JPH0779004A - Thin film solar cell - Google Patents

Thin film solar cell

Info

Publication number
JPH0779004A
JPH0779004A JP5222680A JP22268093A JPH0779004A JP H0779004 A JPH0779004 A JP H0779004A JP 5222680 A JP5222680 A JP 5222680A JP 22268093 A JP22268093 A JP 22268093A JP H0779004 A JPH0779004 A JP H0779004A
Authority
JP
Japan
Prior art keywords
layer
transparent electrode
substrate
electrode layer
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5222680A
Other languages
Japanese (ja)
Inventor
Takaoki Sasaki
隆興 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5222680A priority Critical patent/JPH0779004A/en
Publication of JPH0779004A publication Critical patent/JPH0779004A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To shorten a time required for forming a film by making a through hole and connecting mutually between first transparent electrode layers on facing surfaces of unit cells and between a second transparent electrode layer of the unit cell on one surface and a back surface electrode layer of a unit cell adjacent to the unit cell on the other surface. CONSTITUTION:A first transparent electrode film of a unit cell between a metal electrode film 6 and a first transparent electrode film 2 at the bottom of a substrate 1 is connected to a second transparent electrode film 12 of a unit cell between the first and second transparent electrode films 2 and 12 existing at the top, with an adjacent substrate 1 of the unit cell held, by means of the second transparent electrode film 12 filled into the first transparent electrode film 2 and the separation part 83 which are connected by a through hole 7. And each unit cell is connected in series by linking the first transparent electrode film 2 via the through hole 7 to the first transparent electrode 2 of the unit cell lying directly below. Since this makes it possible to form unit cells on both surfaces of the substrate 1, simultaneously, film-forming time can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、可とう性基板上に形成
した非晶質半導体などの接合により太陽光などの光エネ
ルギーを電気エネルギーに変換する薄膜太陽電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film solar cell for converting light energy such as sunlight into electric energy by bonding an amorphous semiconductor or the like formed on a flexible substrate.

【0002】[0002]

【従来の技術】原料ガスをプラズマCVD法、光CVD
法あるいは熱CVD法によって分解することにより形成
される非晶質シリコン (a−Si) 太陽電池は、薄膜化や
大面積化が容易という特長をもち、低コスト太陽電池と
して期待されている。この種の太陽電池の構造としては
a−Si薄膜のpin接合を有するものが一般的である。
a−Si太陽電池の変換効率を向上させる一つの方法とし
て、i層の光学ギャップの異なる複数のpin接合構造
を積重ねてタンデム構造にすることが挙げられる。図2
はその構造の一例を示し、透光性絶縁基板11の上に透明
電極2を介してそれぞれi層41、42をp層3および5に
よってはさんだpin接合構造が積重ねられ、最上面に
金属電極6が形成されている。この場合、光入射面に近
いi層41をi層42より光学ギャップの大きい、例えばC
をあるいはOを含むa−Si層で形成する。一方、一つの
pin接合構造で得られる出力電圧は1Vより低いた
め、高い出力電圧を得るには、1枚の基板上の薄膜太陽
電池を複数のユニットセルに分割し、これを直列接続す
ることが行われる。これは、図3に示すように透光性絶
縁基板11上に、酸化すずやITO、ZnOなどの透明導電
材料の薄膜からなる透明電極21、22、23─を短冊状に形
成し、その上に光起電力発生部であるpin接合構造を
もつa−Si層領域31、32、33─を、次いでAlやAgなどの
金属薄膜からなる金属電極61、62、63─を形成したもの
である。そして、透明電極21、a−Si層31および金属電
極61の組合わせ、透明電極22、a−Si層32および金属電
極62の組合わせ等が各ユニットセルを構成する。一つの
ユニットセルの金属電極の延長部が隣接するユニットセ
ルの透明電極の縁部と接触するように両電極およびa−
Si層のパターンが形成されて、各ユニットセルは直列に
接続される。このような太陽電池の直列接続構造の形成
は最も一般的には、各層をそれぞれ全面に被着したの
ち、その都度レーザスクライビング法によりパターニン
グすることにより行われる。
2. Description of the Related Art A raw material gas is a plasma CVD method or an optical CVD method.
Amorphous silicon (a-Si) solar cells formed by decomposing by a CVD method or a thermal CVD method have the feature that they can be easily thinned and have a large area, and are expected as low-cost solar cells. The structure of this type of solar cell generally has a pin junction of an a-Si thin film.
One method for improving the conversion efficiency of an a-Si solar cell is to stack a plurality of pin junction structures having different optical gaps in the i layer to form a tandem structure. Figure 2
Shows an example of the structure, in which a pin junction structure in which the i layers 41 and 42 are sandwiched by the p layers 3 and 5 with the transparent electrode 2 interposed therebetween is stacked on the transparent insulating substrate 11, and the metal electrode is formed on the uppermost surface. 6 is formed. In this case, the i layer 41 near the light incident surface has a larger optical gap than the i layer 42, for example, C
Or an a-Si layer containing O. On the other hand, the output voltage obtained with one pin junction structure is lower than 1V. Therefore, to obtain a high output voltage, divide the thin-film solar cell on one substrate into multiple unit cells and connect them in series. Is done. As shown in FIG. 3, transparent electrodes 21, 22, 23 are formed on the translucent insulating substrate 11 and are made of a thin film of a transparent conductive material such as tin oxide or ITO or ZnO. The a-Si layer regions 31, 32, 33 having a pin junction structure which is a photovoltaic generation portion are formed, and then the metal electrodes 61, 62, 63 made of a metal thin film such as Al or Ag are formed. Then, the combination of the transparent electrode 21, the a-Si layer 31, and the metal electrode 61, the combination of the transparent electrode 22, the a-Si layer 32, and the metal electrode 62, and the like constitute each unit cell. Both electrodes and a- so that the extension of the metal electrode of one unit cell is in contact with the edge of the transparent electrode of the adjacent unit cell.
A pattern of the Si layer is formed and each unit cell is connected in series. The formation of such a series connection structure of solar cells is most generally performed by depositing each layer on the entire surface and then patterning by a laser scribing method each time.

