JP2006310694A - Integrated multi-junction thin film photoelectric conversion device - Google Patents

Integrated multi-junction thin film photoelectric conversion device Download PDF

Info

Publication number
JP2006310694A
JP2006310694A JP2005134251A JP2005134251A JP2006310694A JP 2006310694 A JP2006310694 A JP 2006310694A JP 2005134251 A JP2005134251 A JP 2005134251A JP 2005134251 A JP2005134251 A JP 2005134251A JP 2006310694 A JP2006310694 A JP 2006310694A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
thin film
layer
film photoelectric
conversion unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005134251A
Other languages
Japanese (ja)
Inventor
Masahiro Goto
雅博 後藤
Akihiko Nakajima
昭彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005134251A priority Critical patent/JP2006310694A/en
Publication of JP2006310694A publication Critical patent/JP2006310694A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an integrated muli-junction thin film photoelectric conversion device and its manufacturing method capable of satisfactorily outputting generated electric power without causing leakage in each photoelectric conversion unit, in an integrated multi-junction thin film photoelectric conversion device permitting a silicon composite layer to be applied to an intermediate reflecting layer. <P>SOLUTION: The integrated multi-junction thin film photoelectric conversion device 101 is constituted by integrating multi-junction thin film photoelectric conversion cells each including at least one set of two thin film photoelectric conversion units connected in series via an intermediate layer on a substrate 102 as illustrated in FIG. 1. In the device, the material of the interlayer is n-type Si<SB>1-X</SB>O<SB>X</SB>(0.3<X<0.6), and the amount of doping of an impurity in an intermediate layer adjacent p-type semiconductor layer 106a adjacent to the intermediate layer partly constituting at least one thin film photoelectric conversion unit 106 of thin film photoelectric conversion units 104, 106 of the one set is ≤5,000 ppm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非結晶光電変換ユニット層と結晶質光電変換ユニット層との間で、部分的に光を反射しかつ透過する導電性の中間反射層(又は中間層)を含むタンデム型薄膜光電変換装置の特性改善に関するものである。   The present invention relates to a tandem thin film photoelectric conversion including a conductive intermediate reflection layer (or an intermediate layer) that partially reflects and transmits light between an amorphous photoelectric conversion unit layer and a crystalline photoelectric conversion unit layer. It relates to the improvement of the characteristics of the device.

なお、本願明細書における「結晶質」、「微結晶」の用語は、部分的に非晶質を含むものも含んでいるものとする。   Note that the terms “crystalline” and “microcrystal” in the present specification include those that partially include an amorphous material.

近年、光電変換装置の低コスト化、高効率化を両立するために資源面での問題もほとんど無い薄膜光電変換装置が注目され、開発が精力的に行われている。薄膜光電変換装置は、太陽電池、光センサ、ディスプレイなど、さまざまな用途への応用が期待されている。薄膜光電変換装置の一つである非晶質シリコン光電変換装置は、低温で大面積のガラス基板やステンレス基板上に形成できることから、低コスト化が期待できる。   In recent years, in order to achieve both cost reduction and high efficiency of a photoelectric conversion device, a thin film photoelectric conversion device that has almost no problem in terms of resources has attracted attention and has been vigorously developed. Thin film photoelectric conversion devices are expected to be applied to various applications such as solar cells, optical sensors, and displays. An amorphous silicon photoelectric conversion device, which is one of thin film photoelectric conversion devices, can be formed on a large-area glass substrate or stainless steel substrate at a low temperature, so that cost reduction can be expected.

薄膜光電変換装置は、一般に表面が絶縁性の基板上に順に積層された第一電極、1以上の半導体薄膜光電変換ユニット、及び第二電極とを含んでいる。そして1つの薄膜光電変換ユニットはp型層とn型層でサンドイッチされたi型層からなる。   A thin film photoelectric conversion device generally includes a first electrode, one or more semiconductor thin film photoelectric conversion units, and a second electrode, the surfaces of which are sequentially stacked on an insulating substrate. One thin film photoelectric conversion unit includes an i-type layer sandwiched between a p-type layer and an n-type layer.

薄膜光電変換ユニットの厚さの大部分は、実質的に真性の半導体層であるi型層によって占められ、光電変換作用は主としてこのi型層内で生じる。従って、光電変換層であるi型層の膜厚は光吸収のためには厚いほうが好ましいが、必要以上に厚くすると、その堆積にコストと時間がかかることになる。   Most of the thickness of the thin film photoelectric conversion unit is occupied by the i-type layer which is a substantially intrinsic semiconductor layer, and the photoelectric conversion action mainly occurs in the i-type layer. Therefore, the i-type layer, which is a photoelectric conversion layer, is preferably thicker for light absorption, but if it is thicker than necessary, the deposition takes cost and time.

他方、p型やn型の導電型層は光電変換ユニット内に拡散電位を生じさせる役目を果たし、この拡散電位の大きさによって薄膜光電変換装置の重要な特性の1つである開放端電圧の値が左右される。しかし、これらの導電型層は光電変換には寄与しない不活性な層であり、導電型層にドープされた不純物によって吸収される光は発電に寄与せず損失となる。したがって、p型とn型の導電型層の膜厚は、十分な拡散電位を生じさせる範囲内で可能な限り薄くすることが好ましい。   On the other hand, the p-type or n-type conductive layer plays a role of generating a diffusion potential in the photoelectric conversion unit, and the magnitude of the diffusion potential causes an open end voltage, which is one of the important characteristics of the thin film photoelectric conversion device. The value depends. However, these conductive layers are inactive layers that do not contribute to photoelectric conversion, and light absorbed by impurities doped in the conductive layers does not contribute to power generation and is lost. Therefore, it is preferable that the thicknesses of the p-type and n-type conductive layers be as thin as possible within a range that generates a sufficient diffusion potential.

ここで、光電変換ユニットまたは薄膜太陽電池は、それに含まれるp型とn型の導電型層が非晶質か結晶質かにかかわらず、その主要部を占めるi型の光電変換層が非晶質のものは非晶質光電変換ユニットまたは非晶質薄膜太陽電池と称され、i型層が結晶質のものは結晶質光電変換ユニットまたは結晶質薄膜太陽電池と称される。   Here, the photoelectric conversion unit or the thin-film solar cell has an amorphous i-type photoelectric conversion layer that occupies the main part regardless of whether the p-type and n-type conductivity type layers included therein are amorphous or crystalline. Those having a high quality are referred to as amorphous photoelectric conversion units or amorphous thin film solar cells, and those having a crystalline i-type layer are referred to as crystalline photoelectric conversion units or crystalline thin film solar cells.

一般に光電変換層に用いられている半導体は、波長が長くなるに従い光吸収係数が小さくなる。特に、光電変換材料が薄膜である場合は、吸収係数の小さな波長領域において十分な光吸収が生じないために、光電変換量が光電変換層の膜厚によって制限されることになる。そこで、光電変換装置内に入射した光が外部に逃げにくい光散乱構造を形成することによって、実質的な光路長を長くし、十分な吸収を得、大きな光電流を発生させ得る工夫がなされている。例えば、光が基板側から入射する場合、光入射側電極として表面型状が凹凸であるテクスチャ透明導電膜が用いられている。   Generally, a semiconductor used for a photoelectric conversion layer has a light absorption coefficient that decreases as the wavelength increases. In particular, when the photoelectric conversion material is a thin film, sufficient light absorption does not occur in a wavelength region having a small absorption coefficient, so that the photoelectric conversion amount is limited by the film thickness of the photoelectric conversion layer. Therefore, by forming a light scattering structure that makes it difficult for light incident in the photoelectric conversion device to escape to the outside, it has been devised to increase the substantial optical path length, obtain sufficient absorption, and generate a large photocurrent. Yes. For example, when light is incident from the substrate side, a textured transparent conductive film having an uneven surface shape is used as the light incident side electrode.

また、薄膜光電変換装置の変換効率を向上させる方法として、2つ以上の光電変換ユニットを積層した積層型光電変換装置にする方法が知られている。この方法においては、光電変換装置の光入射側に大きなバンドギャップを有する光電変換層を含む前方光電変換ユニット(本願では、相対的に光入射側に配置された光電変換ユニットを前方光電変換ユニット、相対的に光入射側から遠い側に配置された光電変換ユニットを後方光電変換ユニットと呼ぶ。)を配置し、その後ろに順に小さなバンドギャップを有する(例えばSi−Ge合金の)光電変換層を含む後方光電変換ユニットを配置することにより、入射光の広い波長範囲にわたって光電変換を可能にし、これによって装置全体としての変換効率の向上が図られている。積層型薄膜光電変換装置の中でも、非晶質光電変換ユニットと結晶質光電変換ユニットを積層したものはハイブリッド型光電変換装置と称される。ハイブリッド型光電変換装置においては、非晶質シリコンが光電変換し得る光の波長は長波長側において800nm程度であるが、結晶質シリコンはそれより長い約1100nm程度までの光を光電変換することが可能であるため、入射光のより広い範囲を有効に光電変換することが可能になる。   As a method for improving the conversion efficiency of a thin film photoelectric conversion device, a method of forming a stacked photoelectric conversion device in which two or more photoelectric conversion units are stacked is known. In this method, a front photoelectric conversion unit including a photoelectric conversion layer having a large band gap on the light incident side of the photoelectric conversion device (in this application, a photoelectric conversion unit relatively disposed on the light incident side is referred to as a front photoelectric conversion unit, A photoelectric conversion unit disposed on the side relatively far from the light incident side is referred to as a rear photoelectric conversion unit.) A photoelectric conversion layer having a small band gap (for example, Si-Ge alloy) is sequentially disposed behind the photoelectric conversion unit. By including the rear photoelectric conversion unit including the photoelectric conversion, it is possible to perform photoelectric conversion over a wide wavelength range of incident light, thereby improving the conversion efficiency of the entire apparatus. Among stacked thin film photoelectric conversion devices, a stack of an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit is referred to as a hybrid photoelectric conversion device. In the hybrid photoelectric conversion device, the wavelength of light that amorphous silicon can photoelectrically convert is about 800 nm on the long wavelength side, but crystalline silicon can photoelectrically convert longer light up to about 1100 nm. Therefore, it is possible to effectively photoelectrically convert a wider range of incident light.

ところで、積層型光電変換装置では、各光電変換ユニットが直列に接続されているため、光電変換装置としての短絡電流密度(Jsc)は各光電変換ユニットで発生する電流値のうち最も小さな値で制限される。従って、各光電変換ユニットの電流値は均等であるほど好ましく、さらに電流の絶対値が大きいほど変換効率の向上が期待できる。   By the way, in the stacked photoelectric conversion device, since each photoelectric conversion unit is connected in series, the short circuit current density (Jsc) as the photoelectric conversion device is limited to the smallest value among the current values generated in each photoelectric conversion unit. Is done. Therefore, it is preferable that the current values of the respective photoelectric conversion units are equal, and further, the conversion efficiency can be expected to increase as the absolute value of the current increases.

