JP2009259926A - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
JP2009259926A
JP2009259926A JP2008105342A JP2008105342A JP2009259926A JP 2009259926 A JP2009259926 A JP 2009259926A JP 2008105342 A JP2008105342 A JP 2008105342A JP 2008105342 A JP2008105342 A JP 2008105342A JP 2009259926 A JP2009259926 A JP 2009259926A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion layer
band gap
layer
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008105342A
Other languages
Japanese (ja)
Inventor
Hiroyuki Fuchigami
宏幸 渕上
Hidetada Tokioka
秀忠 時岡
Hiroya Yamabayashi
弘也 山林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008105342A priority Critical patent/JP2009259926A/en
Publication of JP2009259926A publication Critical patent/JP2009259926A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell capable of improving a photocurrent without being controlled by the lowest photocurrent within photocurrents generated in a photoelectric conversion layer. <P>SOLUTION: This solar cell is provided with: a plurality of cells 2 formed on the upper surface of a translucent insulation substrate 1, and each having a wide-band gap photoelectric conversion layer 12; and a plurality of tandem cells 3 formed on the lower surface of the translucent insulation substrate 1, and each having a middle-band gap photoelectric conversion layer 22 having an optical band gap different from that of the wide-band gap photoelectric conversion layer 12. The cell 2 and the tandem cell 3 facing each other interposing the translucent insulation substrate 1 constitute a unit 4. The wide-band gap photoelectric conversion layer 12 and the middle-band gap photoelectric conversion layer 22 of the unit 4 are electrically connected in parallel to each other through a through-hole 5 formed on the translucent insulation board 1. The photoelectric conversion layers 12 and the photoelectric conversion layers 22 of the units 4 adjacent to each other are electrically connected to each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光電変換層の光起電力により発電する太陽電池に関するものである。   The present invention relates to a solar cell that generates electric power from photovoltaic power of a photoelectric conversion layer.

従来の薄膜太陽電池などの太陽電池では、タンデム構造のセル(タンデムセル)が、透光性絶縁基板上に形成されている。このタンデムセルは、透明導電膜と反射導電膜とからなる一対の電極の間に、p層、i層、n層の半導体層からなる光電変換層を積み上げて形成される。さらに、発電効率を向上させる目的で、例えば、アモルファスシリコン半導体層および微結晶シリコン半導体層などの複数の光電変換層を積み上げて形成される。電流源として作用するこれら複数の光電変換層は、互いに光学的バンドギャップが異なり、互いに電気的に直列に接続される。このような構成からなるタンデムセルでは、例えば、太陽光の短波長成分をアモルファスシリコン半導体層、長波長成分を微結晶シリコン半導体層でそれぞれ吸収することにより、光の有効波長域を広げ、発電効率を向上させている。   In a solar cell such as a conventional thin film solar cell, a tandem cell (tandem cell) is formed on a light-transmitting insulating substrate. This tandem cell is formed by stacking a photoelectric conversion layer composed of p-layer, i-layer, and n-layer semiconductor layers between a pair of electrodes composed of a transparent conductive film and a reflective conductive film. Furthermore, in order to improve the power generation efficiency, for example, a plurality of photoelectric conversion layers such as an amorphous silicon semiconductor layer and a microcrystalline silicon semiconductor layer are stacked. The plurality of photoelectric conversion layers acting as current sources have different optical band gaps and are electrically connected in series with each other. In a tandem cell having such a configuration, for example, the short wavelength component of sunlight is absorbed by the amorphous silicon semiconductor layer and the long wavelength component is absorbed by the microcrystalline silicon semiconductor layer, respectively, thereby expanding the effective wavelength range of light and generating efficiency. Has improved.

また、透明導電膜と反射導電膜とからなる一対の電極の間に、複数の光電変換層を積み上げた構造単位(上述のタンデムセル)をユニットとし、複数のユニットを並置させ、本ユニットの反射導電膜と、隣接するユニットの透明導電膜とを接続して、光電変換層同士を互いに電気的に直列に接続した構造も提案されている。   In addition, a structural unit (the above-mentioned tandem cell) in which a plurality of photoelectric conversion layers are stacked between a pair of electrodes composed of a transparent conductive film and a reflective conductive film is used as a unit, and the plurality of units are juxtaposed to reflect the unit. There has also been proposed a structure in which a conductive film and a transparent conductive film of an adjacent unit are connected and the photoelectric conversion layers are electrically connected to each other in series.

特許文献1に記載の太陽電池では、互いに異なる光学的バンドギャップを有する光電変換層から構成されるセルを、透光性絶縁基板の上下面にそれぞれ配置し、透光性絶縁基板を挟んで対向する上部セルと下部セルとによりユニットを構成している。そして、ユニットの光電変換層同士は、透光性絶縁基板に付与された貫通孔を介して互いに電気的に接続されている。特許文献1の構造と従来構造との相違点は、従来構造では、光電変換層同士が接合して直接的に電気的に接続しているのに対して、特許文献1の構造では、光電変換層同士が、基板に付与した貫通孔を介して、間接的に電気的に接続されている点である。一方、特許文献1の構造と従来構造との共通点は、光学的バンドギャップが互いに異なる複数の光電変換層を、電気的に直列に接続して設けている点である。この構造により、太陽電池で発生する電圧は、光電変換層の数に応じて向上する。   In the solar cell described in Patent Document 1, cells composed of photoelectric conversion layers having optical band gaps different from each other are arranged on the upper and lower surfaces of the translucent insulating substrate, and face each other with the translucent insulating substrate interposed therebetween. A unit is constituted by the upper cell and the lower cell. The photoelectric conversion layers of the unit are electrically connected to each other through a through hole provided in the translucent insulating substrate. The difference between the structure of Patent Document 1 and the conventional structure is that, in the conventional structure, the photoelectric conversion layers are joined and directly electrically connected, whereas in the structure of Patent Document 1, the photoelectric conversion is performed. The layers are indirectly connected to each other through a through hole provided in the substrate. On the other hand, a common feature between the structure of Patent Document 1 and the conventional structure is that a plurality of photoelectric conversion layers having different optical band gaps are electrically connected in series. With this structure, the voltage generated in the solar cell is improved according to the number of photoelectric conversion layers.

特開平7−79004号公報(第2−4頁、第1−3図)Japanese Unexamined Patent Publication No. 7-79004 (page 2-4, FIG. 1-3)

しかしながら、特許文献1の構造および従来構造では、電流発生源となる複数の光電変換層同士がすべて直列に接続されているため、太陽電池全体で発生する光電流は、各光電変換層で発生する光電流のうち最も低い光電流に律速されるという問題がある。例えば、光学的バンドギャップが互いに異なる2種類以上の光電変換層をユニット内で直列接続した場合、互いの光電変換層の特性が異なるため、そのユニットで発生する光電流は、各光電変換層で発生する光電流のうち最も低い光電流に律速される。   However, in the structure of Patent Document 1 and the conventional structure, since a plurality of photoelectric conversion layers serving as current generation sources are all connected in series, photocurrent generated in the entire solar cell is generated in each photoelectric conversion layer. There is a problem that the photocurrent is limited to the lowest photocurrent. For example, when two or more types of photoelectric conversion layers having different optical band gaps are connected in series in the unit, the photoelectric currents generated in the unit are different in each photoelectric conversion layer because the characteristics of the photoelectric conversion layers are different. The rate is limited to the lowest photocurrent generated.

また、季節や天候による太陽光のスペクトルの変化によって、各光電変換層で発生する光電流が変化した場合、太陽電池全体の光電流は、その変化により光電流が減少する場合があるという問題がある。例えば、太陽光のスペクトルの変化により、一方の光電変換層では光電流が上昇しても、他方の光電変換層では光電流が減少した場合には、太陽電池全体の光電流は減少する場合がある。また、温度変化によって光電変換層の特性は変化し、温度変化によっても光電流は変動するが、その場合も、同様に、低い光電流に律速される。   In addition, when the photocurrent generated in each photoelectric conversion layer changes due to changes in the sunlight spectrum due to the season or weather, the photocurrent of the entire solar cell may decrease due to the change. is there. For example, if the photocurrent increases in one photoelectric conversion layer due to a change in the spectrum of sunlight, but the photocurrent decreases in the other photoelectric conversion layer, the photocurrent of the entire solar cell may decrease. is there. In addition, the characteristics of the photoelectric conversion layer change due to a temperature change, and the photocurrent also fluctuates due to the temperature change, but in this case as well, the rate is limited to a low photocurrent.

本発明は、上記のような問題点を解決するためになされたものであり、光電変換層で発生する光電流のうち最も低い光電流に律速されることなく、光電流を向上可能な太陽電池を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a solar cell capable of improving the photocurrent without being limited by the lowest photocurrent generated in the photoelectric conversion layer. The purpose is to provide.