【0003】また、基板に剛性のガラス板ではなく、耐
熱性を有する高分子フィルムのような可とう性基板を用
いた薄膜太陽電池は、曲面上に設置可能なこと、軽量、
取扱の容易などの利点をもつものとして注目されてい
る。
Further, a thin film solar cell using a flexible substrate such as a polymer film having heat resistance instead of a rigid glass plate as a substrate is capable of being installed on a curved surface, is lightweight,
It is attracting attention as having advantages such as easy handling.

【0004】[0004]

【発明が解決しようとする課題】しかし、多層構造型の
薄膜太陽電池は、pin接合構造を複数面積層とするた
め、成膜にかかる時間が長くなり、低コスト化を進める
ためには大きな障害となっていた。また、薄膜太陽電池
を可とう性基板上に堆積させユニットセルを直列に接続
する構造においては、次のような問題が存在する。可と
う性基板上に積層されたa−Si層あるいは透明電極膜と
その基板の応力の違いにより、膜を付けた後にフィルム
自体が歪み、この影響でパターニングによる切断面で金
属電極等のショートが起こり太陽電池としての効率が落
ちてしまう。
However, since the multi-layer structure type thin film solar cell has a pin junction structure having a plurality of area layers, it takes a long time to form a film, which is a major obstacle to cost reduction. It was. Further, in the structure in which the thin film solar cells are deposited on the flexible substrate and the unit cells are connected in series, there are the following problems. Due to the difference in stress between the a-Si layer or the transparent electrode film laminated on the flexible substrate and the substrate, the film itself is distorted after the film is applied, and due to this effect, a short circuit such as a metal electrode occurs at the cut surface due to patterning. It occurs and the efficiency as a solar cell falls.