また、積層型の薄膜光電変換装置では、積層された複数の薄膜光電変換ユニットの間に光透過性及び光反射性の双方を有し且つ導電性の中間反射層を介在させることがある。この場合、中間反射層に到達した光の一部が反射し、中間反射層よりも光入射側に位置する光電変換ユニット内での光吸収量が増加し、その光電変換ユニットで発生する電流値を増大させることができる。すなわち、見かけ上中間反射層よりも光入射側に位置する光電変換ユニットの実効的な膜厚が増加したことになる。   Further, in a stacked thin film photoelectric conversion device, a light-transmitting and light-reflective and conductive intermediate reflective layer may be interposed between a plurality of stacked thin film photoelectric conversion units. In this case, a part of the light reaching the intermediate reflection layer is reflected, the amount of light absorption in the photoelectric conversion unit located on the light incident side of the intermediate reflection layer is increased, and the current value generated in the photoelectric conversion unit Can be increased. That is, the effective film thickness of the photoelectric conversion unit located on the light incident side with respect to the intermediate reflection layer apparently increased.

例えば、非晶質シリコン光電変換ユニットと結晶質シリコン光電変換ユニットからなるハイブリッド型光電変換装置に中間反射層を挿入した場合、非晶質シリコン層の膜厚を増やすことなく非晶質シリコン光電変換ユニットによって発生する電流を増加させることができる。もしくは、同一の電流値を得るために必要な非晶質シリコン層の膜厚を薄くできることから、非晶質シリコン層の膜厚増加に応じて顕著となる光劣化による非晶質シリコン光電変換ユニットの特性低下を押さえることが可能となる。   For example, when an intermediate reflective layer is inserted into a hybrid photoelectric conversion device composed of an amorphous silicon photoelectric conversion unit and a crystalline silicon photoelectric conversion unit, the amorphous silicon photoelectric conversion is performed without increasing the film thickness of the amorphous silicon layer. The current generated by the unit can be increased. Alternatively, the amorphous silicon photoelectric conversion unit due to photodegradation that becomes conspicuous as the thickness of the amorphous silicon layer increases because the thickness of the amorphous silicon layer necessary to obtain the same current value can be reduced. It is possible to suppress the deterioration of characteristics.

中間反射層は、多結晶のITO、ZnOのような透明導電性金属酸化物層、特にZnOで構成されることが多い。しかしながら、ZnOはスパッタ、スプレーなどの手法で形成されるため、プラズマCVD法等で一般的に形成される半導体薄膜とは別設備を用いる必要があり、設備コストがかかり、生産タクトも長くなるという問題が発生する。さらに、特にZnOの形成にスパッタ法を用いる場合、下地半導体薄膜へのスパッタダメージによる性能低下を引き起こす可能性がある、という問題も発生する。   The intermediate reflective layer is often composed of a transparent conductive metal oxide layer such as polycrystalline ITO or ZnO, particularly ZnO. However, since ZnO is formed by a method such as sputtering or spraying, it is necessary to use equipment different from a semiconductor thin film generally formed by plasma CVD, etc., which requires equipment costs and increases production tact time. A problem occurs. Furthermore, in particular, when a sputtering method is used for forming ZnO, there is a problem that the performance may be deteriorated due to sputtering damage to the underlying semiconductor thin film.

また、太陽電池の直列抵抗に与える影響を抑制するために、透明導電性金属酸化物層と半導体薄膜と界面で良好なオーミックコンタクトを取る必要がある。このために透明導電性金属酸化物層の暗導電率は、不純物をドープすることや酸化度を変化させることなどによって1.0×102S/cm〜1.0×103S/cmの高い値に調整する必要がある。 Further, in order to suppress the influence on the series resistance of the solar cell, it is necessary to make a good ohmic contact at the interface between the transparent conductive metal oxide layer and the semiconductor thin film. For this reason, the dark conductivity of the transparent conductive metal oxide layer is 1.0 × 10 2 S / cm to 1.0 × 10 3 S / cm by doping impurities or changing the degree of oxidation. It needs to be adjusted to a higher value.

特にZnOは、非晶質シリコンまたは結晶質シリコンとの界面でオーミックコンタクトを取ることが困難であることが一般に知られている。暗導電率がこの範囲よりも低いと、中間反射層と前方光電変換ユニット、および中間反射層と後方光電変換ユニットとの良好なオーミックコンタクトが取れなくなり、接触抵抗が増加してセルの曲線因子(FF)を低下させ、光電変換装置の特性が悪くなる。逆に、暗導電率がこの範囲より高いと透明導電性金属酸化物層の透過率が低下して短絡電流密度(Jsc)を低下させ、光電変換装置の特性が悪くなる。   In particular, ZnO is generally known to be difficult to make ohmic contact at the interface with amorphous silicon or crystalline silicon. If the dark conductivity is lower than this range, the ohmic contact between the intermediate reflection layer and the front photoelectric conversion unit and between the intermediate reflection layer and the rear photoelectric conversion unit cannot be made, the contact resistance increases, and the cell fill factor ( FF) is lowered, and the characteristics of the photoelectric conversion device are deteriorated. On the other hand, if the dark conductivity is higher than this range, the transmittance of the transparent conductive metal oxide layer is lowered, the short-circuit current density (Jsc) is lowered, and the characteristics of the photoelectric conversion device are deteriorated.

しかし、中間反射層にシリコンと酸素の非晶質合金中にシリコン結晶相を含む一導電型の酸化シリコン層(本願ではシリコン複合層(Si1-XX)と呼ぶ)を用いた場合、膜中酸素濃度を高くすれば低い屈折率を実現でき、非晶質シリコンとシリコン複合層との界面での高い反射効果を得ることが可能となる。また、一導電型のシリコン複合層は膜中酸素濃度が高いにもかかわらず、シリコン結晶相を含むことによって、高い暗導電率を実現することが可能となる。その結果、シリコン複合層を用いることによって、高い反射効果と、高い暗導電率の両立が可能となり、第一の光電変換ユニットの発電電流が増加して積層型光電変換装置の特性が改善される。 However, in the case where a silicon oxide layer of one conductivity type containing a silicon crystal phase in an amorphous alloy of silicon and oxygen (referred to as a silicon composite layer (Si 1-X O x ) in this application) is used as the intermediate reflection layer, If the oxygen concentration in the film is increased, a low refractive index can be realized, and a high reflection effect at the interface between the amorphous silicon and the silicon composite layer can be obtained. In addition, even if the one-conductivity-type silicon composite layer has a high oxygen concentration in the film, it can realize a high dark conductivity by including a silicon crystal phase. As a result, by using the silicon composite layer, it is possible to achieve both a high reflection effect and a high dark conductivity, and the power generation current of the first photoelectric conversion unit is increased to improve the characteristics of the stacked photoelectric conversion device. .

このようなことから特許文献1では、不純物の取り込みやピンホールの発生が無く、変換効率が高く、かつ製造が容易な多接合型薄膜太陽電池を提供するために、pin型セルを複数層積層してなり、光入射側の上側セルと反入射側の下側セルとの境界をなす二つの層(前記n層またはp層)の少なくともいずれかの層又はその一部の層を、前記いずれかの層又はその一部の層より上側の半導体層の屈折率より低い屈折率を有する低屈折率層としてなる多接合型薄膜太陽電池において、前記低屈折率層はシリコンオキサイド半導体層としている。つまり、特許文献1においては低屈折率層(本願での中間層に相当する)を従来低温で形成したn型微結晶シリコン層や、スパッタリングや蒸着により形成される金属酸化物層に代わり、シリコンオキサイド半導体層とすることで、屈折率の低減化や不純物の取りこみやピンホール低減によるデバイス特性の向上および歩留まりの向上が出来るとしている。   For this reason, in Patent Document 1, in order to provide a multi-junction thin film solar cell that does not contain impurities and does not generate pinholes, has high conversion efficiency, and is easy to manufacture, a plurality of pin-type cells are stacked. And at least one of the two layers (the n layer or the p layer) forming a boundary between the upper cell on the light incident side and the lower cell on the non-incident side, or a part of the layer, In the multi-junction thin film solar cell that is a low refractive index layer having a refractive index lower than that of the semiconductor layer above the layer or a part of the layer, the low refractive index layer is a silicon oxide semiconductor layer. That is, in Patent Document 1, instead of an n-type microcrystalline silicon layer in which a low refractive index layer (corresponding to an intermediate layer in the present application) is conventionally formed at a low temperature, or a metal oxide layer formed by sputtering or vapor deposition, silicon By using an oxide semiconductor layer, the device characteristics can be improved and the yield can be improved by reducing the refractive index, introducing impurities, and reducing pinholes.

ところで、大面積の薄膜光電変換装置は、通常、集積型薄膜光電変換モジュールとして形成される。集積型薄膜光電変換モジュールは、小面積に区切られた光電変換装置である光電変換セルを、複数個、ガラス基板上で相互に直列接続した構造を有している。それぞれの光電変換セルは、一般的には、ガラス基板上への透明電極層、1つ以上の薄膜半導体光電変換ユニット、及び裏面電極層の製膜とパターニングとを順次行うことにより形成されている。   By the way, a large area thin film photoelectric conversion device is usually formed as an integrated thin film photoelectric conversion module. The integrated thin film photoelectric conversion module has a structure in which a plurality of photoelectric conversion cells, which are photoelectric conversion devices divided into small areas, are connected in series on a glass substrate. Each photoelectric conversion cell is generally formed by sequentially forming and patterning a transparent electrode layer, one or more thin film semiconductor photoelectric conversion units, and a back electrode layer on a glass substrate. .

図1は積層型光電変換装置を複数直列接続した中間反射層のない従来の集積型薄膜光電変換モジュールの例を概略的に示す断面図である。図1に示す集積型薄膜光電変換モジュール101は、ガラス基板102上に、透明電極層103、非晶質シリコン光電ユニットである前方光電変換ユニット104、結晶質シリコン光電変換ユニットである後方光電変換ユニット106、及び裏面電極層107を順次積層した構造を有している。   FIG. 1 is a cross-sectional view schematically showing an example of a conventional integrated thin film photoelectric conversion module having no intermediate reflection layer in which a plurality of stacked photoelectric conversion devices are connected in series. An integrated thin film photoelectric conversion module 101 shown in FIG. 1 includes a transparent electrode layer 103, a front photoelectric conversion unit 104 that is an amorphous silicon photoelectric unit, and a rear photoelectric conversion unit that is a crystalline silicon photoelectric conversion unit on a glass substrate 102. 106 and a back electrode layer 107 are sequentially stacked.

