JPH1126795A - Manufacture of integrated thin film solar cell - Google Patents

Manufacture of integrated thin film solar cell

Info

Publication number
JPH1126795A
JPH1126795A JP9173871A JP17387197A JPH1126795A JP H1126795 A JPH1126795 A JP H1126795A JP 9173871 A JP9173871 A JP 9173871A JP 17387197 A JP17387197 A JP 17387197A JP H1126795 A JPH1126795 A JP H1126795A
Authority
JP
Japan
Prior art keywords
electrode layer
layer
solar cell
film solar
integrated thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9173871A
Other languages
Japanese (ja)
Inventor
Katsuhiko Hayashi
克彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP9173871A priority Critical patent/JPH1126795A/en
Publication of JPH1126795A publication Critical patent/JPH1126795A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To obtain a solder cell which prevents the series resistance at a connection of a first and third electrode layers from increasing, and provides a high efficiency and reliability. SOLUTION: The method comprises electrically serially connecting solar cells divided by straight substantially mutually parallel division to form the cells with a first electrode layer 2; semiconductor photoelectric conversion layer 3, and second electrode layer 4 and third electrode layer 5 formed on a transparent insulation substrate 1, wherein a laser beam irradiation 72 forms connecting openings 7 of the laminate of the conversion layer 3 and electrode layer 4 for connecting the first layer 2 to the electrode layer 5 of the adjacent cells. This enhances the adhesion of the third layer 5 to the openings 7 and mechanical strength. By the crystallization round the openings 7 the more reduction of the series resistance is expectable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は薄膜太陽電池に関
し、特に、比較的大きな面積の透光性絶縁基板上に順次
積層された第1電極層、半導体光電変換層、第2電極層
及び第3電極層が複数の光電変換セルを形成するように
複数の分割線によって分割されていてかつそれらの複数
のセルが電気的に直列接続された集積型薄膜太陽電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin-film solar cell, and more particularly, to a first electrode layer, a semiconductor photoelectric conversion layer, a second electrode layer and a third electrode layer which are sequentially laminated on a light-transmitting insulating substrate having a relatively large area. The present invention relates to an integrated thin-film solar cell in which an electrode layer is divided by a plurality of division lines so as to form a plurality of photoelectric conversion cells, and the plurality of cells are electrically connected in series.

【0002】[0002]

【従来の技術】太陽光のエネルギーを直接電気エネルギ
ーに変換する太陽電池の実用化は近年本格的に進められ
ており、単結晶シリコンや多結晶シリコン等の結晶系太
陽電池は、屋外の電力用太陽電池として既に実用化され
ている。他方、非結晶シリコンの薄膜太陽電池は、その
製造のための原材料が少なくてすみかつ大面積の集積化
太陽電池が絶縁基板上に直接作製可能なこととから、低
コスト太陽電池として注目されている。しかし、非結晶
系薄膜太陽電池は屋外用としては未だ開発段階にあり、
既に普及している電卓などの民生機器の電源用途におけ
る実績をもとにして、屋外用途に発展させるために研究
開発が進められている。
2. Description of the Related Art Solar cells that directly convert solar energy into electric energy have been put into practical use in recent years, and crystalline solar cells such as single-crystal silicon and polycrystalline silicon are used for outdoor power. It has already been put to practical use as a solar cell. On the other hand, thin-film solar cells made of amorphous silicon have attracted attention as low-cost solar cells because they require less raw materials for their manufacture and can produce large-area integrated solar cells directly on insulating substrates. I have. However, amorphous thin-film solar cells are still in the development stage for outdoor use,
Research and development are underway to develop it for outdoor use based on the results of power supply applications for consumer devices such as calculators that have already become widespread.

【0003】薄膜太陽電池の製造においては、CVD法
やスパッタリング法等を用いた薄膜の堆積とレーザース
クライブ法等を用いたパターニングを繰り返し、所望の
構造となるようにその製造プロセスを構築する。通常は
1枚の基板上に複数の単位素子が直列に接続された集積
化構造が採用され、屋外用途のための電力用太陽電池で
は、その基板サイズは、例えば0.3×0.8(m)を
越える大面積となる。
[0003] In the production of a thin-film solar cell, deposition of a thin film using a CVD method, a sputtering method or the like and patterning using a laser scribe method or the like are repeated to construct a production process so as to have a desired structure. Usually, an integrated structure in which a plurality of unit elements are connected in series on one substrate is employed. In a power solar cell for outdoor use, the substrate size is, for example, 0.3 × 0.8 ( m).

