment layer.
 光入射面側から、非結晶質シリコン系光電変換ユニットからなる直列素子と、結晶質シリコン系光電変換ユニットと化合物系光電変換ユニットからなる直列素子が電気的に並列に接続されていることを特徴とする前記並列光電変換積層デバイスに関する。 From the light incident surface side, a serial element composed of an amorphous silicon photoelectric conversion unit and a serial element composed of a crystalline silicon photoelectric conversion unit and a compound photoelectric conversion unit are electrically connected in parallel. It is related with the said parallel photoelectric conversion laminated device.
 前記並列光電変換積層デバイスが電気的に直列に接続されていることを特徴とする直列集積光電変換装置に関する。 The present invention relates to a series integrated photoelectric conversion device, wherein the parallel photoelectric conversion stacked devices are electrically connected in series.
 本発明により、特定の直並列構造にすることで、光電変換ユニットの電流値をそろえる必要がなくなり、更に、特定の光学調整層を導入することで、各光電変換ユニットにおける光吸収量が適切に配分されて、従来品より変換効率を向上させた並列光電変換積層デバイス及び、その直列集積光電変換装置を提供することが出来る。 According to the present invention, it is not necessary to align the current values of the photoelectric conversion units by using a specific series-parallel structure, and furthermore, by introducing a specific optical adjustment layer, the amount of light absorption in each photoelectric conversion unit is appropriately It is possible to provide a parallel photoelectric conversion laminated device that is distributed and has improved conversion efficiency compared to the conventional product, and a series integrated photoelectric conversion device thereof.
本発明に係る直並列構造を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the series-parallel structure which concerns on this invention. 本発明に係る光学調整層の透過・反射率の波長依存性を示す一例である。It is an example which shows the wavelength dependence of the transmittance | permeability and reflectance of the optical adjustment layer which concerns on this invention. 本発明の実施形態の一態様(実施例)に係る断面図である。It is sectional drawing which concerns on the one aspect | mode (Example) of embodiment of this invention. 本発明の実施形態の一態様に係る断面図である。It is a sectional view concerning one mode of an embodiment of the present invention.
1 太陽電池デバイスにおける光電変換ユニット
2 光学調整層
3、基板
4 裏面金属電極層
5 酸化亜鉛層
6 中間透明電極層
7 絶縁層
8 透明電極
9 金属電極
10 金属電極
DESCRIPTION OF SYMBOLS 1 Photoelectric conversion unit 2 in solar cell device Optical adjustment layer 3, board | substrate 4 Back surface metal electrode layer 5 Zinc oxide layer 6 Intermediate | middle transparent electrode layer 7 Insulating layer 8 Transparent electrode 9 Metal electrode 10 Metal electrode
 以下において本発明の好ましい実施の形態について図面を参照しつつ説明する。なお本願の各図において、厚さや長さなどの寸法関係については図面の明瞭化と簡略化のため適宜変更されており、実際の寸法関係を表してはいない。また、各図において、同一の参照符号は同一部分または相当部分を表している。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each drawing of the present application, dimensional relationships such as thickness and length are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships. Moreover, in each figure, the same referential mark represents the same part or an equivalent part.
 まず、図1(A)を用いて光電変換ユニットを電気的に直列、及び並列に接続した光電変換積層デバイス(以後、並列光電変換積層デバイスと称する)に関して、模式的に説明する。なお、図1では、構造を分かりやすくするため、一部の層のみを図示している。図1(A)では、光電変換ユニット1a~1fが、光入射面からバンドギャップの大きい順に配列しており、それぞれの光電変換ユニットが、次の三つの直列素子にグループ分けされている。(1)光電変換ユニット1aのみからなる直列素子。(2)光電変換ユニット1b、及び1cを電気的に直列に接続することによって形成される直列素子。(3)光電変換ユニット1d、1e、及び1fを電気的に直列に接続することによって形成される直列素子。これら三つの直列素子は、全てがほぼ同等の開放電圧を持つように、構成する直列光電変換ユニットを選択するものとし、これらの三つの直列素子が電気的に並列に接続されることで、光電変換積層デバイスは形成されている。なお、図中の配線は、並列接続されていることを模式的に表しているが、実際は薄膜を用いて電気的に接続を行うことが好ましい。 First, a photoelectric conversion stacked device (hereinafter referred to as a parallel photoelectric conversion stacked device) in which photoelectric conversion units are electrically connected in series and in parallel will be schematically described with reference to FIG. In FIG. 1, only a part of the layers is shown for easy understanding of the structure. In FIG. 1A, the photoelectric conversion units 1a to 1f are arranged in order of increasing band gap from the light incident surface, and each photoelectric conversion unit is grouped into the following three series elements. (1) A series element composed only of the photoelectric conversion unit 1a. (2) A series element formed by electrically connecting the photoelectric conversion units 1b and 1c in series. (3) A series element formed by electrically connecting the photoelectric conversion units 1d, 1e, and 1f in series. The series photoelectric conversion units to be configured are selected so that all three series elements have substantially the same open circuit voltage, and these three series elements are electrically connected in parallel. A conversion layered device has been formed. In addition, although the wiring in a figure typically represents that it is connected in parallel, it is preferable to actually connect electrically using a thin film.
 ここで、図1(A)では三つの直列素子からなる光電変換積層デバイスを一例として示したが、複数の光電変換ユニットが電気的に直列に接続された直列素子を少なくとも一つ以上有し、かつ二つ以上の直列素子を有していれば、直列素子の数、及び、直列素子が有する光電変換ユニットの構成はどのようなものでも構わない。また、それぞれの直列素子は光入射面に対してp入射であっても、n入射であっても構わず、それぞれの直列素子毎にばらばらでもよい(図1(A)では全ての直列素子において揃った場合が図示してある)。 Here, in FIG. 1A, a photoelectric conversion stacked device including three series elements is shown as an example. However, at least one series element in which a plurality of photoelectric conversion units are electrically connected in series is provided. As long as two or more series elements are included, the number of series elements and the configuration of the photoelectric conversion unit included in the series elements may be any. Further, each series element may be p-incidence or n-incidence with respect to the light incident surface, and may be different for each series element (in FIG. 1A, in all series elements). The case is shown in the figure).