図1に示すように、集積型薄膜光電変換モジュール101には、上記薄膜を分割する第1、第2の分離溝121、123と接続溝122とが設けられている。これら第1、第2の分離溝121、123及び接続溝122は、互いに平行であって、紙面に対して垂直な方向に延在している。なお、隣り合う光電変換セル110間の境界は、第1及び第2の分離溝121,123によって規定されている。   As shown in FIG. 1, the integrated thin film photoelectric conversion module 101 is provided with first and second separation grooves 121 and 123 and a connection groove 122 for dividing the thin film. The first and second separation grooves 121 and 123 and the connection groove 122 are parallel to each other and extend in a direction perpendicular to the paper surface. Note that the boundary between the adjacent photoelectric conversion cells 110 is defined by the first and second separation grooves 121 and 123.

第1の分離溝121は、透明電極層103をそれぞれの光電変換セル110に対応して分割しており、透明電極層103と非晶質シリコン光電変換ユニット104との界面に開口を有し且つ透明基板102の表面を底面としている。この第1の分離溝121は、非晶質シリコン光電変換ユニット104を構成する非晶質によって埋め込まれており、隣り合う透明電極膜103同士を電気的に絶縁している。   The first separation groove 121 divides the transparent electrode layer 103 corresponding to each photoelectric conversion cell 110, has an opening at the interface between the transparent electrode layer 103 and the amorphous silicon photoelectric conversion unit 104, and The surface of the transparent substrate 102 is the bottom surface. The first separation groove 121 is filled with an amorphous material constituting the amorphous silicon photoelectric conversion unit 104 and electrically insulates the adjacent transparent electrode films 103 from each other.

第2の分離溝123は、第1の分離溝121から離れた位置に設けられている。第2の分離溝123は、前方光電変換ユニット104、後方光電変換ユニット106、及び裏面電極層107をそれぞれの光電変換セル110に対応して分割しており、裏面電極層108の上面に開口を有し且つ透明電極層103と前方光電変換ユニット104の界面を底面としている。この第2の分離溝123は、隣り合う光電変換セル110間で裏面電極層107同士を電気的に絶縁している。   The second separation groove 123 is provided at a position away from the first separation groove 121. The second separation groove 123 divides the front photoelectric conversion unit 104, the rear photoelectric conversion unit 106, and the back electrode layer 107 corresponding to each photoelectric conversion cell 110, and has an opening on the top surface of the back electrode layer 108. And has an interface between the transparent electrode layer 103 and the front photoelectric conversion unit 104 as a bottom surface. The second separation groove 123 electrically insulates the back electrode layers 107 between the adjacent photoelectric conversion cells 110.

接続溝122は、第1の分離溝121と第2の分離溝123との間に設けられている。接続溝122は、前方光電変換ユニット104、および後方光電変換ユニット106を分割しており、後方光電変換ユニット106と裏面電極層107との界面に開口を有し且つ透明電極層103と前方光電変換ユニット104の界面を底面としている。この接続溝122は、裏面電極層107を構成する金属材料で埋め込まれており、隣り合う光電変換セル110の一方の裏面電極層107と他方の透明電極層103とを電気的に接続している。すなわち、接続溝122及びそれを埋め込む金属材料は、ガラス基板102上に並置された光電変換セル110同士を直列接続する役割を担っている。
特開2003−258279号公報
The connection groove 122 is provided between the first separation groove 121 and the second separation groove 123. The connection groove 122 divides the front photoelectric conversion unit 104 and the rear photoelectric conversion unit 106, has an opening at the interface between the rear photoelectric conversion unit 106 and the back electrode layer 107, and the transparent electrode layer 103 and the front photoelectric conversion unit. The interface of the unit 104 is the bottom surface. The connection groove 122 is embedded with a metal material constituting the back electrode layer 107 and electrically connects one back electrode layer 107 and the other transparent electrode layer 103 of the adjacent photoelectric conversion cells 110. . That is, the connection groove 122 and the metal material filling the connection groove 122 serve to connect the photoelectric conversion cells 110 juxtaposed on the glass substrate 102 in series.
JP 2003-258279 A

上述のような課題に鑑み、本発明は、中間反射層にシリコン複合層を適用する集積化多接合薄膜光電変換装置において、各光電変換ユニットにおいてリークが無く、発生した電力が十分に出力される集積化多接合薄膜光電変換装置及びその製造方法を提供することを目的としている。   In view of the above-described problems, the present invention provides an integrated multi-junction thin film photoelectric conversion device in which a silicon composite layer is applied to an intermediate reflection layer, and there is no leakage in each photoelectric conversion unit, and generated power is sufficiently output. An object of the present invention is to provide an integrated multi-junction thin film photoelectric conversion device and a method for manufacturing the same.

本発明の集積化多接合薄膜光電変換装置は基板上に中間層を介して直列接続された2つの薄膜光電変換ユニットを少なくとも1組含む多接合薄膜光電変換セルを集積化した集積化多接合薄膜光電変換装置であって、該中間層の材料がn型Si1-XX(但し、0.3<X<0.6)で、かつ、該1組の薄膜光電変換ユニットの少なくとも一方の薄膜光電変換ユニットの一部を構成する該中間層に隣接する中間層隣接p型半導体層の不純物のドーピング量が2500ppm以上、かつ5000ppm以下であることを特徴としている。 An integrated multi-junction thin film photoelectric conversion device of the present invention is an integrated multi-junction thin film in which a multi-junction thin film photoelectric conversion cell including at least one set of two thin film photoelectric conversion units connected in series via an intermediate layer on a substrate is integrated. A photoelectric conversion device, wherein the material of the intermediate layer is n-type Si 1-X O X (where 0.3 <X <0.6), and at least one of the set of thin film photoelectric conversion units The impurity doping amount of the p-type semiconductor layer adjacent to the intermediate layer adjacent to the intermediate layer constituting a part of the thin film photoelectric conversion unit is 2500 ppm or more and 5000 ppm or less.

この様に、中間層に隣接するp型半導体層の不純物のドーピング量を限定することで、該1組の薄膜光電変換ユニットでのリークを低減させ、発生した電力を十分に取り出すことが可能となる。   In this way, by limiting the impurity doping amount of the p-type semiconductor layer adjacent to the intermediate layer, it is possible to reduce leakage in the one set of thin film photoelectric conversion units and to sufficiently extract the generated power. Become.

また、中間反射層に隣接するp型半導体層の材料がp型シリコン系半導体とすることで、バンド不連続なく、界面での欠陥を低減させることができる。   In addition, since the material of the p-type semiconductor layer adjacent to the intermediate reflective layer is a p-type silicon-based semiconductor, defects at the interface can be reduced without band discontinuity.

さらに、不純物として硼素が前記中間層隣接p型半導体層にドーピングされていることで良好なp型シリコン系半導体を形成しやすい。   Furthermore, boron as an impurity is doped in the p-type semiconductor layer adjacent to the intermediate layer, so that a good p-type silicon-based semiconductor can be easily formed.

ところで、本発明では前記中間層隣接p型半導体層が前記基板から前記中間層を挟んで形成された薄膜光電変換ユニットの一部を構成してなることを特徴としている。すなわち中間反射層上に形成される後方光電変換ユニット側のp型半導体層を指しており、後方光電変換ユニットのリークが低減され、発生した電力を十分に取り出すことが可能となる。   By the way, the present invention is characterized in that the intermediate layer adjacent p-type semiconductor layer constitutes a part of a thin film photoelectric conversion unit formed by sandwiching the intermediate layer from the substrate. That is, it refers to the p-type semiconductor layer on the rear photoelectric conversion unit side formed on the intermediate reflection layer, and the leakage of the rear photoelectric conversion unit is reduced, and the generated power can be sufficiently taken out.

その上、前記1組の薄膜光電変換ユニットの少なくとも基板側の薄膜光電変換ユニットを構成する該中間層に隣接する中間反射層に隣接するn型半導体層の材料がn型微結晶シリコンであることで、n型半導体層と中間反射層との間で良好な接合が形成され、またn型半導体層が微結晶シリコンであることにより、中間反射層形成の際に微結晶シリコンの種層となる役割も果たし、良好な中間反射層を形成することが可能となる。   Moreover, the material of the n-type semiconductor layer adjacent to the intermediate reflective layer adjacent to the intermediate layer constituting at least the thin film photoelectric conversion unit on the substrate side of the pair of thin film photoelectric conversion units is n-type microcrystalline silicon. Thus, a good junction is formed between the n-type semiconductor layer and the intermediate reflective layer, and the n-type semiconductor layer is made of microcrystalline silicon, so that it becomes a seed layer of microcrystalline silicon when forming the intermediate reflective layer. It also plays a role, and it becomes possible to form a good intermediate reflective layer.

特に、1%〜2.8%の燐が前記中間層に隣接するn型半導体層に不純物としてドーピングされていれば不純物による吸収も少なく、n型半導体層として良好な導電率を持つためである。   In particular, if 1% to 2.8% of phosphorus is doped as an impurity in the n-type semiconductor layer adjacent to the intermediate layer, the absorption by the impurity is small and the n-type semiconductor layer has good conductivity. .

基板上に中間層を介して直列接続された2つの薄膜光電変換ユニットを少なくとも1組含む多接合薄膜光電変換セルを集積化した集積化多接合薄膜光電変換装置であって、該中間層の材料がn型Si1-XXで、かつ、該1組の薄膜光電変換ユニットの少なくとも一方の薄膜光電変換ユニットの一部を構成する該中間層に隣接する中間層隣接p型半導体層の不純物のドーピング量が5000ppm以下であれば、p型半導体層から接続溝を経由する電流パスの抵抗が高くなり、リーク電流を低減することが出来る。言いかえれば、各光電変換ユニットから十分に光電変換特性を引き出すことができるので効率が改善される。 An integrated multijunction thin film photoelectric conversion device in which a multijunction thin film photoelectric conversion cell including at least one pair of two thin film photoelectric conversion units connected in series via an intermediate layer on a substrate is integrated, and the material of the intermediate layer Is an n-type Si 1-X O X , and an impurity in the p-type semiconductor layer adjacent to the intermediate layer adjacent to the intermediate layer constituting a part of at least one thin film photoelectric conversion unit of the one set of thin film photoelectric conversion units If the doping amount is 5000 ppm or less, the resistance of the current path from the p-type semiconductor layer through the connection groove is increased, and the leakage current can be reduced. In other words, since the photoelectric conversion characteristics can be sufficiently extracted from each photoelectric conversion unit, the efficiency is improved.