【0004】図1は、このような集積化薄膜太陽電池の
構造を表す断面図であり、第1電極層2とアモルファス
シリコン等よりなる半導体層3と第2電極層4と第3電
極層5とを順次積層し、パターニングにより、半導体層
3と第2電極層4との積層体に設けられた接続用開口部
7を介して、互いに隣接し合う単位素子が直列に接続さ
れている。第1電極層2としては通常酸化錫(Sn
2)、酸化亜鉛(ZnO)、酸化インジウム錫(IT
O)等の透明導電膜が用いられ、第2電極層4として
は、酸化亜鉛(ZnO)等の透明導電膜が用いられる。
また第3電極層5としては、銀(Ag)、アルミニウム
(Al)、クロム(Cr)等の金属膜が用いられる。
FIG. 1 is a sectional view showing the structure of such an integrated thin-film solar cell, in which a first electrode layer 2, a semiconductor layer 3 made of amorphous silicon or the like, a second electrode layer 4, and a third electrode layer 5 are shown. Are sequentially stacked, and by patterning, adjacent unit elements are connected in series via a connection opening 7 provided in a stacked body of the semiconductor layer 3 and the second electrode layer 4. The first electrode layer 2 is usually made of tin oxide (Sn).
O 2 ), zinc oxide (ZnO), indium tin oxide (IT
O) or the like, and a transparent conductive film such as zinc oxide (ZnO) is used as the second electrode layer 4.
As the third electrode layer 5, a metal film of silver (Ag), aluminum (Al), chromium (Cr), or the like is used.

【0005】このような従来の集積化薄膜太陽電池は、
およそ次のような方法によって作製される。以下図1及
び図2を参照しつつ説明する。透光性絶縁基板1上に、
SnO2、ZnO、ITO等の透明導電膜を第1電極層
2として堆積し、集積化のために、第1電極層の膜面側
から61或いは透光性絶縁基板面側から62レーザビー
ムを照射するレーザースクライブ法で第1電極層2を発
電領域に対応して集積方向に直角に直線状に連続した分
離溝6を設け分離する。次にプラズマCVD法により、
p−i−n接続構造を有する非晶質シリコンの半導体層
3を全面にわたって堆積する。次に、第2電極層4とし
て、ZnO等の透明導電膜を単層または複層に堆積し、
続いて、透光性絶縁基板面側から71レーザビームを照
射するレーザースクライブ法によって発電領域に対応し
て集積方向と直角に直線状或いは点線状に半導体層3と
第2電極層4に接続用開口部7を設ける。さらに第3電
極層5として、Ag、Al、Cr等の金属膜を単層また
は複層に堆積し、透光性絶縁基板面側から81レーザビ
ームを照射するレーザースクライブ法により発電領域に
対応して集積方向と直角に直線状に連続した上部溝8を
設け分離し、集積化された大面積薄膜太陽電池が完成す
る。
[0005] Such a conventional integrated thin-film solar cell,
It is produced by the following method. This will be described below with reference to FIGS. On the translucent insulating substrate 1,
A transparent conductive film such as SnO 2 , ZnO, ITO or the like is deposited as the first electrode layer 2, and for integration, a laser beam 61 from the film surface side of the first electrode layer or 62 from the light transmitting insulating substrate surface side is used for integration. The first electrode layer 2 is separated from the first electrode layer 2 by a laser scribing method in which a linearly continuous separation groove 6 is formed at right angles to the integration direction in correspondence with the power generation region. Next, by the plasma CVD method,
An amorphous silicon semiconductor layer 3 having a pin connection structure is deposited over the entire surface. Next, as the second electrode layer 4, a transparent conductive film such as ZnO is deposited in a single layer or multiple layers,
Subsequently, the semiconductor layer 3 and the second electrode layer 4 are connected to the semiconductor layer 3 and the second electrode layer 4 in a straight line or a dotted line perpendicular to the integration direction according to a power generation region by a laser scribing method of irradiating 71 laser beams from the light-transmitting insulating substrate surface side. An opening 7 is provided. Further, as the third electrode layer 5, a metal film of Ag, Al, Cr, or the like is deposited in a single layer or a plurality of layers, and a laser scribing method of irradiating 81 laser beams from the light-transmitting insulating substrate side corresponds to the power generation region. Thus, an upper groove 8 which is linearly continuous at right angles to the direction of integration is provided and separated, and an integrated large-area thin-film solar cell is completed.