本発明に係る太陽電池は、透光性絶縁基板の一方の面上に形成され、第1の光電変換層を備える複数の第1のセルと、前記透光性絶縁基板の他方の面上に形成され、前記第1の光電変換層と異なる光学的バンドギャップを有する第2の光電変換層を備える複数の第2のセルとを備える。前記透光性絶縁基板を挟んで対向する前記第1のセルおよび前記第2のセルは、ユニットを構成する。前記ユニットの前記第1の光電変換層と前記第2の光電変換層とは、前記透光性絶縁板に設けられた貫通孔を介して互いに電気的に並列に接続され、隣接する前記ユニットの前記第1の光電変換層同士および前記第2の光電変換層同士それぞれは、電気的に直列に接続される。   A solar cell according to the present invention is formed on one surface of a light-transmitting insulating substrate, and includes a plurality of first cells including a first photoelectric conversion layer, and the other surface of the light-transmitting insulating substrate. And a plurality of second cells including a second photoelectric conversion layer formed and having a second optical conversion layer having an optical band gap different from that of the first photoelectric conversion layer. The first cell and the second cell that face each other with the translucent insulating substrate interposed therebetween constitute a unit. The first photoelectric conversion layer and the second photoelectric conversion layer of the unit are electrically connected in parallel to each other through a through hole provided in the light-transmitting insulating plate, and The first photoelectric conversion layers and the second photoelectric conversion layers are electrically connected in series.

本発明の太陽電池では、互いに異なる光学的バンドギャップを有する光電変換層が電気的に並列に接続されているため、各光電変換層で発生する光電流のうち最も低い光電流に律速されることなく、光電流を向上させることができる。その結果、季節・天候による太陽光スペクトル、および、温度等の動作周辺環境の変化に対して、動作安定性を向上させることができる。   In the solar cell of the present invention, the photoelectric conversion layers having different optical band gaps are electrically connected in parallel, so that the rate is determined by the lowest photocurrent among the photocurrents generated in each photoelectric conversion layer. In addition, the photocurrent can be improved. As a result, it is possible to improve operational stability against changes in the operating ambient environment such as the sunlight spectrum and temperature due to the season and weather.

<実施の形態1>
図1は、本実施の形態に係る太陽電池の構成を示す断面図である。本実施の形態に係る太陽電池は、図1に示すように、透光性絶縁基板1と、セル2と、タンデムセル3とを備える。透光性絶縁基板1の材質には、例えば、ガラスを用いる。
<Embodiment 1>
FIG. 1 is a cross-sectional view showing the configuration of the solar cell according to the present embodiment. As shown in FIG. 1, the solar cell according to the present embodiment includes a translucent insulating substrate 1, a cell 2, and a tandem cell 3. As the material of the translucent insulating substrate 1, for example, glass is used.

本実施の形態に係る複数の第1のセルである複数のセル2は、透光性絶縁基板1の一方の面(図1の上面)上に形成され、第1の光電変換層であるワイドバンドギャップ光電変換層12を備える。本実施の形態では、複数のセル2は、ワイドバンドギャップ光電変換層12に加え、第1の透明導電膜11と、第2の透明導電膜13とをさらに備える。第1の透明導電膜11は、透光性絶縁基板1の上面上に所定のパターンで配置される。   A plurality of cells 2 that are a plurality of first cells according to the present embodiment are formed on one surface (upper surface in FIG. 1) of the light-transmitting insulating substrate 1 and are wide as a first photoelectric conversion layer. A band gap photoelectric conversion layer 12 is provided. In the present embodiment, the plurality of cells 2 further include a first transparent conductive film 11 and a second transparent conductive film 13 in addition to the wide band gap photoelectric conversion layer 12. The first transparent conductive film 11 is arranged in a predetermined pattern on the upper surface of the translucent insulating substrate 1.

図1の破線部分を拡大した図を図1の下に示す。本実施の形態に係るワイドバンドギャップ光電変換層12は、ワイドバンドギャップのi層半導体材料を含むp層15、i層16、n層17を、第1の透明導電膜11上に透光性絶縁基板1側から順次積層してなる。ワイドバンドギャップ光電変換層12は、第1の透明導電膜11を覆う。隣り合うワイドバンドギャップ光電変換層12同士の間には、開口部14が設けられている。なお、ワイドバンドギャップ光電変換層12が、透明導電膜11と接触することに対しては特に制限はない。   The figure which expanded the broken-line part of FIG. 1 is shown under FIG. In the wide band gap photoelectric conversion layer 12 according to the present embodiment, a p layer 15, an i layer 16, and an n layer 17 containing an i layer semiconductor material having a wide band gap are formed on the first transparent conductive film 11 so as to transmit light. The layers are sequentially stacked from the insulating substrate 1 side. The wide band gap photoelectric conversion layer 12 covers the first transparent conductive film 11. An opening 14 is provided between adjacent wide band gap photoelectric conversion layers 12. In addition, there is no restriction | limiting in particular with respect to the wide band gap photoelectric converting layer 12 contacting the transparent conductive film 11. FIG.

第2の透明導電膜13は、透光性絶縁基板1上側のワイドバンドギャップ光電変換層12の上に配置される。第2の透明導電膜13と、セル2を構成する対面の第1の透明導電膜11とは、上述のワイドバンドギャップ光電変換層12によって空間的に離れている。その一方で、第2の透明導電膜13と、隣接するセル2の第1の透明導電膜11とは、ワイドバンドギャップ光電変換層12同士の開口部14において、空間的、電気的に接続されている。第2の透明導電膜13には、図1に示すように、第1の透明導電膜11上に分離部18が設けられている。これにより、隣接する第2の透明導電膜13同士は、互いに空間的に離れており、電気的に絶縁性を確保している。   The second transparent conductive film 13 is disposed on the wide band gap photoelectric conversion layer 12 on the upper side of the translucent insulating substrate 1. The second transparent conductive film 13 and the facing first transparent conductive film 11 constituting the cell 2 are spatially separated by the wide band gap photoelectric conversion layer 12 described above. On the other hand, the second transparent conductive film 13 and the first transparent conductive film 11 of the adjacent cell 2 are spatially and electrically connected at the opening 14 between the wide band gap photoelectric conversion layers 12. ing. As shown in FIG. 1, the second transparent conductive film 13 is provided with a separation portion 18 on the first transparent conductive film 11. As a result, the adjacent second transparent conductive films 13 are spatially separated from each other and electrically insulate.

本実施の形態に係る複数の第2のセルである複数のタンデムセル3は、透光性絶縁基板1の他方の面(図1の下面)上に形成され、第2の光電変換層であるミドルバンドギャップ光電変換層22を備える。本実施の形態では、複数のタンデムセル3は、ミドルバンドギャップ光電変換層22に加え、第3の透明導電膜21と、第3の光電変換層であるナローバンドギャップ光電変換層23と、反射導電層24とをさらに備える。第3の透明導電膜21は、透光性絶縁基板1の下面上に所定のパターンで配置される。   A plurality of tandem cells 3 which are a plurality of second cells according to the present embodiment are formed on the other surface (the lower surface in FIG. 1) of translucent insulating substrate 1 and are second photoelectric conversion layers. A middle band gap photoelectric conversion layer 22 is provided. In the present embodiment, in addition to the middle band gap photoelectric conversion layer 22, the plurality of tandem cells 3 include a third transparent conductive film 21, a narrow band gap photoelectric conversion layer 23 that is a third photoelectric conversion layer, and a reflective conductive film. And a layer 24. The third transparent conductive film 21 is arranged in a predetermined pattern on the lower surface of the translucent insulating substrate 1.

本実施の形態に係るミドルバンドギャップ光電変換層22は、ミドルバンドギャップのi層半導体材料を含むp層26、i層27、n層28を、第3の透明導電膜21上に透光性絶縁基板1側から順次積層してなる。本実施の形態では、上述のワイドバンドギャップ光電変換層12は、ミドルバンドギャップ光電変換層22よりも光学的バンドギャップが広い。   In the middle band gap photoelectric conversion layer 22 according to the present embodiment, a p layer 26, an i layer 27, and an n layer 28 containing a middle band gap i-layer semiconductor material are formed on the third transparent conductive film 21. The layers are sequentially stacked from the insulating substrate 1 side. In the present embodiment, the above wide band gap photoelectric conversion layer 12 has a wider optical band gap than the middle band gap photoelectric conversion layer 22.

ナローバンドギャップ光電変換層23は、ナローバンドギャップのi層半導体材料を含むp層29、i層30、n層31を、ミドルバンドギャップ光電変換層22上に透光性絶縁基板1側から順次積層してなる。こうして、本実施の形態では、ナローバンドギャップ光電変換層23は、ミドルバンドギャップ光電変換層22上に透光性絶縁基板1と反対側に積層され、当該ミドルバンドギャップ光電変換層22と電気的に直列に接続される。また、本実施の形態では、上述のミドルバンドギャップ光電変換層22は、ナローバンドギャップ光電変換層23よりも光学的バンドギャップが広い。   The narrow band gap photoelectric conversion layer 23 is formed by sequentially stacking a p layer 29, an i layer 30, and an n layer 31 containing a narrow band gap i layer semiconductor material on the middle band gap photoelectric conversion layer 22 from the translucent insulating substrate 1 side. It becomes. Thus, in this embodiment, the narrow band gap photoelectric conversion layer 23 is stacked on the middle band gap photoelectric conversion layer 22 on the side opposite to the translucent insulating substrate 1, and is electrically connected to the middle band gap photoelectric conversion layer 22. Connected in series. In the present embodiment, the middle band gap photoelectric conversion layer 22 described above has a wider optical band gap than the narrow band gap photoelectric conversion layer 23.