本発明者らは、中間層の材料としてn型Si1-XXを用いて図2に示すような中間層を有する集積化多接合薄膜光電変換装置を実際に作製し検討を行った。その結果、後方光電変換ユニット106のp型微結晶シリコン層106aを従来の製膜条件で形成し、集積化多接合薄膜光電変換装置を作製すると後方光電変換ユニット側106側でリーク電流が発生し、集積化光電変換モジュールの特性が低下することを見出し、本発明を為すに到った。 The present inventors actually made and studied an integrated multi-junction thin film photoelectric conversion device having an intermediate layer as shown in FIG. 2 using n-type Si 1-X O X as a material for the intermediate layer. As a result, when the p-type microcrystalline silicon layer 106a of the rear photoelectric conversion unit 106 is formed under the conventional film forming conditions and an integrated multi-junction thin film photoelectric conversion device is manufactured, a leakage current is generated on the rear photoelectric conversion unit side 106 side. As a result, the inventors have found that the characteristics of the integrated photoelectric conversion module are deteriorated, and have arrived at the present invention.

つまり、図1に示す従来型の中間反射層のない集積化多接合薄膜光電変換装置では前方光電変換ユニットおよび後方光電変換ユニットにおいて分光感度でリークの発生は無かったが、図2に示すような中間反射層を前方光電変換ユニットと後方光電変換ユニットの間に挿入した集積化多接合薄膜光電変換装置では後方光電変換ユニットにおいて分光感度で図3に示すように500nm付近において通常現れない見かけ上の感度が観測された。すなわち後方光電変換ユニットにおいてリークが発生し、後方光電変換ユニットで発生した電力が十分に出力されない。   That is, in the conventional integrated multi-junction thin film photoelectric conversion device without the intermediate reflection layer shown in FIG. 1, there was no leakage in spectral sensitivity in the front photoelectric conversion unit and the rear photoelectric conversion unit, but as shown in FIG. In the integrated multi-junction thin film photoelectric conversion device in which the intermediate reflection layer is inserted between the front photoelectric conversion unit and the rear photoelectric conversion unit, the spectral sensitivity in the rear photoelectric conversion unit does not usually appear in the vicinity of 500 nm as shown in FIG. Sensitivity was observed. That is, a leak occurs in the rear photoelectric conversion unit, and the electric power generated in the rear photoelectric conversion unit is not sufficiently output.

このリーク電流は図3に示すように集積化光電変換モジュールの分光感度測定において後方光電変換ユニット側の分光感度で通常500nm付近には現れない見かけ上の感度が観測されることから分かる。これは中間反射層105を設けたことで、その上に製膜される後方光電変換ユニット106のp型微結晶シリコン層106aの導電率が高くなる方向に変質し、基板と平行な方向にも容易に電流が流れて、電極層の役割をも果たしてしまったためであると考えられる。すなわち、p型微結晶シリコン層106a、接続溝123、裏面電極層107の電流経路で、後方光電変換ユニット106が短絡してしまい、リーク電流が流れる。そのため、従来条件で製膜したp型微結晶シリコン層106aでは後方光電変換ユニット106で生じた電力を十分に取り出すことが出来ない。   As shown in FIG. 3, this leakage current can be understood from the fact that an apparent sensitivity that does not usually appear in the vicinity of 500 nm is observed as the spectral sensitivity on the rear photoelectric conversion unit side in the spectral sensitivity measurement of the integrated photoelectric conversion module. This is due to the provision of the intermediate reflection layer 105, which changes the conductivity of the p-type microcrystalline silicon layer 106a of the rear photoelectric conversion unit 106 formed thereon, in a direction parallel to the substrate. This is probably because the current flowed easily and also played the role of the electrode layer. That is, the rear photoelectric conversion unit 106 is short-circuited in the current path of the p-type microcrystalline silicon layer 106a, the connection groove 123, and the back electrode layer 107, and a leak current flows. Therefore, the p-type microcrystalline silicon layer 106a formed under the conventional conditions cannot sufficiently extract the electric power generated in the rear photoelectric conversion unit 106.

これらのことから、本発明者らは、2段以上の光電変換ユニットを積層した多接合薄膜光電変換装置を集積化した集積化多接合薄膜光電変換装置で、各光電変換ユニットで発生した電力を十分に取り出すためには、中間反射層に近接する不純物層のドーピング量をある限られた範囲に設定することが重要であることを見出したのである。   From these, the present inventors are an integrated multi-junction thin film photoelectric conversion device in which a multi-junction thin film photoelectric conversion device in which two or more stages of photoelectric conversion units are stacked is integrated, and the electric power generated in each photoelectric conversion unit is obtained. It has been found that in order to take out sufficiently, it is important to set the doping amount of the impurity layer adjacent to the intermediate reflection layer within a certain limited range.

以下、本発明の一つの実施形態による光電変換装置である図2の中間層を有する二接合型薄膜シリコン系光電変換装置の模式的な断面図をを用いて本発明につき詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to a schematic cross-sectional view of a two-junction thin film silicon-based photoelectric conversion device having the intermediate layer of FIG. 2 which is a photoelectric conversion device according to one embodiment of the present invention. The present invention is not limited to this.

本発明の二接合型薄膜シリコン系光電変換装置の各構成要素について説明する。   Each component of the two-junction thin film silicon photoelectric conversion device of the present invention will be described.

基板102としては、例えば、金属基板やガラス板、フレキシブルな透明樹脂フィルムなどの透光性絶縁基板を用いることができる。金属基板では図2とは異なる構造を有するが、ここでは割愛する。透光性絶縁基板では一般にガラス基板が用いられ、大面積な板が安価に入手可能で透明性、絶縁性が高い、SiO2、Na2O及びCaOを主成分とする両主面が平滑なソーダライム板ガラスを用いることができる。 As the substrate 102, for example, a light-transmitting insulating substrate such as a metal substrate, a glass plate, or a flexible transparent resin film can be used. Although the metal substrate has a structure different from that shown in FIG. 2, it is omitted here. In general, a glass substrate is used as a translucent insulating substrate, a large-area plate can be obtained at a low cost, transparency and insulation are high, and both main surfaces mainly composed of SiO 2 , Na 2 O and CaO are smooth. Soda lime plate glass can be used.

透明電極層103はITO膜、SnO2膜、或いはZnO膜のような透明導電性酸化物層等で構成することができる。透明電極膜103は単層構造でも多層構造であっても良い。透明電極膜103は、蒸着法、CVD法、或いはスパッタリング法等それ自体既知の気相堆積法を用いて形成することができる。透明電極膜103の表面には、微細な凹凸を含む表面テクスチャ構造を形成することが好ましい。この凹凸の深さは0.05μm以上1.0μm以下である事が好ましく、更に一つの山と山の間隔は0.05μm以上1.0μm以下である事が好ましい。透明電極膜103の表面にこのようなテクスチャ構造を形成することにより、光閉じ込め効果を増大させる事が可能となる。 The transparent electrode layer 103 can be composed of a transparent conductive oxide layer such as an ITO film, a SnO 2 film, or a ZnO film. The transparent electrode film 103 may have a single layer structure or a multilayer structure. The transparent electrode film 103 can be formed using a vapor deposition method known per se such as a vapor deposition method, a CVD method, or a sputtering method. A surface texture structure including fine irregularities is preferably formed on the surface of the transparent electrode film 103. The depth of the unevenness is preferably 0.05 μm or more and 1.0 μm or less, and the distance between one peak is preferably 0.05 μm or more and 1.0 μm or less. By forming such a texture structure on the surface of the transparent electrode film 103, it becomes possible to increase the light confinement effect.

図2に示す本発明における二接合型薄膜シリコン系光電変換装置においては、非晶質シリコン光電ユニットである前方光電変換ユニット104、中間反射層105、結晶質シリコン光電変換ユニットである後方光電変換ユニット106、及び裏面電極層107を順次積層した構造を有している。   In the two-junction thin film silicon photoelectric conversion device according to the present invention shown in FIG. 2, the front photoelectric conversion unit 104 that is an amorphous silicon photoelectric unit, the intermediate reflection layer 105, and the rear photoelectric conversion unit that is a crystalline silicon photoelectric conversion unit. 106 and a back electrode layer 107 are sequentially stacked.

非晶質シリコン光電変換ユニット104は非晶質シリコン光電変換層を備えており、透明電極膜103側からp型半導体層104a、非晶質シリコン光電変換層104b、及びn型半導体層104cを順次積層した構造を有する。これらp型半導体層、非晶質シリコン光電変換層、及びn型半導体層はいずれもプラズマCVD法により形成することができる。   The amorphous silicon photoelectric conversion unit 104 includes an amorphous silicon photoelectric conversion layer. A p-type semiconductor layer 104a, an amorphous silicon photoelectric conversion layer 104b, and an n-type semiconductor layer 104c are sequentially formed from the transparent electrode film 103 side. It has a laminated structure. These p-type semiconductor layer, amorphous silicon photoelectric conversion layer, and n-type semiconductor layer can all be formed by a plasma CVD method.

一方、結晶質シリコン光電変換ユニット106は結晶質シリコン光電変換層を備えており、例えば、中間反射層105側からp型半導体層106a、結晶質シリコン光電変換層106b、及びn型半導体層106cを順次積層した構造を有する。これらp型半導体層、結晶質シリコン光電変換層、及びn型半導体層はいずれもプラズマCVD法により形成することができる。   On the other hand, the crystalline silicon photoelectric conversion unit 106 includes a crystalline silicon photoelectric conversion layer. For example, a p-type semiconductor layer 106a, a crystalline silicon photoelectric conversion layer 106b, and an n-type semiconductor layer 106c are provided from the intermediate reflection layer 105 side. It has a stacked structure. These p-type semiconductor layer, crystalline silicon photoelectric conversion layer, and n-type semiconductor layer can all be formed by a plasma CVD method.

非晶質シリコン光電変換ユニット104の厚さは、0.01μm〜0.5μmの範囲内にあることが好ましく、0.1μm〜0.3μmの範囲内にあることがより好ましい。   The thickness of the amorphous silicon photoelectric conversion unit 104 is preferably in the range of 0.01 μm to 0.5 μm, and more preferably in the range of 0.1 μm to 0.3 μm.

また、n型半導体層104cは非晶質シリコンでも良いが、微結晶シリコンの方が好ましい。微結晶シリコンを用いることでその上に形成される中間反射層であるシリコン複合層の結晶質シリコンの結晶化度を向上させることが出来る。さらに、不純物として1%〜2.8%の範囲内で燐がドーピングされていることがより好ましい。燐の濃度が〜2.8%より大きいと不純物の吸収が大きくなりJscの低下を招き、また1%未満であると十分な導電率および拡散電位が得られず、変換効率は低下する。   The n-type semiconductor layer 104c may be amorphous silicon, but microcrystalline silicon is more preferable. By using microcrystalline silicon, it is possible to improve the crystallinity of crystalline silicon in the silicon composite layer which is an intermediate reflective layer formed thereon. Further, it is more preferable that phosphorus is doped in the range of 1% to 2.8% as an impurity. If the phosphorus concentration is higher than ˜2.8%, the absorption of impurities increases, resulting in a decrease in Jsc. If it is less than 1%, sufficient conductivity and diffusion potential cannot be obtained, and the conversion efficiency decreases.