 このような光電変換積層デバイスでは、光入射面側からバンドギャップの大きい順に光電変換ユニットが並べるため、直列接続によって形成される直列素子は裏面側に行くほど、構成要素である光電変換ユニットのバンドギャップは狭くなり、それぞれの光電変換ユニットの開放電圧は低くなっていく。このため、裏面側の直列素子ほど、構成する光電変換ユニットの数が増えていくことになる。それぞれの直列素子の開放電圧はほぼ同じであり、また、それぞれの直列素子における取り出せる電流値は、当該の直列素子に入射した光によって発電される電流量を、内包する光電変換ユニットセル数で割った値となるため、より光電変換ユニット数の少ない直列素子で発電を行った方が有利である。これは単純に、電圧の高い光電変換ユニットで発電した方が、効率が良いことと等価である。 In such a photoelectric conversion layered device, the photoelectric conversion units are arranged in order of increasing band gap from the light incident surface side, so that the series elements formed by serial connection go to the back side, and the band of the photoelectric conversion unit that is a constituent element The gap becomes narrower and the open circuit voltage of each photoelectric conversion unit becomes lower. For this reason, the number of photoelectric conversion units to be configured increases as the series element on the back surface side. The open circuit voltage of each series element is substantially the same, and the current value that can be taken out of each series element is obtained by dividing the amount of current generated by the light incident on the series element by the number of photoelectric conversion unit cells included. Therefore, it is advantageous to generate power with a series element having a smaller number of photoelectric conversion units. This is simply equivalent to higher efficiency when power is generated by a photoelectric conversion unit having a higher voltage.
 以上により、光入射面側の光電変換ユニット数の少ない直列素子で発電を行った方が、光電変換積層デバイス全体の変換効率が向上するため、光学調整層を導入し、光入射面側に光を効率的に反射させることが肝要である。 As described above, since the conversion efficiency of the entire photoelectric conversion laminated device is improved when power is generated by a series element with a small number of photoelectric conversion units on the light incident surface side, an optical adjustment layer is introduced, and light is incident on the light incident surface side. It is important to reflect the light efficiently.
 通常の直列接続によるタンデムセルでは、光学調整の導入により、光入射面側の光電変換ユニットの電流量を増加させた場合、裏面側の光学調整層は電流値を揃えるために、膜厚を増やすか、テクスチャ構造などによる光閉じ込めを行わなければならない。一方で、直並列構造では、直列素子が電気的に並列に接続しているため、直列素子の電流値を揃える必要がなく、電圧の揃う材料さえ見つけてしまえば、作製上の自由度は高い。 In a tandem cell with a normal series connection, when the current amount of the photoelectric conversion unit on the light incident surface side is increased by introducing optical adjustment, the optical adjustment layer on the back surface side is increased in thickness in order to make the current value uniform. Or light confinement by texture structure etc. must be performed. On the other hand, in the series-parallel structure, the series elements are electrically connected in parallel, so there is no need to make the current values of the series elements uniform, and if you find even the materials with the same voltage, the degree of freedom in manufacturing is high. .
 以上を踏まえ、本発明に係る光学調整層を有する直並列太陽電池の模式図を図1(B)に示す。図1(A)の構造と、図1(B)の構造の相違点は、並列に接続された直列素子の間に光学調整層2a、2bが存在する点である。光学調整層の特徴としては図2に示されているように長波長側の光を透過し、短波長光を反射するとう高い波長選択性を有することが好ましい。ただし、ここで言う波長選択性は、太陽電池内における反射や透過を意味し、その設計は、空気中ではなく光学調整層が隣接する層に対して行わなければならない。また、光学調整層が透過する長波長光は当該光学調整層より裏面側に配置する光電変換ユニットの持つ分光感度の範囲程度の波長までで良く感度の範囲外の長波長光を透過する必要はない。また、透過率は大きければ大きいほど良いが、特に90%以上の透過率を有することが好ましい。同様に反射する短波長光においても、反射した光が当該光学調整層より光入射面側の光電変換ユニットにおいて利用される範囲の波長程度で良く、反射率が大きければ大きいほど好ましく、特に80%以上の反射率を持つことが望ましい。 Based on the above, a schematic diagram of a series-parallel solar cell having an optical adjustment layer according to the present invention is shown in FIG. The difference between the structure of FIG. 1A and the structure of FIG. 1B is that optical adjustment layers 2a and 2b exist between series elements connected in parallel. As shown in FIG. 2, the optical adjustment layer preferably has high wavelength selectivity that transmits light on the long wavelength side and reflects short wavelength light. However, the wavelength selectivity mentioned here means reflection and transmission in the solar cell, and the design must be performed not on the air but on the layer adjacent to the optical adjustment layer. Further, the long wavelength light transmitted through the optical adjustment layer may be up to the wavelength of the spectral sensitivity range of the photoelectric conversion unit disposed on the back side of the optical adjustment layer, and it is necessary to transmit the long wavelength light outside the sensitivity range. Absent. Further, the larger the transmittance, the better. However, it is particularly preferable that the transmittance is 90% or more. Similarly, even in the reflected short wavelength light, the reflected light may have a wavelength in the range used in the photoelectric conversion unit on the light incident surface side of the optical adjustment layer, and the larger the reflectance, the more preferable, especially 80%. It is desirable to have the above reflectivity.