以下の説明では、ワイドバンドギャップ光電変換層12、ミドルバンドギャップ光電変換層22、ナローバンドギャップ光電変換層23を区別しない場合には、簡単に、光電変換層12,22,23と記すこともある。また、ミドルバンドギャップ光電変換層22およびナローバンドギャップ光電変換層23を区別しない場合には、簡単に、下側の光電変換層22,23と記し、それに対して、ワイドバンドギャップ光電変換層12を上側の光電変換層12と記すこともある。   In the following description, when the wide band gap photoelectric conversion layer 12, the middle band gap photoelectric conversion layer 22, and the narrow band gap photoelectric conversion layer 23 are not distinguished, they may be simply referred to as photoelectric conversion layers 12, 22, and 23. . Further, when the middle band gap photoelectric conversion layer 22 and the narrow band gap photoelectric conversion layer 23 are not distinguished from each other, they are simply referred to as lower photoelectric conversion layers 22 and 23, and the wide band gap photoelectric conversion layer 12 is referred to as the lower band gap photoelectric conversion layer 12. It may be described as the upper photoelectric conversion layer 12.

下側の光電変換層22,23は、第3の透明導電膜21を覆う。隣り合う下側の光電変換層22,23同士の間には、開口部25が設けられている。なお、下側の光電変換層22,23が、第3の透明導電膜21と接触することに対しては特に制限はない。   The lower photoelectric conversion layers 22 and 23 cover the third transparent conductive film 21. An opening 25 is provided between the adjacent lower photoelectric conversion layers 22 and 23. There are no particular restrictions on the lower photoelectric conversion layers 22 and 23 coming into contact with the third transparent conductive film 21.

反射導電層24は、透光性絶縁基板1下側のナローバンドギャップ光電変換層23の上に配置される。反射導電層24と、タンデムセル3を構成する対面の第3の透明導電膜21とは、下側の光電変換層22,23によって空間的に離れている。その一方で、反射導電層24と、隣接するタンデムセル3の第3の透明導電膜21とは、下側の光電変換層22,23同士の開口部25において、空間的、電気的に接続されている。反射導電層24には、図1に示すように、第3の透明導電膜21上に分離部32が設けられている。これにより、隣接する反射導電層24同士は、互いに空間的に離れており、電気的に絶縁性を確保している。   The reflective conductive layer 24 is disposed on the narrow band gap photoelectric conversion layer 23 on the lower side of the translucent insulating substrate 1. The reflective conductive layer 24 and the facing third transparent conductive film 21 constituting the tandem cell 3 are spatially separated by the lower photoelectric conversion layers 22 and 23. On the other hand, the reflective conductive layer 24 and the third transparent conductive film 21 of the adjacent tandem cell 3 are spatially and electrically connected in the opening 25 between the lower photoelectric conversion layers 22 and 23. ing. As shown in FIG. 1, the reflective conductive layer 24 is provided with a separation portion 32 on the third transparent conductive film 21. As a result, the adjacent reflective conductive layers 24 are spatially separated from each other and electrically insulate.

透光性絶縁基板1を挟んで対向するセル2およびタンデムセル3は、ユニット4を構成している。透光性絶縁基板1には、貫通孔5が設けられており、その貫通孔5の少なくとも内壁の一部に、透光性絶縁基板1の厚み方向に連続して設けられた導電部材を備える。これにより、第1の透明導電膜11と第3の透明導電膜21とは、透光性絶縁基板1に設けた貫通孔5を介して、電気的に接続される。透光性絶縁基板1には、例えば、厚さが1.1mmのものを用い、貫通孔5は、例えば、半径0.5mmの円柱形状に形成する。   The cell 2 and the tandem cell 3 that face each other with the translucent insulating substrate 1 in between constitute a unit 4. The translucent insulating substrate 1 is provided with a through hole 5, and a conductive member provided continuously in the thickness direction of the translucent insulating substrate 1 is provided on at least a part of the inner wall of the through hole 5. . Thereby, the first transparent conductive film 11 and the third transparent conductive film 21 are electrically connected through the through hole 5 provided in the translucent insulating substrate 1. As the translucent insulating substrate 1, for example, a substrate having a thickness of 1.1 mm is used, and the through hole 5 is formed in a cylindrical shape having a radius of 0.5 mm, for example.

貫通孔5の内部には、例えば、銀ろう材の充填、または、スパッタ透明導電膜を形成する。図2は、本実施の形態に係る貫通孔5を形成した透光性絶縁基板1上に、第1の透明導電膜11と第3の透明導電膜21を形成した途中段階の構造を示す断面図(図2(a))と上面図(図2(b))である。図2(b)に示すように、貫通孔5は、その電気抵抗に基づいて定めた一定間隔でライン上に配置される。この構造により、セル2とタンデムセル3は並列に接続される。   Inside the through-hole 5, for example, a silver brazing material is filled or a sputter transparent conductive film is formed. FIG. 2 is a cross-sectional view showing a structure at an intermediate stage in which the first transparent conductive film 11 and the third transparent conductive film 21 are formed on the translucent insulating substrate 1 in which the through holes 5 according to the present embodiment are formed. It is a figure (Fig.2 (a)) and a top view (FIG.2 (b)). As shown in FIG.2 (b), the through-hole 5 is arrange | positioned on the line at the fixed space | interval defined based on the electrical resistance. With this structure, the cell 2 and the tandem cell 3 are connected in parallel.

ミドルバンドギャップ光電変換層22、および、ナローバンドギャップ光電変換層23は、p層26,29、i層27,30、n層28,31の積層方向が同一であり、電気的に直列に接続される。ミドルバンドギャップ光電変換層22のp層26と、ワイドバンドギャップ光電変換層12のp層15とは、第1,第3の透明導電膜11,21、貫通孔5を介して互いに電気的に接続される。これにより、ユニット4のワイドバンドギャップ光電変換層12とミドルバンドギャップ光電変換層22とは、透光性絶縁基板1に設けられた貫通孔5を介して互いに電気的に並列に接続される。   The middle band gap photoelectric conversion layer 22 and the narrow band gap photoelectric conversion layer 23 have the same stacking direction of the p layers 26 and 29, the i layers 27 and 30, and the n layers 28 and 31, and are electrically connected in series. The The p layer 26 of the middle band gap photoelectric conversion layer 22 and the p layer 15 of the wide band gap photoelectric conversion layer 12 are electrically connected to each other through the first and third transparent conductive films 11 and 21 and the through hole 5. Connected. Thereby, the wide band gap photoelectric conversion layer 12 and the middle band gap photoelectric conversion layer 22 of the unit 4 are electrically connected in parallel to each other through the through hole 5 provided in the translucent insulating substrate 1.

光が光電変換層12,22,23で吸収されると、光電流は光電変換層12,22,23のn層からp層へ流れる。そのため、上側の光電変換層12では、図1の上の表面から透光性絶縁基板1側へ光電流が発生し、下側の光電変換層22,23では、図1の下の表面から透光性絶縁基板1側へ光電流が発生する。これら光電流は、各光電変換層12,22,23それぞれにおいて独立して発生する。そのため、ユニット4で発生する光電流、つまり、太陽電池全体で発生する光電流は、透光性絶縁基板1の上下それぞれ発生する光電流の和となる。   When light is absorbed by the photoelectric conversion layers 12, 22, and 23, photocurrent flows from the n layer to the p layer of the photoelectric conversion layers 12, 22, and 23. Therefore, in the upper photoelectric conversion layer 12, a photocurrent is generated from the upper surface in FIG. 1 to the translucent insulating substrate 1 side, and in the lower photoelectric conversion layers 22 and 23, the transparent surface from the lower surface in FIG. A photocurrent is generated on the photoconductive substrate 1 side. These photocurrents are generated independently in each of the photoelectric conversion layers 12, 22, and 23. Therefore, the photocurrent generated in the unit 4, that is, the photocurrent generated in the entire solar cell is the sum of the photocurrents generated above and below the translucent insulating substrate 1.

また、透光性絶縁基板1全面に亘って形成され、透光性絶縁基板1を挟んで対向する上側のセル2および下側のタンデムセル3により構成される一のユニット4は、隣接するユニット4と、第1,第3の透明導電膜11,21を介して電気的に直列に接続される。これにより、隣接するユニット4のワイドバンドギャップ光電変換層12同士およびミドルバンドギャップ光電変換層22同士それぞれは、電気的に直列に接続される。   In addition, one unit 4 formed over the entire surface of the light-transmitting insulating substrate 1 and composed of the upper cell 2 and the lower tandem cell 3 facing each other with the light-transmitting insulating substrate 1 interposed therebetween is an adjacent unit. 4 and the first and third transparent conductive films 11 and 21 are electrically connected in series. Thereby, the wide band gap photoelectric conversion layers 12 and the middle band gap photoelectric conversion layers 22 of the adjacent units 4 are electrically connected in series.