一方、結晶質シリコン光電変換ユニット106の厚さは、0.1μm〜10μmの範囲内にあることが好ましく、0.1μm〜5μmの範囲内にあることがより好ましい。また、p型半導体層106aは不純物のドーピング量が2500ppm以上、かつ5000ppm以下である。5000ppm以下とすることでp型半導体層から接続溝を経由する電流パスの抵抗が高くなり、リーク電流を低減することが出来る。また、2500ppm以上とすると、シリーズ抵抗小さくできるので、高い変換効率が達成される。さらに、不純物としては硼素を用いることがより好ましい。硼素を不純物とすることで、良好なp型半導体を形成することが出来る。また、n型半導体層106cの一部に裏面反射層としてシリコン複合層を用いるほうが好ましい。   On the other hand, the thickness of the crystalline silicon photoelectric conversion unit 106 is preferably in the range of 0.1 μm to 10 μm, and more preferably in the range of 0.1 μm to 5 μm. The p-type semiconductor layer 106a has an impurity doping amount of 2500 ppm or more and 5000 ppm or less. By setting it to 5000 ppm or less, the resistance of the current path from the p-type semiconductor layer through the connection groove is increased, and the leakage current can be reduced. Moreover, when it is 2500 ppm or more, since the series resistance can be reduced, high conversion efficiency is achieved. Furthermore, it is more preferable to use boron as an impurity. By using boron as an impurity, a good p-type semiconductor can be formed. Further, it is preferable to use a silicon composite layer as a back surface reflection layer for a part of the n-type semiconductor layer 106c.

中間反射層105及び裏面反射層106cの一部は600nmの波長の光に対して屈折率が2.5以下であり、望ましくは2.0以下である。屈折率が2.5より大きいと十分な反射が得られず、十分な光閉じ込め効果を得ることが出来ない。屈折率は以下のように測定される。ガラス基板のような透明でかつ絶縁性の基体上に中間反射層105あるいは裏面反射層106cの一部を形成するときと同条件で導電型決定不純物、酸素、窒素及び結晶質シリコン含むシリコン合金層を0.1〜0.4μm程度形成し、この形成層を分光エリプソメトリーにより測定することで屈折率を測定する。また同時に膜厚の決定を行うことも可能である。この際形成したシリコン合金層の導電率は1.0×10-9S/cm以上であり、導電率の測定は以下のようにして行われる。0.1〜0.4μm程度形成された該シリコン合金層上に真空蒸着法により1mm×15mmのアルミ電極を1mmの間隔を空けて形成し、100Vの電圧をその2電極間に印加した時の電流値から算出される。この時の計算に用いられる該シリコン合金層の膜厚は分光エリプソメトリーにて得られた値を用いる。導電率が1.0×10-9S/cmより小さいと、直列抵抗が大きくなり変換効率が低下する。 Part of the intermediate reflective layer 105 and the back reflective layer 106c has a refractive index of 2.5 or less, preferably 2.0 or less, for light having a wavelength of 600 nm. If the refractive index is greater than 2.5, sufficient reflection cannot be obtained, and a sufficient light confinement effect cannot be obtained. The refractive index is measured as follows. A silicon alloy layer containing conductivity-determining impurities, oxygen, nitrogen and crystalline silicon under the same conditions as when a part of the intermediate reflective layer 105 or the back reflective layer 106c is formed on a transparent and insulating substrate such as a glass substrate The refractive index is measured by measuring about 0.1 to 0.4 μm and measuring the formed layer by spectroscopic ellipsometry. It is also possible to determine the film thickness at the same time. The conductivity of the silicon alloy layer formed at this time is 1.0 × 10 −9 S / cm or more, and the measurement of the conductivity is performed as follows. When a 1 mm × 15 mm aluminum electrode is formed on the silicon alloy layer formed to have a thickness of about 0.1 to 0.4 μm by a vacuum deposition method with an interval of 1 mm, a voltage of 100 V is applied between the two electrodes. Calculated from the current value. The value obtained by spectroscopic ellipsometry is used for the film thickness of the silicon alloy layer used for the calculation at this time. If the conductivity is less than 1.0 × 10 −9 S / cm, the series resistance increases and the conversion efficiency decreases.

裏面電極膜107は電極としての機能を有するだけでなく、基板102から前方光電変換ユニット104および後方光電変換ユニット106に入射し裏面電極膜107に到着した光を反射して後方光電変換ユニット106および前方光電変換ユニット104内に再入射させる反射層としての機能も有している。裏面電極膜107は、銀やアルミニウム等を用いて、蒸着法やスパッタリング法等により、例えば200nm〜400nm程度の厚さに形成することができる。   The back electrode film 107 not only functions as an electrode, but also reflects the light that has entered the front photoelectric conversion unit 104 and the back photoelectric conversion unit 106 from the substrate 102 and arrived at the back electrode film 107 to reflect the back photoelectric conversion unit 106 and It also has a function as a reflective layer that re-enters the front photoelectric conversion unit 104. The back electrode film 107 can be formed to a thickness of, for example, about 200 nm to 400 nm using silver, aluminum, or the like by a vapor deposition method, a sputtering method, or the like.

なお、裏面電極膜107と前方光電変換ユニット104および後方光電変換ユニット106との間には、例えば両者の間の接着性を向上させるために、ZnOのような非金属材料からなる透明電導性薄膜(図示せず)を設けることができる。   A transparent conductive thin film made of a non-metallic material such as ZnO is provided between the back electrode film 107 and the front photoelectric conversion unit 104 and the rear photoelectric conversion unit 106, for example, in order to improve the adhesion between them. (Not shown) can be provided.

ところで図2に示すように、集積型薄膜光電変換モジュール101には、上記薄膜を分割する第1、第2の分離溝121、123と接続溝122とが設けられている。これら第1、第2の分離溝121、123及び接続溝122は、互いに平行であって、紙面に対して垂直な方向に延在している。なお、隣り合う光電変換セル110間の境界は、第1及び第2の分離溝121,123によって規定されている。   As shown in FIG. 2, the integrated thin film photoelectric conversion module 101 is provided with first and second separation grooves 121 and 123 and a connection groove 122 for dividing the thin film. The first and second separation grooves 121 and 123 and the connection groove 122 are parallel to each other and extend in a direction perpendicular to the paper surface. Note that the boundary between the adjacent photoelectric conversion cells 110 is defined by the first and second separation grooves 121 and 123.

第1の分離溝121は、透明電極層103をそれぞれの光電変換セル110に対応して分割しており、透明電極層103と非晶質シリコン光電変換ユニット104との界面に開口を有し且つ透明基板102の表面を底面としている。この第1の分離溝121は、非晶質シリコン光電変換ユニット104を構成する非晶質によって埋め込まれており、隣り合う透明電極膜103同士を電気的に絶縁している。   The first separation groove 121 divides the transparent electrode layer 103 corresponding to each photoelectric conversion cell 110, has an opening at the interface between the transparent electrode layer 103 and the amorphous silicon photoelectric conversion unit 104, and The surface of the transparent substrate 102 is the bottom surface. The first separation groove 121 is filled with an amorphous material constituting the amorphous silicon photoelectric conversion unit 104 and electrically insulates the adjacent transparent electrode films 103 from each other.

第2の分離溝123は、第1の分離溝121から離れた位置に設けられている。第2の分離溝123は、前方光電変換ユニット104、後方光電変換ユニット106、及び裏面電極層107をそれぞれの光電変換セル110に対応して分割しており、裏面電極層107の上面に開口を有し且つ透明電極層103と前方光電変換ユニット104の界面を底面としている。この第2の分離溝123は、隣り合う光電変換セル110間で裏面電極層107同士を電気的に絶縁している。   The second separation groove 123 is provided at a position away from the first separation groove 121. The second separation groove 123 divides the front photoelectric conversion unit 104, the rear photoelectric conversion unit 106, and the back electrode layer 107 corresponding to each photoelectric conversion cell 110, and has an opening on the top surface of the back electrode layer 107. And has an interface between the transparent electrode layer 103 and the front photoelectric conversion unit 104 as a bottom surface. The second separation groove 123 electrically insulates the back electrode layers 107 between the adjacent photoelectric conversion cells 110.

接続溝122は、第1の分離溝121と第2の分離溝123との間に設けられている。接続溝122は、前方光電変換ユニット104、後方光電変換ユニット106を分割しており、後方光電変換ユニット104と裏面電極層107との界面に開口を有し且つ透明電極層103と前方光電変換ユニット104の界面を底面としている。この接続溝122は、裏面電極層107を構成する金属材料で埋め込まれており、隣り合う光電変換セル110の一方の裏面電極層107と他方の透明電極層103とを電気的に接続している。すなわち、接続溝122及びそれを埋め込む金属材料は、ガラス基板102上に並置された光電変換セル110同士を直列接続する役割を担っている。   The connection groove 122 is provided between the first separation groove 121 and the second separation groove 123. The connection groove 122 divides the front photoelectric conversion unit 104 and the rear photoelectric conversion unit 106, has an opening at the interface between the rear photoelectric conversion unit 104 and the back electrode layer 107, and the transparent electrode layer 103 and the front photoelectric conversion unit. The interface 104 is the bottom surface. The connection groove 122 is embedded with a metal material constituting the back electrode layer 107 and electrically connects one back electrode layer 107 and the other transparent electrode layer 103 of the adjacent photoelectric conversion cells 110. . That is, the connection groove 122 and the metal material filling the connection groove 122 serve to connect the photoelectric conversion cells 110 juxtaposed on the glass substrate 102 in series.

以下、本発明を比較例とともにいくつかの実施例に基づいて詳細に説明するが、本発明はその趣旨を超えない限り以下の記載例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on some Examples with a comparative example, this invention is not limited to the following description examples, unless the meaning is exceeded.

(実施例1)
実施例1として、図2に示される集積化多接合薄膜光電変換装置を作製した。厚み0.7mmのガラス基板102上に、透明電極膜103として凹凸を有するSnO2を用いた。この透明電極103に隣り合う透明電極膜103同士を電気的に絶縁するようレーザースクライブにて分離溝121を形成した。
Example 1
As Example 1, an integrated multi-junction thin film photoelectric conversion device shown in FIG. SnO 2 having irregularities was used as the transparent electrode film 103 on the glass substrate 102 having a thickness of 0.7 mm. A separation groove 121 was formed by laser scribing so as to electrically insulate the transparent electrode films 103 adjacent to the transparent electrode 103 from each other.