 また、反射光と透過光が切り替わる波長は、当該光学調整層に隣接する光電変換ユニットの分光感度の範囲によって変化する。当該光学調整層より光入射面側の光電変換ユニットの分光感度と裏面側の光電変換ユニットの分光感度の感度領域が重複していない場合は、光学調整層の反射光と透過光が切り替わる波長は、光入射面側の光電変換ユニットの分光感度の長波長側テールの裾と裏面側の光電変換ユニットの分光感度の短波長側テールの裾の間に存在することが好ましい。一方で、当該光学調整層より光入射面側の光電変換ユニットの分光感度と裏面側の光電変換ユニットの分光感度の感度領域が重複している場合は、重複している範囲内に切り替えの波長が存在することが好ましい。更に、光学調整層の反射率が高い波長領域と透過率が高い波長領域は、急峻に切り替わることが好ましく、100nm以内に切り替わることが好ましい。 Also, the wavelength at which the reflected light and transmitted light are switched varies depending on the spectral sensitivity range of the photoelectric conversion unit adjacent to the optical adjustment layer. If the spectral sensitivity of the photoelectric conversion unit on the light incident surface side of the optical adjustment layer and the spectral sensitivity of the photoelectric conversion unit on the back surface side do not overlap, the wavelength at which the reflected light and transmitted light of the optical adjustment layer are switched is Preferably, it exists between the tail of the long wavelength side tail of the spectral sensitivity of the photoelectric conversion unit on the light incident surface side and the tail of the short wavelength side tail of the spectral sensitivity of the photoelectric conversion unit on the back surface side. On the other hand, when the spectral sensitivity of the photoelectric conversion unit on the light incident surface side and the spectral sensitivity of the photoelectric conversion unit on the back surface side overlap with each other from the optical adjustment layer, the switching wavelength is within the overlapping range. Is preferably present. Furthermore, it is preferable that the wavelength region where the reflectance of the optical adjustment layer is high and the wavelength region where the transmittance is high are switched sharply, and preferably switched within 100 nm.
 このような光学調整層は、例えば特許文献2(特開2006-201450)に開示されているように、高屈折率材料と低屈折率材料を交互に積層することで、多層膜によって作製することが可能である(空気中ではなく太陽電池内なので、それに準じて設計の修正が必要)。またナノ粒子を用いても同様の光学特性を持つ調整層を作ることが可能であるが、上述の光学特性を有していれば、調整層として用いるものはこれらのものに限定されない。 Such an optical adjustment layer is produced by a multilayer film by alternately laminating a high refractive index material and a low refractive index material as disclosed in, for example, Patent Document 2 (Japanese Patent Laid-Open No. 2006-201450). (It is in the solar cell, not in the air, so the design needs to be modified accordingly). Moreover, it is possible to make an adjustment layer having the same optical characteristics even if nanoparticles are used, but as long as the adjustment layer has the above-described optical characteristics, what is used as the adjustment layer is not limited to these.
 多層膜によって光学調整層を作製する場合は、低屈折率材料と高屈折率材料の屈折率差が0.5以上であることが好ましく、特には1以上あることが好ましいが、屈折率差があれば材料の種類は限定されない。 In the case of producing an optical adjustment layer with a multilayer film, the refractive index difference between the low refractive index material and the high refractive index material is preferably 0.5 or more, particularly preferably 1 or more, but the refractive index difference is If there is, the kind of material will not be limited.
 また、また、反射させたい光の中心波長をλ、その波長における当該材料の屈折率をn(λ)、整数mとすると、それぞれの当該材料の膜厚はmλ/(4n(λ))程度であることが好ましく、特にm=1、2、3であることが望ましい。また、層数は、当該高低屈折率材料の屈折率差にも依存するが、5層から100層の間にあることが好ましい。また、高屈折率材料は、屈折率が高くなるほど吸収係数も高くなるため、透過率の低下をもたらすが、例えば、反射して欲しい光の波長範囲が800nm以上の場合の様に長波長の光を反射させたい場合は、非晶質シリコンの様に主に800nm以下において光の吸収を示すような材料を用いることが好ましい。 Also, assuming that the center wavelength of the light to be reflected is λ, the refractive index of the material at that wavelength is n (λ), and an integer m, the thickness of each material is about mλ / (4n (λ)). It is preferable that m = 1, 2, 3 in particular. The number of layers depends on the refractive index difference of the high and low refractive index materials, but is preferably between 5 and 100 layers. In addition, a high refractive index material has a higher absorption coefficient as the refractive index increases, leading to a decrease in transmittance. For example, a long wavelength light such as when the wavelength range of light desired to be reflected is 800 nm or more. When it is desired to reflect the light, it is preferable to use a material that absorbs light mainly at 800 nm or less, such as amorphous silicon.
 また、光学調整層は、上述の様に直列素子の間に配置するが、必ずしも全ての直列素子の間に形成する必要はなく、特に一つの光電変換ユニットからなる直列素子と、二つの以上の光電変換ユニットからなる直列素子の間に作製することが最も好ましい。一般的にある光学調整層を挟む二つの直列素子について考えると、光入射面側の直列素子のユニットセル数をN、裏面側の直列素子のユニットセル数をMと、光学調整層によって反射する光が発電する電流量をIとすると、理想的には光学調整層導入による光電変換積層デバイス全体での電流値の増加は(1/N-1/M)×Iとなる。 In addition, the optical adjustment layer is disposed between the series elements as described above, but is not necessarily formed between all the series elements. In particular, the series adjustment element including one photoelectric conversion unit and two or more Most preferably, it is produced between series elements composed of photoelectric conversion units. In general, when considering two series elements sandwiching an optical adjustment layer, the number of unit cells of the series elements on the light incident surface side is N, the number of unit cells of the series elements on the back surface side is M, and the light is reflected by the optical adjustment layer. Assuming that the amount of current generated by light is I, the increase in the current value in the entire photoelectric conversion laminated device due to the introduction of the optical adjustment layer is ideally (1 / N−1 / M) × I.
 更に、通常の直列タンデム構造における中間層は、直列接続界面に存在するため、膜面に対して垂直方向に電流が流れなければならないが、直並列構造では、光学調整層を導入するのは並列接続部分であるため、膜面に対して平行な方向に電流が流れれば良い。このため、光学調整層は導電性物質と絶縁性物質両方の材料を使用することが可能である。また、垂直方向に電流が流れる必要がないため、通常の直列タンデム構造の中間層に用いるよりもより多層の光学調整層を用いることができ、より高度な光学調整層の作製が可能となる。 Furthermore, since the intermediate layer in the normal series tandem structure exists at the serial connection interface, current must flow in a direction perpendicular to the film surface. In the series-parallel structure, the optical adjustment layer is introduced in parallel. Since it is a connecting portion, it suffices if a current flows in a direction parallel to the film surface. For this reason, it is possible to use the material of both an electroconductive substance and an insulating substance for an optical adjustment layer. In addition, since no current needs to flow in the vertical direction, a multilayer optical adjustment layer can be used rather than an intermediate layer having a normal series tandem structure, and a more advanced optical adjustment layer can be manufactured.