【0006】[0006]

【発明が解決しようとする課題】ところが、図2で示す
上述した従来の方式で作製した集積化薄膜太陽電池及び
製造方法では、性能が悪くなるという問題があった。こ
の性能の低下の原因について本発明者らが詳細に検討し
た結果、透光性絶縁基板側からレーザービームを照射し
た場合には、その溶断形状が、膜表面側で狭く、第1電
極層側で広い台形の形状に成る結果、第3電極層を成膜
した際に、接続用開口部に充分な堆積がなされずまた充
分な付着力で堆積がなされず、また、その後の工程で該
接続用開口部周囲の第2電極層及び半導体層の剥離に伴
う第3電極層の断裂によりコンタクト抵抗が増大するこ
とが性能低下の原因であることを見出した。このように
従来の製造方法では、高性能かつ信頼性の高い集積化薄
膜太陽電池を製造することが困難であった。
However, the integrated thin-film solar cell manufactured by the above-described conventional method and the manufacturing method shown in FIG. 2 have a problem that the performance is deteriorated. As a result of the present inventors' detailed examination of the cause of this performance decrease, when a laser beam is irradiated from the light-transmitting insulating substrate side, the fusing shape is narrow on the film surface side and the first electrode layer side As a result, when the third electrode layer is formed, sufficient deposition is not performed on the connection opening and deposition is not performed with a sufficient adhesive force. It has been found that an increase in the contact resistance due to the rupture of the third electrode layer due to the peeling of the second electrode layer and the semiconductor layer around the opening for use is a cause of performance degradation. As described above, with the conventional manufacturing method, it has been difficult to manufacture an integrated thin-film solar cell with high performance and high reliability.

【0007】このような先行技術の課題に鑑み、本発明
は、例えば0.3m×0.3m以上の大きな面積を有し
ていても高性能かつ高い信頼性を有する集積化薄膜太陽
電池を提供することを目的としている。
In view of the problems of the prior art, the present invention provides an integrated thin-film solar cell having high performance and high reliability even if it has a large area of, for example, 0.3 m × 0.3 m or more. It is intended to be.

【0008】[0008]

【課題を解決するための手段】本発明は、性能及び信頼
性の高い0.3m×0.3m以上の大きなサイズの集積
化薄膜太陽電池を製造するための方法を提供することを
目的としている。このような本発明は、透光性絶縁基板
上に順次積層された第1電極層、半導体光電変換層、第
2電極層及び第3電極層が複数の太陽電池セルを形成す
るように実質的に直線状で互いに平行な複数の分割線に
よって分割されていてかつそれらの複数のセルが電気的
に直列接続された集積型薄膜太陽電池の製造方法であっ
て、それらの第1電極層と隣接する太陽電池セルの第3
電極層との接続のための半導体光電変換層と第2電極層
との積層体の接続用開口部の形成が積層面側からのレー
ザービームの照射によって行われることを特徴とする集
積化薄膜太陽電池の製造方法とすることで実現できる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a large-sized integrated thin-film solar cell having a size of 0.3 m.times.0.3 m or more with high performance and reliability. . The present invention is substantially such that the first electrode layer, the semiconductor photoelectric conversion layer, the second electrode layer, and the third electrode layer sequentially laminated on the light-transmitting insulating substrate form a plurality of solar cells. A method for manufacturing an integrated thin-film solar cell, which is divided by a plurality of linear and parallel dividing lines and in which the plurality of cells are electrically connected in series, is adjacent to the first electrode layer. Solar cell 3
An integrated thin film solar cell, wherein a connection opening of a stacked body of a semiconductor photoelectric conversion layer and a second electrode layer for connection to an electrode layer is formed by irradiating a laser beam from a stacking surface side. This can be realized by a method for manufacturing a battery.