【0005】本発明の目的は、上記の問題を解決し、可
とう性基板とその上の積層構造との応力の違いによる歪
みが生ぜず、さらに成膜時間を長くすることなく形成さ
れる二層構造をもつ、低コストで高効率の薄膜太陽電池
を提供することにある。
An object of the present invention is to solve the above problems, to prevent distortion due to a difference in stress between a flexible substrate and a laminated structure on the flexible substrate, and to form the film without increasing the film formation time. It is to provide a low-cost, high-efficiency thin-film solar cell having a layered structure.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、可とう性の透光性絶縁基板の一面上に
基板側から第一透明電極層、光電変換半導体層、第二透
明電極層を順次積層してなるユニットセルを複数個、他
面上に基板側から第一透明電極層、光電変換半導体層、
背面電極層を順次積層してなるユニットセルの複数個を
有し、対向する両面上のユニットセルの第一透明電極層
相互間および一面上のユニットセルの第二透明電極層と
他面上のユニットセルに隣接するユニットセルの背面電
極層との間が、それぞれ基板に開けられた貫通孔を対向
する内面に接して通じ、互いに絶縁された導体を介して
接続されたものとする。基板に開けられた貫通孔を通ず
る導体が基板上に形成された透明導電材料層の延長部で
あることが良い。第二透明電極層と背面電極層との接続
が、第二透明電極層および背面電極層の基板に達する延
長部と、基板両面上に形成された透明導電材料層と、そ
の透明導電材料層の一方あるいは双方の基板に開けられ
た貫通孔内への延長部とによって行われ、基板の両面上
に形成された透明導電材料層と光電変換層とが透光性で
絶縁性ないし高抵抗性の材料によって実質的に絶縁され
たことが有効である。また、基板の一側の第一透明電極
層と第二透明電極層とにはさまれた光電変換半導体層の
うちの真性層が、他側の第一透明電極層と背面電極層と
にはさまれた光電変換半導体層のうちの真性層より光学
ギャップの大きい半導体よりなることが目的に合ってい
る。基板の両面に形成されるユニットセルの分割線が、
基板をはさんで対向する位置にあることも有効である。
In order to achieve the above-mentioned object, the present invention provides a first transparent electrode layer, a photoelectric conversion semiconductor layer, a first transparent electrode layer, a photoelectric conversion semiconductor layer, and a first transparent electrode layer on a surface of a flexible transparent insulating substrate from the substrate side. A plurality of unit cells formed by sequentially stacking two transparent electrode layers, the first transparent electrode layer from the substrate side on the other surface, the photoelectric conversion semiconductor layer,
It has a plurality of unit cells formed by sequentially laminating back electrode layers, and between the first transparent electrode layers of the unit cells on opposite sides of the unit cell and between the second transparent electrode layers of the unit cells on one side and the other side. It is assumed that the unit cell and the back electrode layer of the unit cell adjacent to the unit cell are connected to each other through the conductors insulated from each other through the through holes formed in the substrate in contact with the inner surfaces facing each other. The conductor passing through the through hole formed in the substrate may be an extension of the transparent conductive material layer formed on the substrate. The connection between the second transparent electrode layer and the back electrode layer is an extension of the second transparent electrode layer and the back electrode layer reaching the substrate, the transparent conductive material layer formed on both sides of the substrate, and the transparent conductive material layer. The transparent conductive material layer and the photoelectric conversion layer formed on both surfaces of the substrate are transparent and insulative or have high resistance. It is effective that the material is substantially insulated. In addition, the intrinsic layer of the photoelectric conversion semiconductor layer sandwiched between the first transparent electrode layer and the second transparent electrode layer on one side of the substrate, and the first transparent electrode layer and the back electrode layer on the other side are It is suitable to use a semiconductor having a larger optical gap than the intrinsic layer of the sandwiched photoelectric conversion semiconductor layers. The dividing line of the unit cell formed on both sides of the substrate,
It is also effective that they are located opposite to each other with the substrate sandwiched therebetween.

【0007】[0007]