 以下に、本発明の実施の形態の一例による薄膜太陽電池デバイスを、図3を参照しつつ説明する。図3では三つの光電変換ユニットからなる光電変換積層デバイスが描かれている。実施形態として、それぞれの光電変換ユニットとして、非晶質シリコン光電変換ユニット1a、結晶質シリコン光電変換ユニット1b、化合物半導体系光電変換ユニット1cの場合を示すが、それぞれの直列素子の電圧が揃えば、どのような種類の光電変換ユニットを用いても良い。また、図3では、サブストレート型の太陽電池デバイスを一例としてあげているが、スーパーストレート型の太陽電池デバイスでも良い。 Hereinafter, a thin film solar cell device according to an example of the embodiment of the present invention will be described with reference to FIG. In FIG. 3, a photoelectric conversion layered device composed of three photoelectric conversion units is depicted. As an embodiment, a case of an amorphous silicon photoelectric conversion unit 1a, a crystalline silicon photoelectric conversion unit 1b, and a compound semiconductor photoelectric conversion unit 1c is shown as each photoelectric conversion unit. Any type of photoelectric conversion unit may be used. Further, in FIG. 3, a substrate type solar cell device is taken as an example, but a super straight type solar cell device may be used.
 図3では絶縁基板3の上に金属電極4が形成されている。絶縁基板3としては、ガラス、透明樹脂等から成る板状部材やシート状部材等が用いられる。本発明のように化合物半導体系光電変換ユニットにカルコパイライト系半導体光電変換ユニットを用いた場合、絶縁基板から金属電極を介してIa族元素を拡散することで、カルコパイライト系半導体の結晶化が促進されることが知られている。よって、ソーダライムガラスといったNa等のIa族元素を含有する材料からなるものが絶縁基板として好ましい。金属電極としてはMoが好ましい。蒸着手段は電子線蒸着、スパッタ蒸着などが挙げられる。 In FIG. 3, the metal electrode 4 is formed on the insulating substrate 3. As the insulating substrate 3, a plate-like member or a sheet-like member made of glass, transparent resin, or the like is used. When a chalcopyrite semiconductor photoelectric conversion unit is used for the compound semiconductor photoelectric conversion unit as in the present invention, crystallization of the chalcopyrite semiconductor is promoted by diffusing the group Ia element from the insulating substrate through the metal electrode. It is known that Therefore, the insulating substrate is preferably made of a material containing a group Ia element such as Na such as soda lime glass. Mo is preferable as the metal electrode. Examples of the vapor deposition means include electron beam vapor deposition and sputter vapor deposition.
 本発明では化合物半導体系光電変換ユニットとして、カルコパイライト系化合物半導体光電変換ユニットを用いている。カルコパイライト系化合物半導体光電変換ユニットは窓層として酸化亜鉛層5、CdS層を用い、光吸収層としてCISを用いたバンドギャップの狭いものを選択した。基板温度は~600℃となるように温度をコントロールして製膜することが望ましい。CdS層は溶液析出法、CIS層は三源蒸着法、セレン化法、酸化亜鉛層5はスパッタ法、熱CVD法などが考えられる。 In the present invention, a chalcopyrite compound semiconductor photoelectric conversion unit is used as the compound semiconductor photoelectric conversion unit. For the chalcopyrite compound semiconductor photoelectric conversion unit, a narrow band gap using the zinc oxide layer 5 and the CdS layer as the window layer and CIS as the light absorption layer was selected. It is desirable to form the film by controlling the temperature so that the substrate temperature becomes ~ 600 ° C. The CdS layer may be a solution deposition method, the CIS layer may be a three-source vapor deposition method, a selenization method, and the zinc oxide layer 5 may be a sputtering method, a thermal CVD method, or the like.
 化合物半導体系光電変換ユニット上に光電変換ユニットが形成される。光電変換ユニットは、非晶質シリコン光電変換ユニット1aと化合物半導体系光電変換ユニット1cとの出力電圧の差に近い出力電圧のものを選ぶことが好ましい。本発明においては結晶質シリコン光電変換ユニットを光電変換ユニットとして用いている。結晶質シリコン光電変換ユニットは通常、p型結晶質シリコン層、実質的に真正な結晶質シリコン光電変換層、n型結晶質シリコン界面層で構成される。 A photoelectric conversion unit is formed on the compound semiconductor photoelectric conversion unit. It is preferable to select a photoelectric conversion unit having an output voltage close to the difference in output voltage between the amorphous silicon photoelectric conversion unit 1a and the compound semiconductor photoelectric conversion unit 1c. In the present invention, a crystalline silicon photoelectric conversion unit is used as the photoelectric conversion unit. The crystalline silicon photoelectric conversion unit is usually composed of a p-type crystalline silicon layer, a substantially authentic crystalline silicon photoelectric conversion layer, and an n-type crystalline silicon interface layer.
 結晶質シリコン光電変換ユニットの形成条件としては、基板温度100~300℃、圧力30~3000Pa、高周波パワー密度0.1~0.5W/cm2が好ましく用いられる。光電変換ユニット形成に使用する原料ガスとしては、SiH4、Si26等のシリコン含有ガスまたは、それらのガスとH2を混合したものが用いられる。光電変換ユニットにおけるp型またはn型層を形成するためのドーパントガスとしては、B26またはPH3等が好ましく用いられる。 As conditions for forming the crystalline silicon photoelectric conversion unit, a substrate temperature of 100 to 300 ° C., a pressure of 30 to 3000 Pa, and a high frequency power density of 0.1 to 0.5 W / cm 2 are preferably used. As a source gas used for forming the photoelectric conversion unit, a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixture of these gases and H 2 is used. As the dopant gas for forming the p-type or n-type layer in the photoelectric conversion unit, B 2 H 6 or PH 3 is preferably used.