この構造により、上側の光電変換層12で発生した光電流は、隣接するユニット4の上側の光電変換層12に引き渡される。その一方で、下側の光電変換層22,23で発生した光電流は、隣接するユニット4の下側の光電変換層22,23に引き渡される。その結果、太陽電池全体で発生する電圧は、直列接続された各ユニット4で発生する電圧の和となる。   With this structure, the photocurrent generated in the upper photoelectric conversion layer 12 is delivered to the upper photoelectric conversion layer 12 of the adjacent unit 4. On the other hand, the photocurrent generated in the lower photoelectric conversion layers 22 and 23 is delivered to the lower photoelectric conversion layers 22 and 23 of the adjacent unit 4. As a result, the voltage generated in the entire solar cell is the sum of the voltages generated in the units 4 connected in series.

次に、本実施の形態に係る太陽電池が、上述の光電流や電圧の発生源となる光を吸収する動作について説明する。本実施の形態に係る太陽電池の構成では、透光性絶縁基板1上面が、太陽光を浴びる受光面である。上面から入射した太陽光は、第2の透明導電膜13を通過し、ワイドバンドギャップ光電変換層12で主に短波長成分の光が吸収される。残りの光は、第1透明導電膜11および透光性絶縁基板1および第3の透明導電膜21を通過し、ミドルバンドギャップ光電変換層22,ナローバンドギャップ光電変換層23それぞれにおいて、中波長成分の光、長波長成分の光それぞれが吸収される。   Next, the operation in which the solar cell according to the present embodiment absorbs light serving as the generation source of the above-described photocurrent and voltage will be described. In the configuration of the solar cell according to the present embodiment, the upper surface of the translucent insulating substrate 1 is a light receiving surface that receives sunlight. Sunlight incident from the upper surface passes through the second transparent conductive film 13, and light of a short wavelength component is mainly absorbed by the wide band gap photoelectric conversion layer 12. The remaining light passes through the first transparent conductive film 11, the translucent insulating substrate 1 and the third transparent conductive film 21, and in each of the middle band gap photoelectric conversion layer 22 and the narrow band gap photoelectric conversion layer 23, the medium wavelength component. And light having a long wavelength component are absorbed.

残りの光は、反射導電層24で反射され、上記光の進行方向に対して逆方向に進行し、さらに、各光電変換層12,22,23で吸収される。主な光の進行状況は、上述のとおりであるが、各膜の界面では、反射・屈折・干渉が起きるため、実際の光の進行状況は、より複雑なものになる。なお、太陽光が、透光性絶縁基板1の貫通孔5においても透過可能にするために、貫通孔5内に形成される膜は、透明導電膜であることが望ましい。   The remaining light is reflected by the reflective conductive layer 24, travels in the direction opposite to the traveling direction of the light, and is absorbed by the photoelectric conversion layers 12, 22, and 23. Although the main light progress is as described above, reflection, refraction, and interference occur at the interface of each film, so the actual light progress is more complicated. In addition, in order that sunlight can permeate | transmit also in the through-hole 5 of the translucent insulated substrate 1, it is desirable that the film | membrane formed in the through-hole 5 is a transparent conductive film.

なお、各膜の表面構造については特に制限はないが、例えば、第1の透明導電膜11および第3の透明導電膜21のいずれか一方、または、両方の表面に凹凸形状を設けるテクスチャー構造を形成した方が望ましい。仮に、その構造を形成した場合には、太陽光の進行方向を屈折により変化させ、光電変換層12,22,23に対する光の作用長を増加させるとともに、正反射により外部に光が飛び出すことを抑えて、光を内部に極力閉じ込める光学的な作用を持たせることができる。   In addition, although there is no restriction | limiting in particular about the surface structure of each film | membrane, For example, the texture structure which provides uneven | corrugated shape in the surface of either one of the 1st transparent conductive film 11 and the 3rd transparent conductive film 21, or both It is desirable to form. If the structure is formed, the traveling direction of sunlight is changed by refraction, and the action length of light on the photoelectric conversion layers 12, 22, and 23 is increased, and light is projected to the outside by regular reflection. It is possible to suppress and provide an optical action to confine light as much as possible inside.

例えば、第1の透明導電膜11に上述のテクスチャー構造を持たせると、その上に後から形成するワイドバンドギャップ光電変換層12および第2の透明導電膜13表面に、下地のテクスチャー構造をある程度反映した表面形状が形成される。この場合、第2の透明導電膜13に到達した太陽光は、その表面形状に応じて屈折するため、第2の透明導電膜13は、光の内部閉じ込めに寄与することが可能となる。光の内部閉じ込めは、空気層ないし上部充填層(図示せず)と光電変換層以外にも、第2の透明導電膜13とワイドバンドギャップ光電変換層12との界面、および、ワイドバンドギャップ光電変換層12と第1の透明導電膜11との界面においても起こる。さらに、第3の透明導電膜21に上述のテクスチャー構造を持たせると、透光性絶縁基板1上側のセル2のみならず、透光性絶縁基板1下側のタンデムセル3においても、同様に、屈折等による光の内部閉じ込めが可能となる。   For example, when the first transparent conductive film 11 has the above-described texture structure, the underlying texture structure is provided to the surface of the wide band gap photoelectric conversion layer 12 and the second transparent conductive film 13 to be formed later on the surface. A reflected surface shape is formed. In this case, since the sunlight that has reached the second transparent conductive film 13 is refracted according to the surface shape thereof, the second transparent conductive film 13 can contribute to the internal confinement of light. In addition to the air layer or the upper filling layer (not shown) and the photoelectric conversion layer, the internal confinement of light is not limited to the interface between the second transparent conductive film 13 and the wide band gap photoelectric conversion layer 12 and the wide band gap photoelectric. This also occurs at the interface between the conversion layer 12 and the first transparent conductive film 11. Further, when the third transparent conductive film 21 has the texture structure described above, not only in the cell 2 above the translucent insulating substrate 1 but also in the tandem cell 3 below the translucent insulating substrate 1. In addition, it becomes possible to confine light by refraction or the like.

なお、図1では、光電変換層12,22,23を簡単な構造で示したが、これ以外の構成要素を挿入する構造であってもよい。例えば、波動光学的に光反射率を向上させるために、反射導電層24とナローバンドギャップ光電変換層23との間に、例えば、ZnO等の透明導電膜を挿入する構造であってもよい。また、例えば、光の内部閉じ込めの効率や、ミドルバンドギャップ光電変換層22とナローバンドギャップ光電変換層23との間の電気接続性を向上させるため、これらの光電変換層22,23の間に、半導体膜あるいは導電膜を挿入する構造であってもよい。   In addition, in FIG. 1, although the photoelectric converting layers 12, 22, and 23 were shown with the simple structure, the structure which inserts a component other than this may be sufficient. For example, a structure in which a transparent conductive film such as ZnO is inserted between the reflective conductive layer 24 and the narrow band gap photoelectric conversion layer 23 may be used in order to improve the light reflectivity by wave optics. Further, for example, in order to improve the internal confinement efficiency of light and the electrical connectivity between the middle band gap photoelectric conversion layer 22 and the narrow band gap photoelectric conversion layer 23, between these photoelectric conversion layers 22 and 23, A structure in which a semiconductor film or a conductive film is inserted may be used.

次に、図3を用いて、本実施の形態に係る太陽電池の製造工程例を説明する。図3(a)に示すように、例えば、ガラスからなる透光性絶縁基板1を準備する。この透光性絶縁基板1に、例えば、ダイヤモンド砥粒を備えた電鋳ドリルを用いて、貫通孔5を形成する。この貫通孔5内壁に、例えば、CrおよびTiのスパッタ膜を形成する。貫通孔5内部の空洞部に、例えば、銀ろう材、または、透明導電材を充填し、貫通孔5以外の透光性絶縁基板1表面の金属部や導電材は、パッド研磨により除去する。   Next, a manufacturing process example of the solar cell according to the present embodiment will be described with reference to FIG. As shown in FIG. 3A, for example, a translucent insulating substrate 1 made of glass is prepared. The through hole 5 is formed in the translucent insulating substrate 1 by using, for example, an electroforming drill provided with diamond abrasive grains. For example, a sputtered film of Cr and Ti is formed on the inner wall of the through hole 5. The hollow portion inside the through hole 5 is filled with, for example, a silver brazing material or a transparent conductive material, and the metal portion and the conductive material on the surface of the translucent insulating substrate 1 other than the through hole 5 are removed by pad polishing.

なお、透光性絶縁基板1は、ガラス基板に限ったものではなく、例えば、プラスチック基板であってもよい。透光性絶縁基板1にプラスチック基板を用いる場合、レーザあるいはポンチとダイからなる金型による加工等により、貫通孔5を形成すればよい。なお、ここで示した貫通孔5の形成は一例に過ぎず、特に本発明を制限するものではない。また、透光性絶縁基板1から、後工程で形成する膜への不純物拡散を抑えるために、バリア層としてのSiOxやSiNx等の膜を透光性絶縁基板1表面に予め設けてもよい。   The translucent insulating substrate 1 is not limited to a glass substrate, and may be a plastic substrate, for example. When a plastic substrate is used for the translucent insulating substrate 1, the through hole 5 may be formed by processing with a laser or a mold including a punch and a die. In addition, formation of the through-hole 5 shown here is only an example, and does not restrict | limit this invention in particular. Further, a film such as SiOx or SiNx as a barrier layer may be provided in advance on the surface of the light-transmitting insulating substrate 1 in order to suppress impurity diffusion from the light-transmitting insulating substrate 1 to a film to be formed in a later step.