【作用】可とう性の透光性基板の両面に光電変換半導体
層を電極層ではさんだ構造が形成され、基板との応力差
が均衡して歪みが生じない。また、電極層が背面電極層
を除いて透明であるため、前面側から入射し基板を通過
する光に対し、双方の光電変換層が光エネルギーを電気
エネルギーに換える機能をもつため、基板の貫通孔を通
ずる導体を介して両面のセルの第一透明電極層相互間を
接続することにより、二つのユニットセルを積層したタ
ンデム構造と同等となり、特に光入射側の太陽電池の光
電変換半導体層のi層の光学ギャップを大きくしておく
ことにより、高い変換効率が得られる。そして、基板一
面上のユニットセルの第二透明電極層と基板他面上のユ
ニットセルの背面電極層との間を一つずらして基板の貫
通孔を通ずる別の導体により接続することにより、この
ような2個積層太陽電池を直列接続することも容易にで
きる。そのような基板の貫通孔を通ずる導体を透明導電
材料によって形成するならば、透明電極層と同時に形成
できる利点が生ずる。その場合、この透明導電材料層が
ユニットセルの両極を短絡するのを避けるためには、透
明導電材料層と光電変換半導体層および両第一透明電極
層とを絶縁層あるいは高抵抗層によって絶縁しておく。
この絶縁層あるいは高抵抗層が透光性であるため、その
上の光電変換半導体層は発電に寄与し、無効面積となら
ない。基板をはさむユニットセルの分割線が対称の位置
にあれば一方向から入射し、透光性基板を通るレーザ光
によりそれぞれ基板両面上にある二つの層の同時分割パ
ターニングが可能である。さらに、基板両面の光電変換
半導体層の同時形成も可能で、成膜時間を短くすること
ができる。
The structure in which the photoelectric conversion semiconductor layer is sandwiched by the electrode layers is formed on both surfaces of the flexible transparent substrate, and the stress difference with the substrate is balanced to prevent distortion. In addition, since the electrode layers are transparent except for the back electrode layer, both photoelectric conversion layers have the function of converting light energy into electrical energy for the light that enters from the front side and passes through the substrate. By connecting between the first transparent electrode layers of the cells on both sides via a conductor passing through the hole, it becomes equivalent to a tandem structure in which two unit cells are laminated, and especially for the photoelectric conversion semiconductor layer of the solar cell on the light incident side. By increasing the optical gap of the i layer, high conversion efficiency can be obtained. Then, by shifting one between the second transparent electrode layer of the unit cell on one surface of the substrate and the back electrode layer of the unit cell on the other surface of the substrate, and connecting by another conductor passing through the through hole of the substrate, It is also easy to connect two such stacked solar cells in series. If the conductor passing through the through hole of such a substrate is formed of a transparent conductive material, there is an advantage that it can be formed simultaneously with the transparent electrode layer. In that case, in order to prevent this transparent conductive material layer from short-circuiting both electrodes of the unit cell, the transparent conductive material layer and the photoelectric conversion semiconductor layer and both first transparent electrode layers are insulated by an insulating layer or a high resistance layer. Keep it.
Since the insulating layer or the high resistance layer is transparent, the photoelectric conversion semiconductor layer on the insulating layer or the high resistance layer contributes to power generation and does not become an ineffective area. If the dividing lines of the unit cell sandwiching the substrate are in symmetrical positions, it is possible to perform simultaneous division patterning of two layers respectively on both surfaces of the substrate by incidence from one direction and laser light passing through the transparent substrate. Furthermore, the photoelectric conversion semiconductor layers on both surfaces of the substrate can be simultaneously formed, and the film formation time can be shortened.

【0008】[0008]

【実施例】図1(a) 〜(f) は、本発明の一実施例の薄膜
太陽電池の製造工程を順に示し、図2、図3と共通の部
分には同一の符号が付されている。可とう性の透光性絶
縁基板1としては、ポリエーテルサルホン、ポリエチレ
ンナフタレートあるいはポリエチレンテレフタレート等
の高分子フィルムが用いられ、この基板1に半径0.5mm
の小孔7を明けたのち、基板1の両面に第一透明電極と
なる透明導電膜2を堆積させる。この際、貫通孔7の内
壁にも透明導電膜2が付着する。次いで、YAGレーザ
光を一方から入射して両面の同じ位置で第一透明電極膜
2、貫通孔7の中間の部分81および貫通孔7の一方の
端、図では左の端近くを結ぶ部分82を除去して第一透明
電極膜2を分離する〔図1(a) 〕。ただし、分離部82は
貫通孔7の上ではつながっていないが、貫通孔7の内面
を通って反対面側の分離部82につながっている。貫通孔
7は、例えばパンチを用いて機械的に、あるいはレーザ
光を用いて熱的に図4に示すように分散して明ける。貫
通孔7の形状は、透明導電膜2の内壁への付着が良好に
なるように長円形あるいは周囲長がなるべく大きくなる
ような形状にすることも有効である。透明導電膜2に
は、SnO2 、ITOあるいはZnOを単層あるいは多層構
造で用い、成膜はスパッタ法あるいは蒸着法で行う。次
に、マスクを用いて透光性の樹脂などからなる透光性絶
縁層9により貫通孔7を充填したのち、絶縁層9が貫通
孔7の上から一方の側だけに延びるようにパターニング
する〔図1(b) 〕。しかし、実質的に絶縁することがで
きれば、絶縁層の代わりに透光性の高抵抗材料の膜をス
パッタあるいは蒸着により形成することもできる。
1 (a) to 1 (f) show in sequence the steps of manufacturing a thin-film solar cell according to an embodiment of the present invention, and the same parts as those in FIGS. 2 and 3 are designated by the same reference numerals. There is. As the flexible transparent insulating substrate 1, a polymer film such as polyether sulfone, polyethylene naphthalate or polyethylene terephthalate is used, and this substrate 1 has a radius of 0.5 mm.
After the small holes 7 are opened, the transparent conductive film 2 serving as the first transparent electrode is deposited on both surfaces of the substrate 1. At this time, the transparent conductive film 2 also adheres to the inner wall of the through hole 7. Then, a YAG laser beam is incident from one side, and the first transparent electrode film 2, the intermediate portion 81 of the through hole 7 and one end of the through hole 7, at a same position on both surfaces, a portion 82 that connects near the left end in the figure. To remove the first transparent electrode film 2 [FIG. 1 (a)]. However, the separating portion 82 is not connected on the through hole 7, but is connected to the separating portion 82 on the opposite surface side through the inner surface of the through hole 7. The through holes 7 can be opened mechanically by using a punch or thermally by using a laser beam as shown in FIG. It is also effective to make the shape of the through hole 7 an elliptical shape or a shape in which the perimeter is as large as possible so that the transparent conductive film 2 can be adhered to the inner wall of the transparent conductive film 2 well. For the transparent conductive film 2, SnO 2 , ITO or ZnO is used in a single layer or a multi-layer structure, and the film is formed by a sputtering method or a vapor deposition method. Next, the through hole 7 is filled with a transparent insulating layer 9 made of a transparent resin using a mask, and then the insulating layer 9 is patterned so as to extend from above the through hole 7 to only one side. [Fig. 1 (b)]. However, if substantially insulating, a film of a translucent high-resistance material can be formed by sputtering or vapor deposition instead of the insulating layer.