 光電変換ユニット上に中間透明電極層6が製膜され、更に、中間透明電極層6の中に光学調整層2を製膜されている。上下の直列素子から中間透明電極層6に流れこむ電流量を考慮して、光入射面側からと裏面側から流れ込む電流量の比と同程度の膜厚比を光学調整層より光入射面側と裏面側の中間透明電極層6の膜厚に持たせることが好ましい。 The intermediate transparent electrode layer 6 is formed on the photoelectric conversion unit, and the optical adjustment layer 2 is formed in the intermediate transparent electrode layer 6. Considering the amount of current flowing from the upper and lower series elements into the intermediate transparent electrode layer 6, the film thickness ratio is about the same as the ratio of the amount of current flowing from the light incident surface side to the back surface side from the optical adjustment layer side. And the thickness of the intermediate transparent electrode layer 6 on the back surface side is preferably provided.
 非晶質シリコン光電変換ユニットの製膜条件によって、中間透明電極層6が一定量以上の水素プラズマに曝される場合、金属酸化物によっては還元され透過率及び抵抗率が著しく悪化してしまうので、耐還元性を持つZnOで表面を覆うことが好ましい。光学調整層としては、高屈折率材料と低屈折率材料を交互に積層したものや、ナノ粒子等が用いられるが、高い波長選択性を持てばどのようなものでも良い。 Depending on the film forming conditions of the amorphous silicon photoelectric conversion unit, when the intermediate transparent electrode layer 6 is exposed to a certain amount or more of hydrogen plasma, the metal oxide is reduced and the transmittance and resistivity are remarkably deteriorated. It is preferable to cover the surface with ZnO having resistance to reduction. As the optical adjustment layer, a layer in which a high refractive index material and a low refractive index material are alternately laminated, a nanoparticle, or the like is used, but any layer having high wavelength selectivity may be used.
 中間透明電極層6上には非晶質シリコン光電変換ユニットが形成される。非晶質シリコン光電変換ユニットは非晶質p型シリコンカーバイド層、実質的に真正な非晶質シリコン光電変換層、n型シリコン系界面層から構成される。非晶質光電変換ユニットの形成には高周波プラズマCVD法が適している。図3の構造では、非結晶シリコン光電変換ユニットはpフロントであり、結晶質光電変換ユニットと化合物半導体系光電変換ユニットからなる直列素子はnフロントの場合の構造となっているが、用いる材料によっては、pフロント、nフロント等に制限が課されるものもあるため、適宜光電変換素子の構造を変化さなければならない。 An amorphous silicon photoelectric conversion unit is formed on the intermediate transparent electrode layer 6. The amorphous silicon photoelectric conversion unit includes an amorphous p-type silicon carbide layer, a substantially authentic amorphous silicon photoelectric conversion layer, and an n-type silicon-based interface layer. A high frequency plasma CVD method is suitable for forming the amorphous photoelectric conversion unit. In the structure of FIG. 3, the amorphous silicon photoelectric conversion unit has a p-front structure, and the series element composed of a crystalline photoelectric conversion unit and a compound semiconductor photoelectric conversion unit has an n-front structure. In some cases, restrictions are imposed on the p-front, n-front, etc., so the structure of the photoelectric conversion element must be changed as appropriate.
 非晶質シリコン光電変換ユニットの形成条件としては、基板温度100~300℃、圧力30~1500Pa、高周波パワー密度0.01~0.5W/cm2が好ましく用いられる。光電変換ユニット形成に使用する原料ガスとしては、SiH4、Si26等のシリコン含有ガスまたは、それらのガスとH2を混合したものが用いられる。光電変換ユニットにおけるp型またはn型層を形成するためのドーパントガスとしては、B26またはPH3等が好ましく用いられる。非晶質シリコン光電変換ユニットのバンドギャップは積極的にH2を導入することで広げることができる。 As conditions for forming the amorphous silicon photoelectric conversion unit, a substrate temperature of 100 to 300 ° C., a pressure of 30 to 1500 Pa, and a high frequency power density of 0.01 to 0.5 W / cm 2 are preferably used. As a source gas used for forming the photoelectric conversion unit, a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixture of these gases and H 2 is used. As the dopant gas for forming the p-type or n-type layer in the photoelectric conversion unit, B 2 H 6 or PH 3 is preferably used. The band gap of the amorphous silicon photoelectric conversion unit can be widened by positively introducing H 2 .
 非晶質シリコン光電変換ユニット上には透明電極8が製膜される。透明電極8は導電性金属酸化物であることが好ましく、具体的にはSnO2、ZnO、In23等を好ましい例としてあげることができる。透明電極8はCVD、スパッタ、蒸着等の方法を用いて形成されることが好ましい。透明電極8はその表面に入射光の散乱を増大させる効果を有することが望ましい。具体的には、微細な凹凸を有することにより、入射光の散乱を増大させる効果を有することが望ましい。 A transparent electrode 8 is formed on the amorphous silicon photoelectric conversion unit. The transparent electrode 8 is preferably a conductive metal oxide, and specific examples include SnO 2 , ZnO, In 2 O 3 and the like. The transparent electrode 8 is preferably formed using a method such as CVD, sputtering, or vapor deposition. The transparent electrode 8 desirably has an effect of increasing the scattering of incident light on the surface thereof. Specifically, it is desirable to have the effect of increasing the scattering of incident light by having fine irregularities.