図3(b)に示すように、透光性絶縁基板1の片面上に、例えば、熱CVD(Chemical Vapor Deposition)法により、SnO2からなる厚さ1.0μmの透明導電膜を形成する。成膜条件として、例えば、透光性絶縁基板1の温度を500℃にし、原料ガスとして2.0mol%のSnCl4、酸化性ガスとして10mol%のH20および1.0mol%のO2を用い、必要に応じて1.0mol%のFドーパントのガスを、キャリアガスにN2を用いて加え、これらガスを常圧下で供給する。透光性絶縁基板1の片面上に形成した透明導電膜に、Nd:YVO4レーザの基本波をパルス光照射する。この照射により、ライン状にセル間の透明導電膜をスクライブ除去して、透明導電膜を分割する。透光性絶縁基板1の他方の面に、上述と同様に、透明導電膜の形成とレーザスクライブ除去を施す。 As shown in FIG. 3B, a transparent conductive film made of SnO 2 and having a thickness of 1.0 μm is formed on one surface of the translucent insulating substrate 1 by, eg, thermal CVD (Chemical Vapor Deposition). As film formation conditions, for example, the temperature of the translucent insulating substrate 1 is set to 500 ° C., 2.0 mol% SnCl 4 as a source gas, 10 mol% H 2 0 and 1.0 mol% O 2 as an oxidizing gas. If necessary, a gas of 1.0 mol% F dopant is added to the carrier gas using N 2 and these gases are supplied under normal pressure. A transparent conductive film formed on one surface of the translucent insulating substrate 1 is irradiated with pulsed light of a fundamental wave of an Nd: YVO 4 laser. By this irradiation, the transparent conductive film between the cells is scribed and removed in a line to divide the transparent conductive film. On the other surface of the translucent insulating substrate 1, formation of a transparent conductive film and laser scribing removal are performed in the same manner as described above.

こうして、透光性絶縁基板1の上面上に第1の透明導電膜11が形成され、透光性絶縁基板1の下面上に第3の透明導電膜21が形成される。なお、ここでは、第1,第3の透明導電膜11,21の材質は、SnO2である場合について説明したが、ITO(Indium Tin Oxide),IZO(Indiumu Zinc Oxide),ZnOであってもよい。また、透明導電膜の成膜には、透光性絶縁基板1の各面それぞれに分離される反応室を用いることにより、プラズマCVD法で透光性絶縁基板1両面上に、透明導電膜を同時に成膜してもよい。また、透光性絶縁基板1両面上に成膜された透明導電膜を、レーザスクライブにより同時に分割してもよい。 Thus, the first transparent conductive film 11 is formed on the upper surface of the translucent insulating substrate 1, and the third transparent conductive film 21 is formed on the lower surface of the translucent insulating substrate 1. Here, the case where the material of the first and third transparent conductive films 11 and 21 is SnO 2 has been described, but it may be ITO (Indium Tin Oxide), IZO (Indiumu Zinc Oxide), or ZnO. Good. In addition, the transparent conductive film is formed on both surfaces of the light-transmitting insulating substrate 1 by plasma CVD by using reaction chambers separated on each surface of the light-transmitting insulating substrate 1. You may form into a film simultaneously. In addition, the transparent conductive film formed on both surfaces of the translucent insulating substrate 1 may be simultaneously divided by laser scribing.

図3(c)に示すように、第1の透明導電膜11上に、例えば、ボロンドープa−SiCからなる厚さ10nmのp層15、a−SiCからなる厚さ200nmのi層16、リンドープa−Siからなる厚さ15nmのn層17を順次成膜し、ワイドバンドギャップ光電変換層12を形成する。第3の透明導電膜21上に、例えば、ボロンドープa−SiCからなる厚さ10nmのp層26、a−Siからなる厚さ250nmのi層27、リンドープa−Siからなる厚さ15nmのn層28を順次成膜し、ミドルバンドギャップ光電変換層22を形成する。そして、ミドルバンドギャップ光電変換層22上に、例えば、アモルファス部分を含むボロンドープ微結晶シリコン(μc−Si)からなる厚さ10nmのp層29、μc−Siからなる厚さ2μmのi層30、μc−Siからなる厚さ15nmのn層31を順次成膜し、ナローバンドギャップ光電変換層23を形成する。   As shown in FIG. 3C, on the first transparent conductive film 11, for example, a 10 nm thick p layer 15 made of boron-doped a-SiC, an 200 nm thick i layer 16 made of a-SiC, and phosphorus doped A 15 nm thick n layer 17 made of a-Si is sequentially formed to form a wide band gap photoelectric conversion layer 12. On the third transparent conductive film 21, for example, a 10 nm thick p layer 26 made of boron-doped a-SiC, a 250 nm thick i layer 27 made of a-Si, and a 15 nm thick n layer made of phosphorus doped a-Si. The layer 28 is sequentially formed to form the middle band gap photoelectric conversion layer 22. Then, on the middle band gap photoelectric conversion layer 22, for example, a 10 nm thick p layer 29 made of boron-doped microcrystalline silicon (μc-Si) including an amorphous portion, a 2 μm thick i layer 30 made of μc-Si, An n layer 31 made of μc-Si having a thickness of 15 nm is sequentially formed to form a narrow band gap photoelectric conversion layer 23.

これら成膜は、例えば、平行平板型のRF帯の周波数のプラズマCVDを用いる。その成膜条件として、透光性絶縁基板1の温度はすべて200℃とし、成膜の原料ガスとしては、a−SiCにはSiH4、CH4,H2を用い、a−SiにはSiH4、H2を用い、μc−SiにはSiH4、H2を用いる。a−Siでは、ガス濃度比[H2]/[SiH4]=15とし、μc−Siでは、ガス濃度比[H2]/[SiH4]=50とする。その他のプラズマCVDによる成膜条件は、それぞれ最適となるように設定する。 For these film formations, for example, parallel plate type RF plasma CVD is used. As the film formation conditions, the temperature of the translucent insulating substrate 1 is set to 200 ° C., and the raw material gases for film formation are SiH 4 , CH 4 , and H 2 for a-SiC and SiH for a-Si. 4 and H 2 are used, and SiH 4 and H 2 are used for μc-Si. For a-Si, the gas concentration ratio [H 2 ] / [SiH 4 ] = 15, and for μc-Si, the gas concentration ratio [H 2 ] / [SiH 4 ] = 50. Other film deposition conditions by plasma CVD are set to be optimum.

図3(d)に示すように、上面から見てライン状にセル間の光電変換層12,22,23をスクライブ除去して、開口部14,25を形成し、光電変換層12,22,23をパターン分割する。この分割は、透光性絶縁基板1の両面上に形成した光電変換層12,22,23に対して、Nd:YVO4レーザの第二高調波(2ω)をパルス光照射することにより行う。なお、このスクライブ除去では、第1,第3の透明導電膜11,21、および、透光性絶縁基板1にもレーザが照射されるが、当該レーザ波長の光を透過するため、スクライブされずに形状が維持される。 As shown in FIG. 3 (d), the photoelectric conversion layers 12, 22, and 23 between the cells are scribed and removed in a line shape when viewed from the top to form openings 14 and 25, and the photoelectric conversion layers 12, 22, and 23 is divided into patterns. This division is performed by irradiating the photoelectric conversion layers 12, 22, and 23 formed on both surfaces of the translucent insulating substrate 1 with the second harmonic (2ω) of the Nd: YVO 4 laser. In this scribing removal, the first and third transparent conductive films 11 and 21 and the translucent insulating substrate 1 are also irradiated with laser, but are not scribed because they transmit light of the laser wavelength. The shape is maintained.

図3(e)に示すように、透光性絶縁基板1上面側でパターニングされたワイドバンドギャップ光電変換層12上に、例えば、DCマグネトロンスパッタによって、Al:2wt%ドープZnO膜からなる厚さ500nmの第2の透明導電膜13を形成する。一方、透光性絶縁基板1下面側でパターニングされたナローバンドギャップ光電変換層23上に、例えば、DCマグネトロンスパッタによって、Al:2wt%ドープZnO膜をその厚さ100nmにして形成する。そして、そのZnO膜上に、例えば、Ag,Al,Au,Pt等、あるいはその合金類からなる反射電極層24を形成する。ここでは、一例として、ZnO膜上に、Ag膜からなる厚さ300nmの反射導電層24を積層する。なお、ここでは、ナローバンドギャップ光電変換層23上にZnO膜を形成したが、これに限ったものではなく、その代わりに、例えば、ITO膜、IZO膜、SnO2膜を形成してもよい。 As shown in FIG. 3E, on the wide band gap photoelectric conversion layer 12 patterned on the upper surface side of the translucent insulating substrate 1, a thickness made of an Al: 2 wt% doped ZnO film is formed by, for example, DC magnetron sputtering. A second transparent conductive film 13 having a thickness of 500 nm is formed. On the other hand, an Al: 2 wt% doped ZnO film having a thickness of 100 nm is formed on the narrow band gap photoelectric conversion layer 23 patterned on the lower surface side of the translucent insulating substrate 1 by, for example, DC magnetron sputtering. Then, a reflective electrode layer 24 made of, for example, Ag, Al, Au, Pt, or an alloy thereof is formed on the ZnO film. Here, as an example, the reflective conductive layer 24 made of an Ag film and having a thickness of 300 nm is stacked on the ZnO film. Here, although the ZnO film is formed on the narrow band gap photoelectric conversion layer 23, the present invention is not limited to this. For example, an ITO film, an IZO film, or a SnO 2 film may be formed.