その後この透明電極膜103の上に、反応ガスとしてシラン、水素、メタン及びジボランを導入しp型半導体層104aを15nm形成後、反応ガスとしてシランを導入し非晶質シリコン光電変換層104bを250nm形成し、その後反応ガスとしてシラン、水素及びホスフィンを導入しn型半導体層104cを5nm形成することで非晶質シリコン光電変換ユニット104を形成した。n型半導体層形成時、ホスフィン/シランガス流量比を0.25%とした。   Thereafter, silane, hydrogen, methane and diborane are introduced as reactive gases on the transparent electrode film 103 to form a p-type semiconductor layer 104a, and silane is introduced as a reactive gas to form an amorphous silicon photoelectric conversion layer 104b having a thickness of 250 nm. Then, silane, hydrogen and phosphine were introduced as reaction gases to form an n-type semiconductor layer 104c having a thickness of 5 nm, thereby forming an amorphous silicon photoelectric conversion unit 104. When forming the n-type semiconductor layer, the phosphine / silane gas flow ratio was set to 0.25%.

非晶質シリコン光電変換ユニット104形成後、反応ガスとしてシラン、水素、ホスフィンおよび二酸化炭素を導入し中間反射層105を70nm形成した。   After the amorphous silicon photoelectric conversion unit 104 was formed, silane, hydrogen, phosphine and carbon dioxide were introduced as reaction gases to form an intermediate reflective layer 105 having a thickness of 70 nm.

その後反応ガスとしてシラン、水素及びジボランを導入しp型半導体層106aを20nm形成した。このときジボラン/シランガス流量比を0.25%とし集積化多接合薄膜光電変換装置101を形成した。これにより、このp型半導体層106aの層中のボロンドープ量は表1に示すように5000ppmとなる。   Thereafter, silane, hydrogen and diborane were introduced as reaction gases to form a p-type semiconductor layer 106a having a thickness of 20 nm. At this time, the diborane / silane gas flow rate ratio was set to 0.25%, and the integrated multi-junction thin film photoelectric conversion device 101 was formed. As a result, the boron doping amount in the p-type semiconductor layer 106a is 5000 ppm as shown in Table 1.

p型半導体層106aを形成後、反応ガスとして水素とシランを導入し結晶質シリコン光電変換層106bを2.5μm形成し、その後反応ガスとしてシラン、水素及びホスフィンを導入しn型半導体層106cを5nm形成することで結晶質シリコン光電変換ユニット106を形成した。また、n型半導体層106cの一部に反応ガスとしてシラン、水素、ホスフィンおよび二酸化炭素を導入しシリコン複合層を60nm形成した。非晶質シリコン光電変換ユニット104、中間反射層105、および結晶質シリコン光電変換ユニット106はいずれもプラズマCVD法により形成した。   After forming the p-type semiconductor layer 106a, hydrogen and silane are introduced as reaction gases to form a crystalline silicon photoelectric conversion layer 106b of 2.5 μm, and then silane, hydrogen and phosphine are introduced as reaction gases to form an n-type semiconductor layer 106c. The crystalline silicon photoelectric conversion unit 106 was formed by forming 5 nm. Further, silane, hydrogen, phosphine, and carbon dioxide were introduced as reactive gases into part of the n-type semiconductor layer 106c to form a silicon composite layer having a thickness of 60 nm. The amorphous silicon photoelectric conversion unit 104, the intermediate reflection layer 105, and the crystalline silicon photoelectric conversion unit 106 were all formed by plasma CVD.

その後レーザースクライブにてガラス基板102上に並置された光電変換セル110同士を直列接続する役割を担う接続溝122を形成し、さらに裏面反射層との密着性向上のため、スパッタ法にてZnO膜を30nm形成後、同じくスパッタ法にてAg膜を形成し裏面電極107を形成した。最後に隣り合う光電変換セル110間で裏面電極層107同士を電気的に絶縁するため、レーザースクライブにて分離溝123を形成した。   Thereafter, a connection groove 122 that plays a role of connecting the photoelectric conversion cells 110 juxtaposed on the glass substrate 102 in series by laser scribing is formed, and a ZnO film is formed by sputtering to improve the adhesion to the back reflective layer. After forming 30 nm, an Ag film was similarly formed by sputtering to form the back electrode 107. Finally, in order to electrically insulate the back electrode layers 107 between adjacent photoelectric conversion cells 110, separation grooves 123 were formed by laser scribing.

この実施例1の集積化多接合薄膜光電変換装置101の光電変換特性にソーラーシミュレーターを用いてAM1.5の光を100mW/cm2の光量で25℃のもとで照射することによって、光電変換効率を測定した。その結果表1に示すように12.2%と高い変換効率が得られた。 The photoelectric conversion characteristics of the integrated multi-junction thin film photoelectric conversion device 101 of Example 1 are obtained by irradiating AM1.5 light with a light amount of 100 mW / cm 2 at 25 ° C. using a solar simulator. Efficiency was measured. As a result, as shown in Table 1, a high conversion efficiency of 12.2% was obtained.

Figure 2006310694
(比較例1)
図1のような中間反射層を有さない構造で、その他の条件を実施例1と同条件で形成した。この比較例1の集積化多接合薄膜光電変換装置101の光電変換特性を実施例1と同様にして測定したところ11.8%であった。実施例1の中間反射層を有する構造よりも集積化モジュールの変換効率が低かった。しかし、表1に示すように分離セルにくらべて集積化モジュールは実施例1と比較例1との差が少ない。
Figure 2006310694
(Comparative Example 1)
The other conditions were the same as in Example 1 with the structure having no intermediate reflection layer as shown in FIG. The photoelectric conversion characteristics of the integrated multi-junction thin film photoelectric conversion device 101 of Comparative Example 1 were measured in the same manner as in Example 1 and found to be 11.8%. The conversion efficiency of the integrated module was lower than that of the structure having the intermediate reflective layer of Example 1. However, as shown in Table 1, the integrated module has a smaller difference between Example 1 and Comparative Example 1 than the separation cell.

そこで、実施例1および比較例1で形成された集積化多接合薄膜光電変換装置101の分光感度測定を行った。分光感度測定の測定方法は以下の通りである。プローブ光の波長範囲を集積化薄膜多結晶光電変換装置101の感度波長帯域である300nmから1200nmとした。また波長分解能を20nmとした。プローブ光を全波長域で5μWとなるようXeランプから出射された光にNDフィルターを用いて校正を行った。校正検出器には単結晶シリコンフォトダイオードを使用しピコアンペアメーターにて電流値の測定を行った。   Therefore, the spectral sensitivity of the integrated multi-junction thin film photoelectric conversion device 101 formed in Example 1 and Comparative Example 1 was measured. The measurement method of spectral sensitivity measurement is as follows. The wavelength range of the probe light was set to 300 nm to 1200 nm, which is the sensitivity wavelength band of the integrated thin film polycrystalline photoelectric conversion device 101. The wavelength resolution was 20 nm. Calibration was performed using ND filters on the light emitted from the Xe lamp so that the probe light was 5 μW in the entire wavelength region. A single-crystal silicon photodiode was used as the calibration detector, and the current value was measured with a picoampere meter.

前方光電変換層104の分光感度を測定する場合は、前方光電変換層の感度より長波長側のカラーバイアス光を後方光電変換層に当てプローブ光をチョッパーでチョッピングしながら各波長での電流値をロックインアンプにて検出した。なお、プローブ光およびカラーバイアス光は集積化多接合光電変換装置101の前面に照射されるようにした。後方光電変換層106の分光感度を測定する場合は前述のカラーバイアス光を後方光電変換層の感度より短波長側のものを用いることで可能となる。   When measuring the spectral sensitivity of the front photoelectric conversion layer 104, the color bias light having a wavelength longer than the sensitivity of the front photoelectric conversion layer is applied to the rear photoelectric conversion layer, and the probe light is chopped by the chopper and the current value at each wavelength is measured. Detected with a lock-in amplifier. Note that the probe light and the color bias light are applied to the front surface of the integrated multi-junction photoelectric conversion device 101. When the spectral sensitivity of the rear photoelectric conversion layer 106 is measured, the color bias light described above can be used at a wavelength shorter than the sensitivity of the rear photoelectric conversion layer.

表1の後方光電変換層相対分光感度(500nm)の欄は後方光電変換層106の波長500nmでの相対分光感度の値を示している。分光感度測定の結果、表1より明らかなように、実施例1では後方光電変換層106の波長500nmでの相対分光感度は分離セルでは見られないが、集積化モジュールでは見かけ上の感度が現れていることから後方光電変換層106においてリークが有ることが分かった。また比較例1の集積化多接合薄膜光電変換装置101の後方光電変換層相対分光感度(500nm)の値は分離セルとほぼ同等で0に近く、後方光電変換層106でのリークが無いことが分かった。以上より実施例1の中間反射層を有する集積化モジュールは分光感度で見知できるリークが発生していることが原因で、比較例1の中間反射層を有さない構造に対して変換効率の大きな向上が見られないことが判った。   The column of the rear photoelectric conversion layer relative spectral sensitivity (500 nm) in Table 1 shows the value of the relative spectral sensitivity of the rear photoelectric conversion layer 106 at a wavelength of 500 nm. As a result of the spectral sensitivity measurement, as is clear from Table 1, in Example 1, the relative spectral sensitivity at the wavelength of 500 nm of the rear photoelectric conversion layer 106 is not seen in the separation cell, but apparent sensitivity appears in the integrated module. Therefore, it was found that there was a leak in the rear photoelectric conversion layer 106. Moreover, the value of the rear photoelectric conversion layer relative spectral sensitivity (500 nm) of the integrated multi-junction thin film photoelectric conversion device 101 of Comparative Example 1 is almost equal to that of the separation cell and is close to 0, and there is no leakage in the rear photoelectric conversion layer 106. I understood. As described above, the integrated module having the intermediate reflection layer of Example 1 has a conversion efficiency higher than that of the structure of Comparative Example 1 that does not have the intermediate reflection layer due to the occurrence of leakage that can be recognized by spectral sensitivity. It was found that there was no significant improvement.

(実施例2)
上記の知見から後方光電変換層106でのリークを無くすために、実施例2の集積化多接合薄膜光電変換装置101として、p型半導体層106aの形成条件中のジボラン/シランガス流量比を0.20%としたこと以外は実施例1と同様にして実施例2の集積化多接合薄膜光電変換装置101を形成した。これにより、このp型半導体層106aの層中のボロンドープ量は表1に示すように4000ppmとなる。
(Example 2)
From the above knowledge, in order to eliminate leakage in the rear photoelectric conversion layer 106, the diborane / silane gas flow rate ratio in the formation conditions of the p-type semiconductor layer 106a is set to 0. As the integrated multi-junction thin film photoelectric conversion device 101 of Example 2. An integrated multi-junction thin film photoelectric conversion device 101 of Example 2 was formed in the same manner as Example 1 except that the content was 20%. As a result, the boron doping amount in the p-type semiconductor layer 106a is 4000 ppm as shown in Table 1.