 透明電極8と裏面金属電極4を短絡させるため金属電極10が製膜される。金属電極10の代わりに透明電極8によって裏面電極4と短絡させても良い。また、直列素子1b、1cの側面と金属電極10が短絡しないように、絶縁層7が製膜されている。絶縁層7の代わりに非晶質シリコン光電変換ユニット1aを併用してもよい。更に、中間透明電極層6上に金属電極9が製膜されている。金属電極8、10は、具体的にはAgやAl等の金属材料を好ましく用いることができる。裏面金属電極材料の製膜方法はスパッタ法、蒸着法等の方法により形成することができる。また、絶縁層7はSiO2等、絶縁できるものなら何でも良く、CVD、スパッタ、蒸着等の方法を用いて形成されることが好ましい。 A metal electrode 10 is formed to short-circuit the transparent electrode 8 and the back metal electrode 4. The back electrode 4 may be short-circuited by the transparent electrode 8 instead of the metal electrode 10. The insulating layer 7 is formed so that the side surfaces of the series elements 1b and 1c and the metal electrode 10 are not short-circuited. Instead of the insulating layer 7, an amorphous silicon photoelectric conversion unit 1a may be used in combination. Further, a metal electrode 9 is formed on the intermediate transparent electrode layer 6. Specifically, a metal material such as Ag or Al can be preferably used for the metal electrodes 8 and 10. The backside metal electrode material can be formed by a method such as sputtering or vapor deposition. The insulating layer 7 may be anything that can be insulated, such as SiO 2, and is preferably formed using a method such as CVD, sputtering, or vapor deposition.
 次に、並列光電変換積層デバイスが電気的に直列に接続されている直列集積光電変換装置を、図4を用いて説明する。並列光電変換積層デバイス図3との違いは、金属電極9及び10を製膜しないことと、金属電極10の変わりに、透明電極8を用いて、光入射側表面と裏面金属電極4を短絡させている点、更には、分離溝A、B、E及び、接続溝C、Dが形成されている点であり、それ以外は同様に作製することができる。 Next, a series integrated photoelectric conversion device in which parallel photoelectric conversion stacked devices are electrically connected in series will be described with reference to FIG. 3 is different from FIG. 3 in that the metal electrodes 9 and 10 are not formed, and the transparent electrode 8 is used instead of the metal electrode 10 to short-circuit the light incident side surface and the back surface metal electrode 4. In addition, the separation grooves A, B, and E and the connection grooves C and D are formed, and the other portions can be manufactured in the same manner.
 分離溝Aの形成には波長が900nm以上のIRレーザーを用い、通常絶縁基板側からレーザーを入射しても良いが、製膜時にマスクを用いても良い。分離溝Bは、光入射側からYAG第2光調波等を照射することによって形成することが好ましい。分離溝B形成後、絶縁層7を製膜し、さらに接続溝Cによって透明電極8と裏面金属電極4を短絡させている。さらに接続溝Dによって中間透明電極層6と透明電極8が短絡している。 The separation groove A is formed by using an IR laser having a wavelength of 900 nm or more, and the laser may be normally incident from the insulating substrate side, but a mask may be used at the time of film formation. The separation groove B is preferably formed by irradiating YAG second harmonic wave or the like from the light incident side. After the separation groove B is formed, the insulating layer 7 is formed, and the transparent electrode 8 and the back metal electrode 4 are short-circuited by the connection groove C. Further, the intermediate transparent electrode layer 6 and the transparent electrode 8 are short-circuited by the connection groove D.
 以下に、本発明による薄膜太陽電池素子として図3を参照しながら説明する。
図3は、実施例3にて作製した薄膜太陽電池素子を模式的に示す断面図である。まず、2mm厚のソーダライムガラスから成る絶縁基板3の一主面上に、スパッタ法を用いてMo金属電極4を、0.5um製膜した。
Below, it demonstrates, referring FIG. 3 as a thin film solar cell element by this invention.
FIG. 3 is a cross-sectional view schematically showing the thin-film solar cell element produced in Example 3. First, a Mo metal electrode 4 having a thickness of 0.5 μm was formed on one main surface of an insulating substrate 3 made of 2 mm thick soda lime glass by sputtering.
 その後、化合物半導体系光電変換ユニット1cとしてCIS層、CdS層、酸化亜鉛層を製膜した。基板温度600℃においてCIS膜を3元蒸着法により形成した後、CdS膜を溶液析出法により堆積し、最後に酸化亜鉛をスパッタ法によって200nm製膜した。 Thereafter, a CIS layer, a CdS layer, and a zinc oxide layer were formed as the compound semiconductor photoelectric conversion unit 1c. A CIS film was formed at a substrate temperature of 600 ° C. by a ternary vapor deposition method, a CdS film was deposited by a solution deposition method, and finally zinc oxide was formed to a thickness of 200 nm by a sputtering method.
 化合物半導体系光電変換ユニット1c上に光電変換ユニット1bとして結晶質シリコン光電変換ユニットを製膜するために、化合物半導体系光電変換ユニット1cが形成された絶縁基板3を高周波プラズマCVD装置内に導入し、所定の温度に加熱した後、p型シリコン層、実質的に真性な結晶質シリコン光電変換層、及びn型シリコン層を順次積層した。 In order to form a crystalline silicon photoelectric conversion unit as the photoelectric conversion unit 1b on the compound semiconductor photoelectric conversion unit 1c, the insulating substrate 3 on which the compound semiconductor photoelectric conversion unit 1c is formed is introduced into a high-frequency plasma CVD apparatus. After heating to a predetermined temperature, a p-type silicon layer, a substantially intrinsic crystalline silicon photoelectric conversion layer, and an n-type silicon layer were sequentially laminated.
 中間透明電極層6を製膜するために光電変換ユニット1bまで製膜された絶縁基板3をスパッタ装置へ導入し、所定の温度に加熱した後に、酸化亜鉛層をスパッタ法にて光電変換ユニット1b上に製膜した。更に、マスクを付けた後で、スパッタ法を用いてZrO2とMgF2を31層製膜し、光学調整層を作製した。その上から、再びスパッタ法にて中間透明電極層6を製膜した。 Insulating substrate 3 formed up to photoelectric conversion unit 1b to form intermediate transparent electrode layer 6 is introduced into a sputtering apparatus and heated to a predetermined temperature, and then the zinc oxide layer is formed by photoelectric conversion unit 1b by sputtering. A film was formed on top. Further, after attaching a mask, 31 layers of ZrO 2 and MgF 2 were formed by sputtering to produce an optical adjustment layer. Then, the intermediate transparent electrode layer 6 was formed again by sputtering.