【0009】次の工程は、a−Si層のpin構造を両面
に形成する。基板1の上面上にn形a−Siからなるn層
5、a−SiCあるいはa−SiOからなるi層41、p形a
−Siからなるp層3を積層し、下面上にp形a−Siから
なるp層3、a−Siからなるi層42、n形a−Siからな
るn層5を積層する〔図1(c) 〕。この積層は、基板1
で分離される二つの反応室を用いることにより、プラズ
マCVD法で同時に行うことができる。また、両面上の
pin構造の層の順をいずれも逆にすることもできる。
In the next step, the pin structure of the a-Si layer is formed on both sides. On the upper surface of the substrate 1, an n-layer 5 made of n-type a-Si, an i-layer 41 made of a-SiC or a-SiO, a p-type a
The p layer 3 made of -Si is laminated, and the p layer 3 made of p-type a-Si, the i layer 42 made of a-Si, and the n layer 5 made of n-type a-Si are laminated on the lower surface [Fig. (c)]. This stack is the substrate 1
By using the two reaction chambers separated by, it is possible to perform the plasma CVD method simultaneously. In addition, the order of the pin structure layers on both surfaces can be reversed.

【0010】このあと、両面の第一透明電極膜の分離部
81の上に積層されたpin構造のa−Si層30に一方向か
らレーザ光を照射し、分離部81より少し絶縁層9の方に
ずれた位置で切断し、分離部83を形成する〔図1(d)
〕。レーザ光は、a−Si層のn層、i層、p層のみを
切断し、第一透明電極膜2および絶縁体層9はそのまま
の状態を保つことになる。次いで、光入射側に第二透明
電極膜12を堆積させ、同時に基板の反対側に金属電極膜
6を堆積させ、両面の分離部83にも充填させる〔図1
(e) 〕。第二透明電極膜12にはSnO2 やITO、ZnO等
が使用でき、金属電極膜6にはAg、Al、Cr等の低抵抗導
電膜を単体あるいは複数組合わせた形で使用できる。分
離部83を充填した第二透明電極膜12および金属電極膜6
は、第一透明電極膜2と絶縁体層9あるいはa−Si層30
によって絶縁されている。
After this, the separating portion of the first transparent electrode film on both sides
The pin structure a-Si layer 30 laminated on 81 is irradiated with laser light from one direction and cut at a position slightly displaced from the separating portion 81 toward the insulating layer 9 to form a separating portion 83 [ Figure 1 (d)
]. The laser light cuts only the n-layer, the i-layer, and the p-layer of the a-Si layer, and the first transparent electrode film 2 and the insulator layer 9 are kept as they are. Then, the second transparent electrode film 12 is deposited on the light incident side, and at the same time, the metal electrode film 6 is deposited on the opposite side of the substrate, and the separating portions 83 on both sides are also filled [FIG.
(e)]. The second transparent electrode film 12 can be made of SnO 2 , ITO, ZnO or the like, and the metal electrode film 6 can be made of a low resistance conductive film such as Ag, Al or Cr alone or in combination. The second transparent electrode film 12 and the metal electrode film 6 filled with the separating portion 83
Is the first transparent electrode film 2 and the insulator layer 9 or the a-Si layer 30.
Is insulated by.