【0009】[0009]

【発明の実施の形態】以下、本発明の詳細を具体的実施
例に基づいて説明する。図3は、本発明の集積化薄膜太
陽電池の製造を表している。図例は、透光性絶縁基板上
に順次積層された第1電極層、半導体光電変換層、第2
電極層及び第3電極層が複数の太陽電池セルを形成する
ように実質的に直線状で互いに平行な複数の分割線によ
って分割されていてかつそれらの複数のセルが電気的に
直列接続された集積型薄膜太陽電池の製造方法であっ
て、それらの第1電極層と隣接する太陽電池セルの第3
電極層との接続のための半導体光電変換層と第2電極層
との積層体の接続用開口部の形成が積層面側からのレー
ザービームの照射によって行われることを特徴とする集
積化薄膜太陽電池の製造方法である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below based on specific embodiments. FIG. 3 shows the manufacture of the integrated thin-film solar cell of the present invention. The figure shows a first electrode layer, a semiconductor photoelectric conversion layer, and a second electrode layer sequentially laminated on a light-transmitting insulating substrate.
The electrode layer and the third electrode layer are divided by a plurality of substantially linear and parallel dividing lines so as to form a plurality of solar cells, and the plurality of cells are electrically connected in series. A method of manufacturing an integrated thin-film solar cell, comprising the third electrode layer adjacent to the first electrode layer.
An integrated thin film solar cell, wherein a connection opening of a stacked body of a semiconductor photoelectric conversion layer and a second electrode layer for connection to an electrode layer is formed by irradiating a laser beam from a stacking surface side. This is a method for manufacturing a battery.

【0010】以下、本図及び図1を参照しながら、製造
方法とともに詳細を説明する。ガラス基板1上に、酸化
錫からなる透明導電膜を第1電極層2として堆積し、集
積化のため膜面側から61レーザビームを照射するレー
ザースクライブ法で第1電極層2を複数の発電領域に対
応して集積方向と直角に溶断し幅20μmの分離溝6を
形成した。大面積の集積化薄膜太陽電池の場合、例えば
基板の一方向に沿って、短冊状の発電領域が形成され
る。ここで大面積の集積化薄膜太陽電池の場合には、一
例として910×455×4(mm)のヘイズ基板が用
いられる。
Hereinafter, the manufacturing method and the details will be described with reference to FIG. 1 and FIG. A transparent conductive film made of tin oxide is deposited as a first electrode layer 2 on a glass substrate 1, and a plurality of power generations are performed on the first electrode layer 2 by a laser scribing method of irradiating a 61 laser beam from the film surface side for integration. The separation groove 6 having a width of 20 μm was formed by fusing at a right angle to the integration direction corresponding to the region. In the case of a large-area integrated thin-film solar cell, for example, a strip-like power generation region is formed along one direction of the substrate. Here, in the case of a large-area integrated thin-film solar cell, for example, a haze substrate of 910 × 455 × 4 (mm) is used.

【0011】この複数の発電領域に対応して形成された
第1電極層2にわたって、半導体層3としてプラズマC
VD法によってp−i−n構造の水素化アモルファスシ
リコン層を堆積した。ここで示した半導体層3の堆積条
件はあくまで一例であり、例えば第1電極層2側からn
−i−p構造でもよく、タンデム構造としてもよい。半
導体層の主たる材料としても、水素化アモルファスシリ
コンだけでなく、アモルファス、多結晶、または微結
晶、およびこれらの組み合わせでもよく、シリコン以外
にもシリコンカーバイド、シリコンゲルマニウム、ゲル
マニウム、III−V族化合物、II−VI族化合物、I−II
I−VI族化合物等があり、さらにはこれらを組み合わせ
たものでもよい。
A plasma C is formed as a semiconductor layer 3 over the first electrode layer 2 formed corresponding to the plurality of power generation regions.
A hydrogenated amorphous silicon layer having a pin structure was deposited by a VD method. The deposition conditions for the semiconductor layer 3 shown here are merely examples, and for example, n
It may have an -ip structure or a tandem structure. As the main material of the semiconductor layer, not only hydrogenated amorphous silicon, but also amorphous, polycrystalline, or microcrystalline, and a combination thereof may be used.In addition to silicon, silicon carbide, silicon germanium, germanium, a group III-V compound, II-VI compounds, I-II
There are I-VI group compounds and the like, and a combination thereof may be used.

【0012】そして、半導体層3上にスパッタリング法
により第2電極層4としてZnOを堆積した。ここで第
2電極層4の材料としては、ZnOの他にもSnO2
ITO等の透明導電材料、或いは、Ag、Al、Cr等
の金属材料でもよく、さらにはこれらの積層体でもよ
い。続いて、膜面側から72レーザビームを照射するレ
ーザースクライブ法によって半導体層3及び第2電極層
4を溶断し既に形成されている第1電極層2の分離溝6
に隣接した幅100μmで直線状に接続用開口部7を形
成した。
Then, ZnO was deposited as the second electrode layer 4 on the semiconductor layer 3 by a sputtering method. Here, the material of the second electrode layer 4 may be a transparent conductive material such as SnO 2 or ITO, a metal material such as Ag, Al, or Cr, or a laminate thereof, in addition to ZnO. Subsequently, the semiconductor layer 3 and the second electrode layer 4 are blown off by a laser scribing method of irradiating a 72 laser beam from the film surface side, and the separation groove 6 of the already formed first electrode layer 2 is formed.
A connection opening 7 was formed in a straight line with a width of 100 μm adjacent to.