実施例1と同様に後方光電変換層相対分光感度の分光感度を測定したところ、実施例2の集積化多接合薄膜光電変換装置101の後方光電変換層相対分光感度(500nm)の値は分離セルとほぼ同等で0に近く、後方光電変換層106でのリークが無いことが分かった。   When the spectral sensitivity of the rear photoelectric conversion layer relative spectral sensitivity was measured in the same manner as in Example 1, the value of the rear photoelectric conversion layer relative spectral sensitivity (500 nm) of the integrated multi-junction thin film photoelectric conversion device 101 of Example 2 is the separation cell. It was found that there is no leakage in the rear photoelectric conversion layer 106, which is almost equal to 0 and close to 0.

この実施例2の集積化多接合薄膜光電変換装置101の光電変換特性を実施例1と同様にして測定したところ12.4%と実施例1よりも高い変換効率であった。   When the photoelectric conversion characteristics of the integrated multi-junction thin film photoelectric conversion device 101 of Example 2 were measured in the same manner as in Example 1, the conversion efficiency was 12.4%, which was higher than that of Example 1.

(実施例3)
さらに、実施例3の集積化多接合薄膜光電変換装置101として、p型半導体層106aの形成条件中のジボラン/シランガス流量比を0.13%としたこと以外は実施例1と同様にして実施例3の集積化多接合薄膜光電変換装置101を形成した。これにより、このp型半導体層106aの層中のボロンドープ量は表1に示すように2500ppmとなる。
(Example 3)
Further, the integrated multi-junction thin film photoelectric conversion device 101 of Example 3 was carried out in the same manner as in Example 1 except that the diborane / silane gas flow rate ratio in the formation conditions of the p-type semiconductor layer 106a was 0.13%. The integrated multi-junction thin film photoelectric conversion device 101 of Example 3 was formed. As a result, the boron doping amount in the p-type semiconductor layer 106a is 2500 ppm as shown in Table 1.

実施例1と同様に後方光電変換層相対分光感度の分光感度を測定したところ、実施例2の集積化多接合薄膜光電変換装置101の後方光電変換層相対分光感度(500nm)の値は分離セルとほぼ同等で0に近く、後方光電変換層106でのリークが無いことが分かった。   When the spectral sensitivity of the rear photoelectric conversion layer relative spectral sensitivity was measured in the same manner as in Example 1, the value of the rear photoelectric conversion layer relative spectral sensitivity (500 nm) of the integrated multi-junction thin film photoelectric conversion device 101 of Example 2 is the separation cell. It was found that there is no leakage in the rear photoelectric conversion layer 106, which is almost equal to 0 and close to 0.

この実施例2の集積化多接合薄膜光電変換装置101の光電変換特性を実施例1と同様にして測定したところ11.9%と実施例2に比べて変換効率が低下した。   When the photoelectric conversion characteristics of the integrated multi-junction thin film photoelectric conversion device 101 of Example 2 were measured in the same manner as in Example 1, the conversion efficiency decreased to 11.9% compared to Example 2.

(比較例2)
比較例2の集積化多接合薄膜光電変換装置101として、p型半導体層106aの形成条件中のジボラン/シランガス流量比を更に小さく、0.10%としたこと以外は実施例1と同様にして比較例2の集積化多接合薄膜光電変換装置101を形成した。これにより、このp型半導体層106aの層中のボロンドープ量は表1に示すように2000ppmとなる。 実施例1と同様に後方光電変換層相対分光感度の分光感度を測定したところ、比較例2の集積化多接合薄膜光電変換装置101の後方光電変換層相対分光感度(500nm)の値は分離セルとほぼ同等で0に近く、後方光電変換層106でのリークが無いことが分かった。
(Comparative Example 2)
The integrated multi-junction thin film photoelectric conversion device 101 of Comparative Example 2 is the same as Example 1 except that the diborane / silane gas flow rate ratio in the formation conditions of the p-type semiconductor layer 106a is further reduced to 0.10%. The integrated multi-junction thin film photoelectric conversion device 101 of Comparative Example 2 was formed. As a result, the boron doping amount in the p-type semiconductor layer 106a is 2000 ppm as shown in Table 1. When the spectral sensitivity of the rear photoelectric conversion layer relative spectral sensitivity was measured in the same manner as in Example 1, the value of the rear photoelectric conversion layer relative spectral sensitivity (500 nm) of the integrated multi-junction thin film photoelectric conversion device 101 of Comparative Example 2 was determined as a separation cell. It was found that there is no leakage in the rear photoelectric conversion layer 106, which is almost equal to 0 and close to 0.

この実施例2の集積化多接合薄膜光電変換装置101の光電変換特性を実施例1と同様にして測定したところ11.7%と中間反射層を有さない比較例1よりも変換効率が低下した。   When the photoelectric conversion characteristics of the integrated multi-junction thin film photoelectric conversion device 101 of Example 2 were measured in the same manner as in Example 1, the conversion efficiency was 11.7%, which was lower than that of Comparative Example 1 having no intermediate reflective layer. did.

(比較例3)
比較例3の集積化多接合薄膜光電変換装置101として、p型半導体層106aの形成条件中のジボラン/シランガス流量比を実施例1より大きく、0.35%としたこと以外は実施例1と同様にして比較例3の集積化多接合薄膜光電変換装置101を形成した。これにより、このp型半導体層106aの層中のボロンドープ量は表1に示すように7000ppmとなる。
(Comparative Example 3)
As the integrated multi-junction thin film photoelectric conversion device 101 of Comparative Example 3, the diborane / silane gas flow rate ratio in the formation conditions of the p-type semiconductor layer 106a is larger than that of Example 1 and is 0.35%. Similarly, the integrated multi-junction thin film photoelectric conversion device 101 of Comparative Example 3 was formed. As a result, the boron doping amount in the p-type semiconductor layer 106a is 7000 ppm as shown in Table 1.

実施例1と同様に後方光電変換層相対分光感度の分光感度を測定したところ、比較例3では後方光電変換層106の波長500nmでの相対分光感度より集積化モジュールでは見かけ上の感度が現れており、実施例1よりもその値が大きいことから、後方光電変換層106においてリークが実施例1よりも大きいことが分かった。   When the spectral sensitivity of the rear photoelectric conversion layer relative spectral sensitivity was measured in the same manner as in Example 1, in Comparative Example 3, the apparent sensitivity appeared in the integrated module from the relative spectral sensitivity of the rear photoelectric conversion layer 106 at a wavelength of 500 nm. Since the value was larger than that in Example 1, it was found that the leakage in the rear photoelectric conversion layer 106 was larger than that in Example 1.

この実施例3の集積化多接合薄膜光電変換装置101の光電変換特性を実施例1と同様にして測定したところ11.7%と中間反射層を有さない比較例1よりも変換効率が低下した。   When the photoelectric conversion characteristics of the integrated multi-junction thin film photoelectric conversion device 101 of Example 3 were measured in the same manner as in Example 1, the conversion efficiency was 11.7%, which was lower than that of Comparative Example 1 having no intermediate reflective layer. did.

上記の様に、実施例1〜3および比較例1〜3のいずれの集積化多接合薄膜光電変換装置101の光電変換特性、また後方光電変換層106の波長500nmでの相対分光感度より、本発明のp型半導体層106aの不純物のドーピング量が5000ppm以下であれば、p型半導体層から接続溝を経由する電流パスの抵抗が高くなり、リーク電流を低減することが出来る。言いかえれば、各光電変換ユニットから十分に光電変換特性を引き出すことができるので効率が改善されるという効果が確認できた。また、光電変換特性よりp型半導体層106aの不純物のドーピング量が2500ppm以上5000ppm以下であればp型半導体層から接続溝を経由する電流パスの抵抗が高くなり、リーク電流を低減することが出来る。言いかえれば、各光電変換ユニットから十分に光電変換特性を引き出すことができるので効率が改善されるという効果が確認できた。しかし光電変換特性よりp型半導体層106aの不純物のドーピング量が2500ppm以下で光電変換特性が低下しているが、これはシリーズ抵抗の増大による影響である。   As described above, from the photoelectric conversion characteristics of any of the integrated multi-junction thin film photoelectric conversion devices 101 of Examples 1 to 3 and Comparative Examples 1 to 3, and the relative spectral sensitivity of the rear photoelectric conversion layer 106 at a wavelength of 500 nm, When the doping amount of impurities in the p-type semiconductor layer 106a of the invention is 5000 ppm or less, the resistance of the current path from the p-type semiconductor layer through the connection groove increases, and the leakage current can be reduced. In other words, since the photoelectric conversion characteristics can be sufficiently extracted from each photoelectric conversion unit, the effect of improving the efficiency was confirmed. Further, if the doping amount of the impurity of the p-type semiconductor layer 106a is 2500 ppm or more and 5000 ppm or less from the photoelectric conversion characteristics, the resistance of the current path from the p-type semiconductor layer through the connection groove is increased, and the leakage current can be reduced. . In other words, since the photoelectric conversion characteristics can be sufficiently extracted from each photoelectric conversion unit, the effect of improving the efficiency was confirmed. However, the photoelectric conversion characteristics are deteriorated when the doping amount of impurities in the p-type semiconductor layer 106a is 2500 ppm or less from the photoelectric conversion characteristics, which is due to an increase in series resistance.

中間反射層を有さない集積化多接合薄膜光電変換装置Integrated multi-junction thin film photoelectric conversion device without intermediate reflective layer 中間反射層を有する集積化多接合薄膜光電変換装置Integrated multi-junction thin film photoelectric conversion device having an intermediate reflective layer 中間反射層を有する多接合セルと集積化モジュールの後方光電変換層の相対分光感度Relative spectral sensitivity of multi-junction cell with intermediate reflective layer and back photoelectric conversion layer of integrated module

符号の説明Explanation of symbols

101 集積化多接合薄膜光電変換装置
102 基板
103 透明導電層
104 前方光電変換ユニットであり非晶質シリコン光電変換ユニット
104a 前方光電変換ユニットのp型半導体層
104b 非晶質シリコン光電変換層
104c 前方光電変換ユニットのn型半導体層
105 中間反射層、シリコン複合層
106 後方光電変換ユニットであり結晶質シリコン光電変換ユニット
106a 後方光電変換ユニットのp型半導体層
106b 結晶質シリコン光電変換層
106c 後方光電変換ユニットのn型半導体層および裏面反射層の一部
107 裏面電極層
121,123 分離溝
122 接続溝
DESCRIPTION OF SYMBOLS 101 Integrated multi-junction thin film photoelectric conversion apparatus 102 Substrate 103 Transparent conductive layer 104 Front photoelectric conversion unit and amorphous silicon photoelectric conversion unit 104a Front photoelectric conversion unit p-type semiconductor layer 104b Amorphous silicon photoelectric conversion layer 104c Front photoelectric conversion N-type semiconductor layer of conversion unit 105 intermediate reflection layer, silicon composite layer 106 rear photoelectric conversion unit and crystalline silicon photoelectric conversion unit 106a p-type semiconductor layer of rear photoelectric conversion unit 106b crystalline silicon photoelectric conversion layer 106c rear photoelectric conversion unit Part of n-type semiconductor layer and back reflective layer 107 Back electrode layer 121, 123 Separation groove 122 Connection groove