図3(f)に示すように、例えば、透光性絶縁基板1と第1の透明導電膜11との界面を基準としてクリアランスを設定し、加工針によりメカニカルスクライビングすることにより、セル2間の第2の透明導電膜13を除去し、分離部18を形成する。第2の透明導電膜13を除去する位置は、ワイドバンドギャップ光電変換層12のエッジであり、ワイドバンドギャップ光電変換層12の一部(微量)と、第1の透明導電膜11の一部(微量)の表層とともに、セル2間の第2の透明導電膜13を除去する。これにより、隣接するセル2の第2の透明導電膜13同士の分離を行う。透光性絶縁基板1下面側のタンデムセル3間の反射導電層24を、上述の2ωレーザにより、ライン状にスクライブ除去し、隣接するタンデムセル3の反射導電層24同士の分離を行う。   As shown in FIG. 3 (f), for example, a clearance is set with reference to the interface between the translucent insulating substrate 1 and the first transparent conductive film 11, and mechanical scribing is performed between the cells 2 by using a processing needle. The second transparent conductive film 13 is removed, and a separation portion 18 is formed. The position where the second transparent conductive film 13 is removed is the edge of the wide band gap photoelectric conversion layer 12, and a part (a small amount) of the wide band gap photoelectric conversion layer 12 and a part of the first transparent conductive film 11. The second transparent conductive film 13 between the cells 2 is removed together with the (trace amount) surface layer. Thereby, the second transparent conductive films 13 of the adjacent cells 2 are separated from each other. The reflective conductive layer 24 between the tandem cells 3 on the lower surface side of the translucent insulating substrate 1 is scribed and removed in a line by the above-mentioned 2ω laser, and the reflective conductive layers 24 of the adjacent tandem cells 3 are separated from each other.

図4は、本実施の形態に係る太陽電池の別局面の構造を示す断面図である。この図4に係る太陽電池の構造が、図1に係る太陽電池の構造と異なる点は、第1の透明導電膜11と第3の透明導電膜21とを接続する貫通孔5の位置が異なる点である。図1に係る太陽電池の透光性絶縁基板1の貫通孔5は、ワイドバンドギャップ光電変換層12と、ミドルバンドギャップ光電変換層22との間に設けられていた。   FIG. 4 is a cross-sectional view showing the structure of another aspect of the solar cell according to the present embodiment. The structure of the solar cell according to FIG. 4 is different from the structure of the solar cell according to FIG. 1 in that the positions of the through holes 5 connecting the first transparent conductive film 11 and the third transparent conductive film 21 are different. Is a point. The through hole 5 of the translucent insulating substrate 1 of the solar cell according to FIG. 1 was provided between the wide band gap photoelectric conversion layer 12 and the middle band gap photoelectric conversion layer 22.

それに対して、図4に係る太陽電池の透光性絶縁基板1の貫通孔5は、第1の透明導電膜11と第3の透明導電膜13との接続部と、第2の透明導電膜21と反射導電層24との接続部との間の位置に設けられている。つまり、図4に係る太陽電池の透光性絶縁基板1の貫通孔5は、ワイドバンドギャップ光電変換層12と、ミドルバンドギャップ光電変換層22との間を避けて設けられている。この図4に係る太陽電池によれば、図1に係る太陽電池に比べて、透光性絶縁基板1上面から下面へ透過する太陽光が、貫通孔5により遮蔽される弊害を無くすことができる。   On the other hand, the through-hole 5 of the translucent insulating substrate 1 of the solar cell according to FIG. 4 includes a connection portion between the first transparent conductive film 11 and the third transparent conductive film 13 and a second transparent conductive film. 21 and a connection portion between the reflective conductive layer 24 and the connection portion. That is, the through hole 5 of the translucent insulating substrate 1 of the solar cell according to FIG. 4 is provided avoiding the gap between the wide band gap photoelectric conversion layer 12 and the middle band gap photoelectric conversion layer 22. According to the solar cell according to FIG. 4, compared with the solar cell according to FIG. 1, it is possible to eliminate the harmful effect that sunlight transmitted from the upper surface to the lower surface of the translucent insulating substrate 1 is shielded by the through hole 5. .

次に、図5を用いて、図4に係る太陽電池の製造工程例を説明する。なお、ここでは、図3と共通する部分を除いて、図3と相違する工程のみを説明する。図5(a)に示すように、例えば、ガラスからなる透光性絶縁基板1を準備する。この透光性絶縁基板1に、例えば、ダイヤモンド砥粒を備えた電鋳ドリルを用いて、貫通孔5を形成する。この貫通孔5内壁に、例えば、ITO,IZOないしSnO2あるいはZnOのスパッタ膜を形成する。貫通孔5内部の空洞部に、例えば、ポリアニリンを充填し、貫通孔5以外の透光性絶縁基板1表面のポリマー膜はパッド研磨により除去する。 Next, a manufacturing process example of the solar cell according to FIG. 4 will be described with reference to FIG. Here, only the steps different from FIG. 3 will be described, except for the parts common to FIG. As shown in FIG. 5A, for example, a translucent insulating substrate 1 made of glass is prepared. The through hole 5 is formed in the translucent insulating substrate 1 by using, for example, an electroforming drill provided with diamond abrasive grains. For example, a sputtered film of ITO, IZO or SnO 2 or ZnO is formed on the inner wall of the through hole 5. The cavity inside the through hole 5 is filled with, for example, polyaniline, and the polymer film on the surface of the translucent insulating substrate 1 other than the through hole 5 is removed by pad polishing.

図5(b)に示すように、貫通孔5と、第1の透明導電膜11および第3の透明導電膜13との位置関係が、透光性絶縁基板1上面からみて、後の工程で形成する光電変換層12,22,23と重ならない位置となるように第1,第3の透明導電膜11,13を形成する。図5(d)に示すように、光電変換層12,22,23に対して、Nd:YVO4−2ωレーザをパスル光照射することにより、隣接セル間、つまり、貫通孔5上下に位置する光電変換層12,22,23をスクライブ除去して、光電変換層12,22,23をパターン分割する。この際、第1の透明導電膜11、第3の透明導電膜13および貫通孔5は、当該レーザ波長の光を透過するため、形状を保持する。 As shown in FIG. 5B, the positional relationship between the through-hole 5, the first transparent conductive film 11, and the third transparent conductive film 13 is a later process as viewed from the upper surface of the translucent insulating substrate 1. The first and third transparent conductive films 11 and 13 are formed so that they do not overlap with the photoelectric conversion layers 12, 22 and 23 to be formed. As shown in FIG. 5D, the photoelectric conversion layers 12, 22, and 23 are irradiated with pulsed Nd: YVO 4 −2ω laser to be positioned between adjacent cells, that is, above and below the through hole 5. The photoelectric conversion layers 12, 22, and 23 are scribed to remove the photoelectric conversion layers 12, 22, and 23. At this time, the first transparent conductive film 11, the third transparent conductive film 13, and the through-hole 5 hold the shape because they transmit light of the laser wavelength.

以上のような本実施の形態に係る太陽電池によれば、光電変換層12,22,23は、互いに異なる光学的バンドギャップを有するため、異なる波長域の光の吸収により光電流をそれぞれ発生する。そして、上側の光電変換層12と下側の光電変換層22,23とは、電気的に並列に接続されているため、太陽電池全体で発生する光電流は、上側の光電変換層12で発生する光電流と、下側の光電変換層22,23で発生する光電流の和となる。これにより、上側の光電変換層12と下側の光電変換層22,23それぞれで発生する光電流のうち低い光電流に律速されないため、太陽電池全体で発生する光電流を向上させることができる。また、上側の光電変換層12および下側の光電変換層22,23のうち、一方の光電変換層では光電流を増加させ、他方の光電変換層では光電流を減少させるような、季節・天候による太陽光スペクトル、および、温度等の動作周辺環境の変化があっても、太陽電池全体の光電流は、低い光電流に律速されない。そのため、動作周辺環境の変化に対して、動作安定性を向上させることができる。また、太陽電池全体で発生する電圧は、直列接続された各ユニット4で発生する電圧の和であるため、動作電圧を改善させることができる。   According to the solar cell according to the present embodiment as described above, since the photoelectric conversion layers 12, 22, and 23 have different optical band gaps, they generate photocurrents by absorbing light in different wavelength ranges. . Since the upper photoelectric conversion layer 12 and the lower photoelectric conversion layers 22 and 23 are electrically connected in parallel, the photocurrent generated in the entire solar cell is generated in the upper photoelectric conversion layer 12. And the photocurrent generated in the lower photoelectric conversion layers 22 and 23. Thereby, since it is not rate-limited to the low photocurrent among the photocurrents generated in the upper photoelectric conversion layer 12 and the lower photoelectric conversion layers 22 and 23, the photocurrent generated in the entire solar cell can be improved. Of the upper photoelectric conversion layer 12 and the lower photoelectric conversion layers 22 and 23, one photoelectric conversion layer increases the photocurrent, and the other photoelectric conversion layer decreases the photocurrent. Even if there is a change in the operating ambient environment such as the sunlight spectrum and temperature, the photocurrent of the entire solar cell is not rate-limited to a low photocurrent. Therefore, it is possible to improve the operation stability against changes in the operating environment. Moreover, since the voltage generated in the entire solar cell is the sum of the voltages generated in the units 4 connected in series, the operating voltage can be improved.