 次にMo金属電極4の上までNTカッターを用いてメカニカルスクライブを行い、中間透明電極層6から化合物半導体系光電変換ユニット1cまで除去した。更に、絶縁層7としてSiO2をスパッタを用いて製膜した。 Next, mechanical scribing was performed using an NT cutter to the top of the Mo metal electrode 4 to remove from the intermediate transparent electrode layer 6 to the compound semiconductor photoelectric conversion unit 1c. Further, SiO2 was formed as the insulating layer 7 by sputtering.
 中間透明電極層6上に非晶質シリコン光電変換ユニット1aを製膜するために、中間透明電極層6が形成された透明絶縁基板3を高周波プラズマCVD装置内に導入し、所定の温度に加熱した後、n型シリコン層、n型非晶質シリコン層、実質的に真性な非晶質シリコン光電変換層、及びp型シリコンカーバイト層を順次積層した。 In order to form the amorphous silicon photoelectric conversion unit 1a on the intermediate transparent electrode layer 6, the transparent insulating substrate 3 on which the intermediate transparent electrode layer 6 is formed is introduced into a high-frequency plasma CVD apparatus and heated to a predetermined temperature. Thereafter, an n-type silicon layer, an n-type amorphous silicon layer, a substantially intrinsic amorphous silicon photoelectric conversion layer, and a p-type silicon carbide layer were sequentially laminated.
 非晶質シリコン光電変換ユニット1a製膜後に、マスクを付けて透明電極7を製膜し、その後RIEを用いて透明電極7が製膜されていない部分の非晶質シリコン光電変換ユニット1aを除去し、中間透明電極層6の一部を取り出した。 After the amorphous silicon photoelectric conversion unit 1a is formed, the transparent electrode 7 is formed with a mask, and then the portion of the amorphous silicon photoelectric conversion unit 1a where the transparent electrode 7 is not formed is removed by RIE. Then, a part of the intermediate transparent electrode layer 6 was taken out.
 その後、マスクを付けて、蒸着法によりAgを製膜することで、透明電極8と裏面金属電極4を短絡させる金属電極10と、金属電極9を作製した。製膜後、150℃にてアニール処理を1時間行った。 Then, a metal electrode 10 for short-circuiting the transparent electrode 8 and the back surface metal electrode 4 and a metal electrode 9 were prepared by attaching a mask and forming a film of Ag by a vapor deposition method. After film formation, annealing was performed at 150 ° C. for 1 hour.
 また、上記の実施例に加えて、光学調整層を製膜しないこと以外、実施例と同様に作製した光電変換積層デバイスを作製し、実施例との比較を行った。 Further, in addition to the above examples, a photoelectric conversion laminated device produced in the same manner as in the examples except that the optical adjustment layer was not formed was prepared and compared with the examples.
 以上のようにして得られた多接合シリコン太陽電池から1cm角の受光面積を有する太陽電池素子を分離して、その光電変換特性を測定した。光電変換特性は、AM1.5のスペクトル分布を有するソーラシミュレータを用いて、擬似太陽光を25℃の下で100mW/cm2のエネルギー密度で照射して出力特性を測定し、開放電圧(Voc)、短絡電流密度(Jsc)、曲線因子(FF)、発電効率(Eff)、電圧-電流特性により評価した。 A solar cell element having a 1 cm square light receiving area was separated from the multi-junction silicon solar cell obtained as described above, and its photoelectric conversion characteristics were measured. The photoelectric conversion characteristics were measured by irradiating simulated sunlight with an energy density of 100 mW / cm 2 at 25 ° C. using a solar simulator having a spectral distribution of AM1.5, and the open circuit voltage (Voc). , Short-circuit current density (Jsc), fill factor (FF), power generation efficiency (Eff), and voltage-current characteristics.
 上記実施例及び比較例の太陽電池素子の光電変換特性を表1に示す。 Table 1 shows the photoelectric conversion characteristics of the solar cell elements of the above examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、光学調整層を設けた光電変換積層デバイスの方が、Jscが大きくなり、発電効率が大きくなっていることが分かる。 From the results in Table 1, it can be seen that the photoelectric conversion laminated device provided with the optical adjustment layer has a larger Jsc and a higher power generation efficiency.

Claims (5)

  1. 積層されてなる複数の直列素子が、電気的に並列接続されてなる並列光電変換積層デバイスであって、該直列素子が一つ以上の光電変換ユニットを含み、少なくとも二つの隣り合う直列素子間に光学調整層を有し、該光学調整層が反射波長選択性及び、透過波長選択性を有し、該反射波長選択性によって選択される反射波長が、該光学調整層より光入射側の該直列素子の分光感度の範囲内に選択波長を有し、該透過波長選択性によって選択される透過波長が、該光学調整層より裏面側にある全ての光電変換ユニットにおける分光感度の範囲内に選択波長を有することを特徴とする並列光電変換積層デバイス。 A plurality of stacked serial elements are parallel photoelectric conversion stacked devices electrically connected in parallel, the serial elements including one or more photoelectric conversion units, and between at least two adjacent serial elements. An optical adjustment layer, the optical adjustment layer has reflection wavelength selectivity and transmission wavelength selectivity, and the reflection wavelength selected by the reflection wavelength selectivity is greater than the series on the light incident side from the optical adjustment layer. The wavelength selected within the spectral sensitivity range of the element, and the transmission wavelength selected by the transmission wavelength selectivity is selected within the spectral sensitivity range of all photoelectric conversion units on the back side of the optical adjustment layer. A parallel photoelectric conversion laminated device characterized by comprising:
  2. 前記光学調整層における前記反射波長選択性によって選択される反射光の反射率が80%以上であり、かつ、前記透過波長選択性によって選択される透過光の透過率が90%以上であることを特徴とする請求項1に記載の並列光電変換積層デバイス。 The reflectance of the reflected light selected by the reflection wavelength selectivity in the optical adjustment layer is 80% or more, and the transmittance of the transmitted light selected by the transmission wavelength selectivity is 90% or more. The parallel photoelectric conversion laminated device according to claim 1, wherein
  3. 前記光学調整層の光入射面側と裏面側の両方に透明導電膜が製膜されていることを特徴とする請求項1、又は請求項2に記載の並列光電変換積層デバイス。 The parallel photoelectric conversion laminated device according to claim 1, wherein a transparent conductive film is formed on both the light incident surface side and the back surface side of the optical adjustment layer.