Claims (6)

基板上に中間層を介して直列接続された2つの薄膜光電変換ユニットを少なくとも1組含む多接合薄膜光電変換セルを集積化した集積化多接合薄膜光電変換装置であって、該中間層の材料がn型Si1-XX(但し、0.3<X<0.6)で、かつ、該1組の薄膜光電変換ユニットの少なくとも一方の薄膜光電変換ユニットの一部を構成する該中間層に隣接する中間層隣接p型半導体層の不純物のドーピング量が2500ppm以上、かつ5000ppm以下であることを特徴とする集積化多接合薄膜光電変換装置。 An integrated multijunction thin film photoelectric conversion device in which a multijunction thin film photoelectric conversion cell including at least one pair of two thin film photoelectric conversion units connected in series via an intermediate layer on a substrate is integrated, and the material of the intermediate layer Is n-type Si 1-X O X (where 0.3 <X <0.6), and the intermediate portion constituting a part of at least one thin film photoelectric conversion unit of the one set of thin film photoelectric conversion units An integrated multi-junction thin film photoelectric conversion device characterized in that an impurity doping amount of an intermediate layer adjacent p-type semiconductor layer adjacent to the layer is 2500 ppm or more and 5000 ppm or less. 前記中間層隣接p型半導体層の材料がp型シリコン系半導体であることを特徴とする請求項1に記載の集積化多接合薄膜光電変換装置。   2. The integrated multi-junction thin film photoelectric conversion device according to claim 1, wherein a material of the intermediate layer adjacent p-type semiconductor layer is a p-type silicon-based semiconductor. 硼素が前記中間層隣接p型半導体層に不純物としてドーピングされてなることを特徴する請求項1または2のいずれかに記載の集積化多接合薄膜光電変換装置。   3. The integrated multijunction thin film photoelectric conversion device according to claim 1, wherein boron is doped as an impurity in the p-type semiconductor layer adjacent to the intermediate layer. 前記中間層隣接p型半導体層が前記基板から前記中間層を挟んで形成された薄膜光電変換ユニットの一部を構成してなることを特徴とする請求項1〜3のいずれかに記載の集積化多接合薄膜光電変換装置。   The integration according to claim 1, wherein the intermediate layer adjacent p-type semiconductor layer constitutes a part of a thin film photoelectric conversion unit formed by sandwiching the intermediate layer from the substrate. Multi-junction thin film photoelectric conversion device. 前記1組の薄膜光電変換ユニットの少なくとも基板側の薄膜光電変換ユニットを構成する該中間層に隣接する中間層隣接n型半導体層の材料がn型微結晶シリコンであることを特徴とする請求項1〜4のいずれかに記載の集積化多接合薄膜光電変換装置。   The material of the intermediate layer adjacent n-type semiconductor layer adjacent to the intermediate layer constituting at least the substrate-side thin film photoelectric conversion unit of the set of thin film photoelectric conversion units is n-type microcrystalline silicon. 5. The integrated multijunction thin film photoelectric conversion device according to any one of 1 to 4. 1%〜2.8%の燐が前記中間層隣接n型半導体層に不純物としてドーピングされてなることを特徴する請求項1〜5のいずれかに記載の集積化多接合薄膜光電変換装置。   6. The integrated multi-junction thin film photoelectric conversion device according to claim 1, wherein 1% to 2.8% of phosphorus is doped as an impurity in the intermediate layer adjacent n-type semiconductor layer.
JP2005134251A 2005-05-02 2005-05-02 Integrated multi-junction thin film photoelectric conversion device Pending JP2006310694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134251A JP2006310694A (en) 2005-05-02 2005-05-02 Integrated multi-junction thin film photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134251A JP2006310694A (en) 2005-05-02 2005-05-02 Integrated multi-junction thin film photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2006310694A true JP2006310694A (en) 2006-11-09

Family

ID=37477214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134251A Pending JP2006310694A (en) 2005-05-02 2005-05-02 Integrated multi-junction thin film photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2006310694A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124325A (en) * 2006-11-14 2008-05-29 Kaneka Corp Thin-film photoelectric conversion apparatus, and manufacturing method thereof
JP2009231505A (en) * 2008-03-21 2009-10-08 Sanyo Electric Co Ltd Solar battery
US7648892B2 (en) 2006-06-23 2010-01-19 Applied Materials, Inc. Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
US7741144B2 (en) 2007-11-02 2010-06-22 Applied Materials, Inc. Plasma treatment between deposition processes
US20100282297A1 (en) * 2007-10-30 2010-11-11 Sanyo Electric Co., Ltd. Solar cell
US7875486B2 (en) 2007-07-10 2011-01-25 Applied Materials, Inc. Solar cells and methods and apparatuses for forming the same including I-layer and N-layer chamber cleaning
DE112009002056T5 (en) 2008-08-27 2011-07-14 Mitsubishi Materials Corporation Transparent electrically conductive film for solar cells, composition for transparent electrically conductive films and multiple solar cells
WO2012081592A1 (en) * 2010-12-15 2012-06-21 三洋電機株式会社 Photoelectric conversion device
JP2012243874A (en) * 2011-05-17 2012-12-10 Kaneka Corp Stacked photoelectric conversion device
US8895842B2 (en) 2008-08-29 2014-11-25 Applied Materials, Inc. High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells
EP2161760A3 (en) * 2008-09-05 2015-09-16 Semiconductor Energy Laboratory Co., Ltd. Photoelectric Conversion Device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157483A (en) * 1986-12-22 1988-06-30 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPH01194370A (en) * 1988-01-29 1989-08-04 Nippon Denso Co Ltd Optical power generation device
JP2002237609A (en) * 2001-02-08 2002-08-23 Kanegafuchi Chem Ind Co Ltd Method of manufacturing tandem thin-film solar cell
JP2003258279A (en) * 2002-03-04 2003-09-12 Fuji Electric Co Ltd Multi-junction thin film solar cell and manufacturing thereof
JP2005038907A (en) * 2003-07-15 2005-02-10 Kyocera Corp Integrated photoelectric converter
JP2005093939A (en) * 2003-09-19 2005-04-07 Mitsubishi Heavy Ind Ltd Integrated tandem connection solar cell and manufacturing method of integrated tandem connection solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157483A (en) * 1986-12-22 1988-06-30 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPH01194370A (en) * 1988-01-29 1989-08-04 Nippon Denso Co Ltd Optical power generation device
JP2002237609A (en) * 2001-02-08 2002-08-23 Kanegafuchi Chem Ind Co Ltd Method of manufacturing tandem thin-film solar cell
JP2003258279A (en) * 2002-03-04 2003-09-12 Fuji Electric Co Ltd Multi-junction thin film solar cell and manufacturing thereof
JP2005038907A (en) * 2003-07-15 2005-02-10 Kyocera Corp Integrated photoelectric converter
JP2005093939A (en) * 2003-09-19 2005-04-07 Mitsubishi Heavy Ind Ltd Integrated tandem connection solar cell and manufacturing method of integrated tandem connection solar cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923354B2 (en) 2006-06-23 2011-04-12 Applied Materials, Inc. Methods for depositing a microcrystalline silicon film for a photovoltaic device
US7648892B2 (en) 2006-06-23 2010-01-19 Applied Materials, Inc. Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
US7655542B2 (en) 2006-06-23 2010-02-02 Applied Materials, Inc. Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
JP2008124325A (en) * 2006-11-14 2008-05-29 Kaneka Corp Thin-film photoelectric conversion apparatus, and manufacturing method thereof
US7875486B2 (en) 2007-07-10 2011-01-25 Applied Materials, Inc. Solar cells and methods and apparatuses for forming the same including I-layer and N-layer chamber cleaning
US20100282297A1 (en) * 2007-10-30 2010-11-11 Sanyo Electric Co., Ltd. Solar cell
US7741144B2 (en) 2007-11-02 2010-06-22 Applied Materials, Inc. Plasma treatment between deposition processes
JP2009231505A (en) * 2008-03-21 2009-10-08 Sanyo Electric Co Ltd Solar battery
CN101978512B (en) * 2008-03-21 2012-09-05 三洋电机株式会社 Solar cell
DE112009002056T5 (en) 2008-08-27 2011-07-14 Mitsubishi Materials Corporation Transparent electrically conductive film for solar cells, composition for transparent electrically conductive films and multiple solar cells
US8895842B2 (en) 2008-08-29 2014-11-25 Applied Materials, Inc. High quality TCO-silicon interface contact structure for high efficiency thin film silicon solar cells
EP2161760A3 (en) * 2008-09-05 2015-09-16 Semiconductor Energy Laboratory Co., Ltd. Photoelectric Conversion Device
WO2012081592A1 (en) * 2010-12-15 2012-06-21 三洋電機株式会社 Photoelectric conversion device
JP2012243874A (en) * 2011-05-17 2012-12-10 Kaneka Corp Stacked photoelectric conversion device

Similar Documents

Publication Publication Date Title
JP4811945B2 (en) Thin film photoelectric converter
JP2006310694A (en) Integrated multi-junction thin film photoelectric conversion device
Lambertz et al. Microcrystalline silicon–oxygen alloys for application in silicon solar cells and modules
JP4257332B2 (en) Silicon-based thin film solar cell
KR101247916B1 (en) Photovoltaic modules and methods for manufacturing photovoltaic modules having tandem semiconductor layer stacks
US7550665B2 (en) Stacked photoelectric converter
JP4063735B2 (en) Thin film photoelectric conversion module including stacked photoelectric conversion device
JP2003273383A (en) Solar cell element and manufacturing method therefor
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
JP2005135987A (en) Stacked photoelectric conversion device and its manufacturing method
JP2007305826A (en) Silicon-based thin film solar cell
JP2007035914A (en) Thin film photoelectric converter
US20070251573A1 (en) Photoelectric Converter
JP4886746B2 (en) Manufacturing method of stacked photoelectric conversion device
JP2009147172A (en) Multi-junction silicon thin-film photoelectric converter
JP2005135986A (en) Laminated optoelectric transducer
JP2008060605A (en) Stacked photoelectric converter
JP2003298090A (en) Solar cell element and its fabricating method
JP2669834B2 (en) Stacked photovoltaic device
JP4911878B2 (en) Semiconductor / electrode contact structure and semiconductor element, solar cell element, and solar cell module using the same
JP4283849B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP2011216586A (en) Laminated photoelectric conversion device and method of manufacturing the same
JP2012023257A (en) Manufacturing method of integral thin film photoelectric conversion device
JP2010283162A (en) Solar cell and method for manufacturing the same
JP2010080672A (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019