また、本実施の形態に係る太陽電池によれば、光学的バンドギャップの広いナローバンドギャップ光電変換層23を設けたため、より効率よく光電変換を行うことができる。   Further, according to the solar cell according to the present embodiment, since the narrow band gap photoelectric conversion layer 23 having a wide optical band gap is provided, photoelectric conversion can be performed more efficiently.

なお、一般的に、ワイドバンドギャップ光電変換層12で発生する光起電力は、ミドルバンドギャップ光電変換層22で発生する光起電力、または、ナローバンドギャップ光電変換層23で発生する光起電力に比べて大きくなっている。それに対して、上述した本実施の形態に係る太陽電池では、最も光起電力が大きい上側の光電変換層12と、互いに直列接続され光起電力が小さい下側の光電変換層22,23とが並列に接続されることになる。そのため、光起電力の大きい上側の光電変換層12と、光起電力が小さい下側の光電変換層22,23とが発生する光電流が異なっていても、効率よく電流を取り出すことができる。   In general, the photovoltaic power generated in the wide band gap photoelectric conversion layer 12 is the same as the photovoltaic power generated in the middle band gap photoelectric conversion layer 22 or the photovoltaic power generated in the narrow band gap photoelectric conversion layer 23. It is larger than that. On the other hand, in the solar cell according to the present embodiment described above, the upper photoelectric conversion layer 12 having the largest photovoltaic power and the lower photoelectric conversion layers 22 and 23 connected in series with each other and having the smallest photovoltaic power are provided. It will be connected in parallel. Therefore, even when the photocurrent generated by the upper photoelectric conversion layer 12 having a large photovoltaic power and the lower photoelectric conversion layers 22 and 23 having a small photovoltaic power are different, the current can be efficiently extracted.

なお、セル2が発生する光起電力と、タンデムセル3が発生する光起電力が異なる場合は、その差分が、低い光起電力側に逆に印加される問題がある。そこで、ワイドバンドギャップ光電変換層12の光起電力が、ミドルバンドギャップ光電変換層22の光起電力と、ナローバンドギャップ光電変換層23の光起電力との和に略等しいとする構成であってもよい。このように構成するためには、例えば、光電変換層12,22,23の半導体材料の組み合わせ選定、p層15,26,29ならびにn層17,28,31のドーピング濃度および各層の膜質等を調整すればよい。   In addition, when the photovoltaic power generated by the cell 2 and the photovoltaic power generated by the tandem cell 3 are different, there is a problem that the difference is reversely applied to the lower photovoltaic power side. Therefore, the photovoltaic power of the wide band gap photoelectric conversion layer 12 is substantially equal to the sum of the photovoltaic power of the middle band gap photoelectric conversion layer 22 and the photovoltaic power of the narrow band gap photoelectric conversion layer 23. Also good. In order to configure in this way, for example, the combination selection of the semiconductor materials of the photoelectric conversion layers 12, 22, 23, the doping concentration of the p layers 15, 26, 29 and the n layers 17, 28, 31 and the film quality of each layer, etc. Adjust it.

以下、上側の光電変換層12の光起電力と、下側の光電変換層22,23の光起電力とを略等しくする構成について詳しく説明する。ワイドバンドギャップ光電変換層12には、例えば、アモルファスシリコンを、ミドルバンドギャップ光電変換層22には、例えば、微結晶シリコンを、ナローバンドギャップ光電変換層23には、例えば、ゲルマニウムを添加した微結晶シリコンを用いる。アモルファスシリコンで形成した光電変換層の開放電圧は、p層およびn層のドーパント濃度や、p層、i層、n層の内部に含まれる水素濃度、膜厚などの調整により、0.8〜0.95V程度に調整できる。また、微結晶シリコンで形成した光電変換層の開放電圧は、p層およびn層のドーパント濃度や、微結晶シリコンとアモルファスシリコンとの割合や成膜条件の調整により、0.4〜0.5V程度に調整できる。さらに、この微結晶シリコンにゲルマニウムを添加することにより、0.3〜0.45V程度に調整できる。   Hereinafter, a configuration in which the photovoltaic power of the upper photoelectric conversion layer 12 and the photovoltaic power of the lower photoelectric conversion layers 22 and 23 are substantially equal will be described in detail. For example, amorphous silicon is added to the wide band gap photoelectric conversion layer 12, microcrystalline silicon is added to the middle band gap photoelectric conversion layer 22, and germanium is added to the narrow band gap photoelectric conversion layer 23, for example. Silicon is used. The open-circuit voltage of the photoelectric conversion layer formed of amorphous silicon is 0.8 to 0.8 by adjusting the dopant concentration of the p layer and the n layer, the hydrogen concentration contained in the p layer, the i layer, and the n layer, and the film thickness. It can be adjusted to about 0.95V. The open-circuit voltage of the photoelectric conversion layer formed of microcrystalline silicon is 0.4 to 0.5 V by adjusting the dopant concentration of the p layer and the n layer, the ratio of microcrystalline silicon to amorphous silicon, and the film formation conditions. It can be adjusted to the extent. Furthermore, it can adjust to about 0.3-0.45V by adding germanium to this microcrystalline silicon.

従って、これらを組み合わせて光電変換層12,22,23それぞれで発生する光起電力を調整することにより、ワイドバンドギャップ光電変換層12からなるセル2が発生する電圧と、ミドルバンドギャップ光電変換層22およびナローバンドギャップ光電変換層23からなるタンデムセル3が発生する電圧とをほぼ同じにすることができる。   Therefore, by combining these to adjust the photovoltaic power generated in each of the photoelectric conversion layers 12, 22, and 23, the voltage generated by the cell 2 composed of the wide band gap photoelectric conversion layer 12 and the middle band gap photoelectric conversion layer 22 and the voltage generated by the tandem cell 3 composed of the narrow band gap photoelectric conversion layer 23 can be made substantially the same.

以上のようにして、セル2が発生する光起電力と、タンデムセル3が発生する光起電力とが同じになるように構成すれば、低い光起電力側において、電圧が逆に印加されないため、効率よく電力を取り出すことができる。   As described above, if the photovoltaic power generated by the cell 2 and the photovoltaic power generated by the tandem cell 3 are configured to be the same, the voltage is not reversely applied on the low photovoltaic power side. , Power can be taken out efficiently.

また、セル2およびタンデムセル3両者が発生する電圧が、互いに完全に同じでない場合でも、その差がある程度小さければ、セル2およびタンデムセル3それぞれが発生する光電流の制限がなくなる効果が得られるので、効率的に電力を取り出す効果が得られる。   Even when the voltages generated by both the cell 2 and the tandem cell 3 are not completely the same, if the difference is small to some extent, the effect of eliminating the limitation of the photocurrent generated by each of the cell 2 and the tandem cell 3 can be obtained. Therefore, the effect of taking out electric power efficiently is acquired.

なお、上側の光電変換層12の光起電力を、下側の光電変換層22,23の光起電力同士の和と同じにする構成は、上述の構成に限ったものではない。例えば、ワイドバンドギャップ光電変換層12には、アモルファスシリコンを、ミドルバンドギャップ光電変換層22には、ゲルマニウムを添加したアモルファスシリコンを、ナローバンドギャップ光電変換層23には、ゲルマニウムを添加した微結晶シリコンを用いてもよい。ここで、ゲルマニウムを添加したアモルファスシリコンの光電変換層の開放電圧は、ゲルマニウム添加量および水素含有濃度を調整することにより、0.6〜0.8V程度に調整することができる。   In addition, the structure which makes the photovoltaic power of the upper photoelectric converting layer 12 the same as the sum of the photovoltaic power of the lower photoelectric converting layers 22 and 23 is not restricted to the above-mentioned structure. For example, amorphous silicon is added to the wide band gap photoelectric conversion layer 12, amorphous silicon to which germanium is added to the middle band gap photoelectric conversion layer 22, and microcrystalline silicon to which germanium is added to the narrow band gap photoelectric conversion layer 23. May be used. Here, the open circuit voltage of the photoelectric conversion layer of amorphous silicon to which germanium is added can be adjusted to about 0.6 to 0.8 V by adjusting the amount of germanium added and the hydrogen-containing concentration.