【0011】さらに、図1(e) で形成した第二透明電極
膜12と金属電極膜6をそれぞれレーザにより分離部84、
85で切断してユニットセル間の分離を行う〔図1(f)
〕。第二透明電極膜12の分離部84は、第一透明電極膜
2の分離部81の位置に形成され、金属電極膜6の分離部
85は絶縁体層9の上に形成される。この結果、図におい
て基板1の下部に存在する金属電極膜6と第一透明電極
膜2の間にあるユニットセルの第一透明電極膜が、貫通
孔7内でつながる第一透明電極膜2および分離部83に充
填した第二透明電極膜12により、隣接するユニットセル
の基板1をはさんで上部に存在する第一、第二透明電極
膜2、12の間にあるユニットセルの第二透明電極膜12に
接続され、そのユニットセルの第一透明電極膜2は貫通
孔7を通って直下にあるユニットセルの第一透明電極膜
2と連結されているため、各ユニットセルが直列接続さ
れる。すなわち、基板は両面に形成されたバンドギャッ
プの広いa−SiCなどからなるi層41を有するユニット
セルと、a−Siからなるi層42を有するユニットセルが
直列接続されるので、図3に示したタンデム構造と同一
構成ができ上がり、さらにそれが基板1の板面方向で直
列接続されることになる。
Further, the second transparent electrode film 12 and the metal electrode film 6 formed in FIG.
Cut at 85 to separate unit cells [Fig. 1 (f)
]. The separation part 84 of the second transparent electrode film 12 is formed at the position of the separation part 81 of the first transparent electrode film 2, and the separation part 84 of the metal electrode film 6 is formed.
85 is formed on the insulator layer 9. As a result, in the figure, the first transparent electrode film of the unit cell existing between the metal electrode film 6 and the first transparent electrode film 2 existing under the substrate 1 is connected to the first transparent electrode film 2 in the through hole 7 and The second transparent electrode film 12 filled in the separating portion 83 sandwiches the substrate 1 of the adjacent unit cell, and the second transparent electrode of the unit cell between the first and second transparent electrode films 2 and 12 existing above. The unit cell is connected in series because the first transparent electrode film 2 of the unit cell connected to the electrode film 12 is connected to the first transparent electrode film 2 of the unit cell immediately below through the through hole 7. It That is, since the unit cell having the i layer 41 made of a-SiC or the like having a wide band gap formed on both sides of the substrate and the unit cell having the i layer 42 made of a-Si are connected in series, the substrate shown in FIG. The same configuration as the tandem structure shown is completed, and it is further connected in series in the plate surface direction of the substrate 1.

【0012】[0012]

【発明の効果】本発明によれば、半導体層および透明電
極層からなるユニットセルを、基板の両面に同時に形成
できることから成膜に有する時間の短縮が図られる。さ
らに、基板両面のユニットセルからなるタンデム型の多
層構造が実現でき、その直列接続構造を容易にできるの
で、高効率の薄膜太陽電池が低コストで作製可能とな
る。また、可とう性基板の両面に半導体層および透明電
極層を堆積させることで、基板の歪みの発生を防止する
ことができる。そのほか、両面の半導体層および透明電
極層を同時にレーザパターニングすることで、工程を簡
素化することを可能にする効果がある。
According to the present invention, a unit cell including a semiconductor layer and a transparent electrode layer can be simultaneously formed on both surfaces of a substrate, so that the time required for film formation can be shortened. Furthermore, a tandem type multilayer structure composed of unit cells on both sides of the substrate can be realized and the series connection structure thereof can be facilitated, so that a highly efficient thin film solar cell can be manufactured at low cost. Further, by depositing the semiconductor layer and the transparent electrode layer on both surfaces of the flexible substrate, it is possible to prevent distortion of the substrate. In addition, simultaneous laser patterning of the semiconductor layer and the transparent electrode layer on both sides has the effect of simplifying the process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜太陽電池の製造工程を
(a) から(f) の順に示す断面図
FIG. 1 shows a manufacturing process of a thin film solar cell according to an embodiment of the present invention.
Sectional views shown in order from (a) to (f)

【図2】従来のタンデム構造薄膜太陽電池の断面図FIG. 2 is a cross-sectional view of a conventional tandem structure thin film solar cell.

【図3】従来の直列接続型薄膜太陽電池の断面図FIG. 3 is a cross-sectional view of a conventional series-connected thin-film solar cell.

【図4】図1の薄膜太陽電池の透視平面図4 is a perspective plan view of the thin-film solar cell of FIG.