  4. 光入射面側から、非結晶質シリコン系光電変換ユニットからなる直列素子と、結晶質シリコン系光電変換ユニットと化合物系光電変換ユニットからなる直列素子が電気的に並列に接続されていることを特徴とする請求項1から3の何れかに記載の並列光電変換積層デバイス。 From the light incident surface side, a serial element composed of an amorphous silicon photoelectric conversion unit and a serial element composed of a crystalline silicon photoelectric conversion unit and a compound photoelectric conversion unit are electrically connected in parallel. The parallel photoelectric conversion laminated device according to any one of claims 1 to 3.
  5. 請求項1から4の何れかに記載の並列光電変換積層デバイスが電気的に直列に接続されていることを特徴とする直列集積光電変換装置。 5. A series integrated photoelectric conversion apparatus, wherein the parallel photoelectric conversion laminated devices according to claim 1 are electrically connected in series.
PCT/JP2011/004679 2010-08-31 2011-08-23 Parallel stacked photoelectric conversion device and series integrated photoelectric conversion device WO2012029250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012531674A JP5905824B2 (en) 2010-08-31 2011-08-23 Parallel photoelectric conversion laminated device and series integrated photoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010194495 2010-08-31
JP2010-194495 2010-08-31

Publications (1)

Publication Number Publication Date
WO2012029250A1 true WO2012029250A1 (en) 2012-03-08

Family

ID=45772377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004679 WO2012029250A1 (en) 2010-08-31 2011-08-23 Parallel stacked photoelectric conversion device and series integrated photoelectric conversion device

Country Status (2)

Country Link
JP (1) JP5905824B2 (en)
WO (1) WO2012029250A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514323A (en) * 2012-04-02 2015-05-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Thin film solar cell module manufacturing method and thin film solar cell module manufactured by the manufacturing method
WO2016017617A1 (en) * 2014-07-29 2016-02-04 京セラ株式会社 Photoelectric conversion device, tandem photoelectric conversion device, and photoelectric conversion device array

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050367A (en) * 2013-09-03 2015-03-16 日本電信電話株式会社 Solar battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122283A (en) * 1986-11-12 1988-05-26 Nippon Denso Co Ltd Amorphous solar cell
JPH09162431A (en) * 1995-12-13 1997-06-20 Kanegafuchi Chem Ind Co Ltd Parallel integrated solar battery
JP2001308354A (en) * 2000-04-24 2001-11-02 Sharp Corp Stacked solar cell
WO2006072423A1 (en) * 2005-01-04 2006-07-13 Azur Space Solar Power Gmbh Monolithic multiple solar cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122283A (en) * 1986-11-12 1988-05-26 Nippon Denso Co Ltd Amorphous solar cell
JPH09162431A (en) * 1995-12-13 1997-06-20 Kanegafuchi Chem Ind Co Ltd Parallel integrated solar battery
JP2001308354A (en) * 2000-04-24 2001-11-02 Sharp Corp Stacked solar cell
WO2006072423A1 (en) * 2005-01-04 2006-07-13 Azur Space Solar Power Gmbh Monolithic multiple solar cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514323A (en) * 2012-04-02 2015-05-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Thin film solar cell module manufacturing method and thin film solar cell module manufactured by the manufacturing method
WO2016017617A1 (en) * 2014-07-29 2016-02-04 京セラ株式会社 Photoelectric conversion device, tandem photoelectric conversion device, and photoelectric conversion device array
JPWO2016017617A1 (en) * 2014-07-29 2017-04-27 京セラ株式会社 Photoelectric conversion device, tandem photoelectric conversion device, and photoelectric conversion device array

Also Published As

Publication number Publication date
JPWO2012029250A1 (en) 2013-10-28
JP5905824B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
EP2469609B1 (en) Thin film solar cell
JPWO2005011002A1 (en) Silicon-based thin film solar cell
JP2006120745A (en) Thin film silicon laminated solar cell
JP2010087205A (en) Multi-junction thin-film photoelectric converter
JP5400322B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
JP5905824B2 (en) Parallel photoelectric conversion laminated device and series integrated photoelectric conversion device
JP2002118273A (en) Integrated hybrid thin film photoelectric conversion device
JP2007305826A (en) Silicon-based thin film solar cell
EP2355173B1 (en) Silicon thin film solar cell
JP2005347444A (en) Photovoltaic element
JP4565912B2 (en) Multi-junction semiconductor element and solar cell element using the same
JP2012182328A (en) Thin-film solar cell, method of manufacturing the same, thin-film solar cell module, and method of manufacturing the same
JP2010272651A (en) Thin-film solar cell and method of manufacturing the same
JP2009259926A (en) Solar cell
JP4875725B2 (en) Method for manufacturing thin-film silicon laminated solar cell
JP5542025B2 (en) Photoelectric conversion device
JP5763411B2 (en) Stacked photoelectric conversion device
JP2011216586A (en) Laminated photoelectric conversion device and method of manufacturing the same
JP5409675B2 (en) Thin film solar cell and manufacturing method thereof
JP2010080672A (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP5022246B2 (en) Multi-junction silicon-based thin film photoelectric conversion device
TWI466306B (en) Flexible solar cell with high transmission and the manufacturing process thereof
WO2011148724A1 (en) Intermediate layer for laminate-type photoelectric conversion device, laminate-type photoelectric conversion device, and process for production of laminate-type photoelectric conversion device
JP2009277892A (en) Thin film photoelectric converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012531674

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821275

Country of ref document: EP

Kind code of ref document: A1