実施の形態1に係る太陽電池の構成を示す断面図である。3 is a cross-sectional view showing a configuration of a solar cell according to Embodiment 1. FIG. 実施の形態1に係る太陽電池の構成を示す上面図である。4 is a top view showing the configuration of the solar cell according to Embodiment 1. FIG. 実施の形態1に係る太陽電池の製造方法を示す断面図である。5 is a cross-sectional view showing the method for manufacturing the solar cell according to Embodiment 1. FIG. 実施の形態1に係る太陽電池の構成を示す断面図である。3 is a cross-sectional view showing a configuration of a solar cell according to Embodiment 1. FIG. 実施の形態1に係る太陽電池の製造方法を示す断面図である。5 is a cross-sectional view showing the method for manufacturing the solar cell according to Embodiment 1. FIG.

符号の説明Explanation of symbols

1 透光性絶縁基板、2 セル、3 タンデムセル、4 ユニット、5 貫通孔、11 第1の透明導電膜、12 ワイドバンドギャップ光電変換層、13 第2の透明導電膜、14,25 開口部、15,26,29 p層、16,27,30 i層、17,28,31 n層、18,32 分離部、21 第3の透明導電膜、22 ミドルバンドギャップ光電変換層、23 ナローバンドギャップ光電変換層、24 反射導電層。   DESCRIPTION OF SYMBOLS 1 Translucent insulating substrate, 2 cell, 3 tandem cell, 4 unit, 5 through-hole, 11 1st transparent conductive film, 12 Wide band gap photoelectric conversion layer, 13 2nd transparent conductive film, 14, 25 Opening 15, 26, 29 p layer, 16, 27, 30 i layer, 17, 28, 31 n layer, 18, 32 separator, 21 third transparent conductive film, 22 middle band gap photoelectric conversion layer, 23 narrow band gap Photoelectric conversion layer, 24 reflective conductive layer.

Claims (3)

透光性絶縁基板の一方の面上に形成され、第1の光電変換層を備える複数の第1のセルと、
前記透光性絶縁基板の他方の面上に形成され、前記第1の光電変換層と異なる光学的バンドギャップを有する第2の光電変換層を備える複数の第2のセルとを備え、
前記透光性絶縁基板を挟んで対向する前記第1のセルおよび前記第2のセルは、ユニットを構成し、
前記ユニットの前記第1の光電変換層と前記第2の光電変換層とは、前記透光性絶縁板に設けられた貫通孔を介して互いに電気的に並列に接続され、
隣接する前記ユニットの前記第1の光電変換層同士および前記第2の光電変換層同士それぞれは、電気的に直列に接続される、
太陽電池。
A plurality of first cells formed on one surface of the translucent insulating substrate and provided with a first photoelectric conversion layer;
A plurality of second cells including a second photoelectric conversion layer formed on the other surface of the translucent insulating substrate and having a different optical band gap from the first photoelectric conversion layer;
The first cell and the second cell facing each other with the translucent insulating substrate interposed therebetween constitute a unit,
The first photoelectric conversion layer and the second photoelectric conversion layer of the unit are electrically connected in parallel to each other through a through-hole provided in the translucent insulating plate,
The first photoelectric conversion layers and the second photoelectric conversion layers of the adjacent units are electrically connected in series.
Solar cell.
前記第2のセルは、
前記第2の光電変換層上に前記透光性絶縁基板と反対側に積層され、当該第2の光電変換層と電気的に直列に接続される第3の光電変換層をさらに備え、
前記第1の光電変換層は、前記第2の光電変換層よりも光学的バンドギャップが広く、
前記第2の光電変換層は、前記第3の光電変換層よりも光学的バンドギャップが広い、
請求項1に記載の太陽電池。
The second cell is
A third photoelectric conversion layer stacked on the second photoelectric conversion layer on the side opposite to the translucent insulating substrate and electrically connected in series with the second photoelectric conversion layer;
The first photoelectric conversion layer has a wider optical band gap than the second photoelectric conversion layer,
The second photoelectric conversion layer has an optical band gap wider than that of the third photoelectric conversion layer.
The solar cell according to claim 1.
前記第2のセルは、
前記第2の光電変換層上に前記透光性絶縁基板と反対側に積層され、当該第2の光電変換層と電気的に直列に接続される第3の光電変換層をさらに備え、
前記第1の光電変換層の光起電力は、前記第2の光電変換層の光起電力と前記第3の光電変換層の光起電力との和と略等しい、
請求項1に記載の太陽電池。
The second cell is
A third photoelectric conversion layer stacked on the second photoelectric conversion layer on the side opposite to the translucent insulating substrate and electrically connected in series with the second photoelectric conversion layer;
The photovoltaic power of the first photoelectric conversion layer is substantially equal to the sum of the photovoltaic power of the second photoelectric conversion layer and the photovoltaic power of the third photoelectric conversion layer.
The solar cell according to claim 1.
JP2008105342A 2008-04-15 2008-04-15 Solar cell Pending JP2009259926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105342A JP2009259926A (en) 2008-04-15 2008-04-15 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105342A JP2009259926A (en) 2008-04-15 2008-04-15 Solar cell

Publications (1)

Publication Number Publication Date
JP2009259926A true JP2009259926A (en) 2009-11-05

Family

ID=41387006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105342A Pending JP2009259926A (en) 2008-04-15 2008-04-15 Solar cell

Country Status (1)

Country Link
JP (1) JP2009259926A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107033A1 (en) * 2009-03-18 2010-09-23 三菱電機株式会社 Photoelectric conversion device and production method therefor
JP2012151438A (en) * 2011-01-14 2012-08-09 Lg Electronics Inc Thin film solar cell and manufacturing method of the same
EP2511961A1 (en) * 2010-07-30 2012-10-17 LG Innotek Co., Ltd. Device for generating photovoltaic power and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135569A (en) * 1984-07-27 1986-02-20 Hitachi Ltd Photovoltaic device
JPH0779004A (en) * 1993-09-08 1995-03-20 Fuji Electric Co Ltd Thin film solar cell
JPH09162431A (en) * 1995-12-13 1997-06-20 Kanegafuchi Chem Ind Co Ltd Parallel integrated solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6135569A (en) * 1984-07-27 1986-02-20 Hitachi Ltd Photovoltaic device
JPH0779004A (en) * 1993-09-08 1995-03-20 Fuji Electric Co Ltd Thin film solar cell
JPH09162431A (en) * 1995-12-13 1997-06-20 Kanegafuchi Chem Ind Co Ltd Parallel integrated solar battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107033A1 (en) * 2009-03-18 2010-09-23 三菱電機株式会社 Photoelectric conversion device and production method therefor
JP5518045B2 (en) * 2009-03-18 2014-06-11 三菱電機株式会社 Photoelectric conversion device and manufacturing method thereof
US8766085B2 (en) 2009-03-18 2014-07-01 Mitsubishi Electric Corporation Photoelectric conversion device and method of manufacturing the same
EP2511961A1 (en) * 2010-07-30 2012-10-17 LG Innotek Co., Ltd. Device for generating photovoltaic power and method for manufacturing same
EP2511961A4 (en) * 2010-07-30 2013-12-11 Lg Innotek Co Ltd Device for generating photovoltaic power and method for manufacturing same
US9391215B2 (en) 2010-07-30 2016-07-12 Lg Innotek Co., Ltd. Device for generating photovoltaic power and method for manufacturing same
JP2012151438A (en) * 2011-01-14 2012-08-09 Lg Electronics Inc Thin film solar cell and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP4257332B2 (en) Silicon-based thin film solar cell
US6870088B2 (en) Solar battery cell and manufacturing method thereof
US8294021B2 (en) Photovoltaic device and method for manufacturing the same
JP4194468B2 (en) Solar cell and method for manufacturing the same
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
JP2006310694A (en) Integrated multi-junction thin film photoelectric conversion device
JP3655025B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP2007305826A (en) Silicon-based thin film solar cell
JP2002118273A (en) Integrated hybrid thin film photoelectric conversion device
JP2009259926A (en) Solar cell
JP4568531B2 (en) Integrated solar cell and method of manufacturing integrated solar cell
JP5905824B2 (en) Parallel photoelectric conversion laminated device and series integrated photoelectric conversion device
JP2007059799A (en) Solar cell and its manufacturing method
JP5539081B2 (en) Manufacturing method of integrated thin film photoelectric conversion device
JP2009295943A (en) Thin-film photoelectric converter, and manufacturing method thereof
JP4283849B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
WO2010067702A1 (en) Thin-film solar cell and method for manufacturing same
JP2010283162A (en) Solar cell and method for manufacturing the same
JP4358493B2 (en) Solar cell
JP2012234856A (en) Photoelectric conversion device
JP2011216586A (en) Laminated photoelectric conversion device and method of manufacturing the same
JP5763411B2 (en) Stacked photoelectric conversion device
JP4173692B2 (en) Solar cell element and manufacturing method thereof
JP2011176084A (en) Photoelectric conversion module, and method for manufacturing same
JP2005033006A (en) Integrated tandem junction solar cell and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313