【符号の説明】[Explanation of symbols]

1 可とう性透光性絶縁基板 2 第一透明電極膜 12 第二透明電極膜 3 pa−Si層 41 ia−SiC層 42 ia−Si層 5 na−Si層 6 金属電極膜 7 貫通孔 82、83、84、85 分離部 9 絶縁体層 1 flexible transparent insulating substrate 2 first transparent electrode film 12 second transparent electrode film 3 pa-Si layer 41 ia-SiC layer 42 ia-Si layer 5 na-Si layer 6 metal electrode film 7 through hole 82, 83, 84, 85 Separation part 9 Insulator layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】可とう性の透光性絶縁基板の一面上に基板
側から第一透明電極層、光電変換半導体層、第二透明電
極層を順次積層してなるユニットセルを複数個、他面上
に基板側から第一透明電極層、光電変換半導体層、背面
電極層を順次積層してなるユニットセルを複数個有し、
対向する両面上のユニットセルの第一透明電極層相互間
および一面上のユニットセルの第二透明電極層と他面上
のユニットセルに隣接するユニットセルの背面電極層と
の間が、それぞれ基板に開けられた貫通孔の対向する内
面に接して通じ、互いに絶縁された導体を介して接続さ
れたことを特徴とする薄膜太陽電池。
1. A plurality of unit cells in which a first transparent electrode layer, a photoelectric conversion semiconductor layer, and a second transparent electrode layer are sequentially laminated on one surface of a flexible transparent insulating substrate from the substrate side, and the like. A plurality of unit cells formed by sequentially stacking a first transparent electrode layer, a photoelectric conversion semiconductor layer, and a back electrode layer on the surface from the substrate side,
Substrates are provided between the first transparent electrode layers of the unit cells on opposite sides, and between the second transparent electrode layers of the unit cells on one side and the back electrode layers of the unit cells adjacent to the unit cells on the other side. A thin-film solar cell, characterized in that the thin-film solar cells are in contact with the inner surfaces of the through-holes opened in the opposite sides of the through-holes and are connected via conductors insulated from each other.
【請求項2】基板に開けられた貫通孔を通ずる導体が基
板上に形成された透明導電材料層の延長部である請求項
1記載の薄膜太陽電池。
2. The thin film solar cell according to claim 1, wherein the conductor passing through the through hole formed in the substrate is an extension of the transparent conductive material layer formed on the substrate.
【請求項3】第二透明電極層と背面電極層との接続が、
第二透明電極層および背面電極層の基板に達する延長部
と、基板の両面上に形成された透明導電材料層と、その
透明導電材料層の一方あるいは双方の基板に開けられた
貫通孔内への延長部とによって行われ、基板の両面上に
形成された透明導電材料層と光電変換半導体層とが透光
性で絶縁性ないし高抵抗性の材料よりなる層によって実
質的に絶縁された請求項1あるいは2記載の薄膜太陽電
池。
3. The connection between the second transparent electrode layer and the back electrode layer,
An extension of the second transparent electrode layer and the back electrode layer that reaches the substrate, a transparent conductive material layer formed on both sides of the substrate, and a through hole formed in one or both of the transparent conductive material layers. And the photoelectric conversion semiconductor layer formed on both surfaces of the substrate and the photoelectric conversion semiconductor layer are substantially insulated by a layer made of a translucent, insulative or high-resistance material. Item 1. A thin film solar cell according to item 1 or 2.
【請求項4】基板の一側の第一透明電極層と第二透明電
極層とにはさまれた光電変換半導体層のうちの真性層
が、他側の第一透明電極層と背面電極層とにはさまれた
光電変換半導体層のうちの真性層より光学ギャップの大
きい半導体よりなる請求項1ないし3のいずれかに記載
の薄膜太陽電池。
4. The intrinsic layer of the photoelectric conversion semiconductor layer sandwiched between the first transparent electrode layer and the second transparent electrode layer on one side of the substrate is the first transparent electrode layer and the back electrode layer on the other side. The thin-film solar cell according to claim 1, wherein the thin-film solar cell is made of a semiconductor having a larger optical gap than the intrinsic layer of the photoelectric conversion semiconductor layers sandwiched between the semiconductor layers.
【請求項5】基板の両面に形成されるユニットセルの分
割線が、基板をはさんで対向する位置にある請求項1な
いし4のいずれかに記載の薄膜太陽電池。
5. The thin-film solar cell according to claim 1, wherein the dividing lines of the unit cells formed on both sides of the substrate are at positions facing each other across the substrate.
JP5222680A 1993-09-08 1993-09-08 Thin film solar cell Pending JPH0779004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5222680A JPH0779004A (en) 1993-09-08 1993-09-08 Thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5222680A JPH0779004A (en) 1993-09-08 1993-09-08 Thin film solar cell

Publications (1)

Publication Number Publication Date
JPH0779004A true JPH0779004A (en) 1995-03-20

Family

ID=16786243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5222680A Pending JPH0779004A (en) 1993-09-08 1993-09-08 Thin film solar cell

Country Status (1)

Country Link
JP (1) JPH0779004A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016595A (en) * 2006-07-05 2008-01-24 Nikkeikin Aluminium Core Technology Co Ltd Solar power generation apparatus
JP2009259926A (en) * 2008-04-15 2009-11-05 Mitsubishi Electric Corp Solar cell
WO2010107033A1 (en) * 2009-03-18 2010-09-23 三菱電機株式会社 Photoelectric conversion device and production method therefor
JP2010232563A (en) * 2009-03-27 2010-10-14 National Institute Of Advanced Industrial Science & Technology Multi-junction optical element
JP2011181818A (en) * 2010-03-03 2011-09-15 Sharp Corp Tandem type solar cell
JP2012504350A (en) * 2008-09-29 2012-02-16 シンシリコン・コーポレーション Integrated solar module
EP2790230A3 (en) * 2009-08-27 2015-01-14 National Institute of Advanced Industrial Science and Technology Integrated multi-junction photovoltaic device, and processes for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016595A (en) * 2006-07-05 2008-01-24 Nikkeikin Aluminium Core Technology Co Ltd Solar power generation apparatus
JP2009259926A (en) * 2008-04-15 2009-11-05 Mitsubishi Electric Corp Solar cell
JP2012504350A (en) * 2008-09-29 2012-02-16 シンシリコン・コーポレーション Integrated solar module
WO2010107033A1 (en) * 2009-03-18 2010-09-23 三菱電機株式会社 Photoelectric conversion device and production method therefor
JP5518045B2 (en) * 2009-03-18 2014-06-11 三菱電機株式会社 Photoelectric conversion device and manufacturing method thereof
US8766085B2 (en) 2009-03-18 2014-07-01 Mitsubishi Electric Corporation Photoelectric conversion device and method of manufacturing the same
JP2010232563A (en) * 2009-03-27 2010-10-14 National Institute Of Advanced Industrial Science & Technology Multi-junction optical element
EP2790230A3 (en) * 2009-08-27 2015-01-14 National Institute of Advanced Industrial Science and Technology Integrated multi-junction photovoltaic device, and processes for producing same
JP2011181818A (en) * 2010-03-03 2011-09-15 Sharp Corp Tandem type solar cell

Similar Documents

Publication Publication Date Title
US5527716A (en) Method of making integrated-circuit stacked-cell solar module
US5348589A (en) Solar cell and method of forming the same
JPS62221167A (en) Multilayer thin film solar battery
WO2010026849A1 (en) Integrated thin film solar cell
KR20050094406A (en) Transparent thin-film solar cell module and its manufacturing method
KR20070098723A (en) Photovoltaic module
JP3449155B2 (en) Photoelectric conversion device and method of manufacturing the same
KR101161378B1 (en) Thin-film type solar cell having white reflective media layer and fabricating method thereof
JP2002261308A (en) Thin-film photoelectric conversion module
JP2986875B2 (en) Integrated solar cell
JP3755048B2 (en) Integrated thin film tandem solar cell and manufacturing method thereof
JP3815875B2 (en) Manufacturing method of integrated thin film photoelectric conversion device
WO2008026581A1 (en) Solar battery module
CN113178501A (en) Flexible photovoltaic module and preparation method thereof
US20100186796A1 (en) Solar cell module and method for manufacturing the same
JPH0779004A (en) Thin film solar cell
JP2680582B2 (en) Method for manufacturing photovoltaic device
JPH1126795A (en) Manufacture of integrated thin film solar cell
JP4261169B2 (en) Translucent thin film solar cell and method for producing translucent thin film solar cell module
CN110246965A (en) A kind of large area perovskite solar cell component and preparation method thereof
CN114429995A (en) Solar cell module with laminated structure
JPH07297436A (en) Thin film solar battery sub-module and thin film solar battery module
US11978816B2 (en) Thin film device with additional conductive lines and method for producing it
JP3278535B2 (en) Solar cell and method of manufacturing the same
JPH0650997Y2 (en) Translucent solar cell