【0013】そして、第2電極層4上にスパッタリング
法により第3電極層5としてAgを堆積した。ここで第
3電極層5の材料としては、Agの他にもAl、Cr等
の金属材料、或いはZnO、SnO2やITO等の透明
導電材料でもよく、さらにはこれらの積層体でもよい。
続いて、接続用開口部7の近傍で、接続用開口部7に対
して第1電極層2の分離溝6とは反対側の第3電極層5
と第2電極層4と半導体層3とを、ガラス基板側から8
1レーザビームを照射するレーザースクライブ法によっ
て除去し、幅100μmの上部分離溝8を形成し、第3
電極層5を複数の発電領域に対応して集積方向と直角に
分割する。これによって、ガラス基板1上に第1電極層
2と第3電極層5とによって挟まれる領域からなる単位
素子が複数個直列に接続形成されたことになる。
Then, Ag was deposited as the third electrode layer 5 on the second electrode layer 4 by a sputtering method. Here, the material of the third electrode layer 5 may be a metal material such as Al or Cr, a transparent conductive material such as ZnO, SnO 2 , ITO, or a laminate thereof, in addition to Ag.
Subsequently, in the vicinity of the connection opening 7, the third electrode layer 5 opposite to the separation groove 6 of the first electrode layer 2 with respect to the connection opening 7.
, The second electrode layer 4 and the semiconductor layer 3 from the glass substrate side
(1) removal by a laser scribe method of irradiating a laser beam to form an upper separation groove 8 having a width of 100 μm;
The electrode layer 5 is divided at right angles to the integration direction corresponding to the plurality of power generation regions. As a result, a plurality of unit elements composed of a region sandwiched between the first electrode layer 2 and the third electrode layer 5 are formed on the glass substrate 1 in series.

【0014】最後に、必要に応じてエポキシ樹脂等の適
当なパッシベーション層を塗布形成しておく。本発明の
製造方法では接続用開口部の形成が膜側からのレーザー
ビーム照射によるレーザスクライブ法によって行われて
いるので、その溶断形状が、第1電極層側で狭く、膜面
側で広い台形の形状に成る結果、第3電極層を成膜した
際に、アスペクト比の問題が無く接続用開口部に充分な
堆積がなされ充分な付着力で堆積がなされ、また、その
後の工程で該接続用開口部周囲の第2電極層及び半導体
層の剥離に伴う第3電極層の断裂も発生しないのでコン
タクト抵抗が小さくなり、高性能かつ信頼性の高い集積
化薄膜太陽電池を製造することができる。また、該開口
部の周囲の半導体層が結晶化することにより、更なるシ
リーズ抵抗の低減も期待できる。
Finally, if necessary, a suitable passivation layer such as an epoxy resin is applied and formed. In the manufacturing method of the present invention, since the connection opening is formed by the laser scribing method using laser beam irradiation from the film side, the fusing shape is narrow on the first electrode layer side and wide on the film surface side. As a result, when the third electrode layer is formed, there is no problem of the aspect ratio, sufficient deposition is performed in the connection opening, and deposition is performed with sufficient adhesive force. Since the second electrode layer and the third electrode layer around the semiconductor opening are not torn along with the peeling of the semiconductor layer, the contact resistance is reduced, and a high-performance and highly reliable integrated thin-film solar cell can be manufactured. . Further, by crystallization of the semiconductor layer around the opening, further reduction in series resistance can be expected.

【0015】以上のような本発明の製造方法による集積
化薄膜太陽電池と、従来の製造方法による従来品とでそ
のAM1.5の疑似太陽光下での初期真性光電変換効率
を比較した。その結果、従来品の効率が9%であったの
に対して、発明品では10%となり、大幅な改善効果が
確認された。集積化薄膜太陽電池の断面構造従来の集積
化薄膜太陽電池製造方法での断面構造本発明の集積化薄
膜太陽電池製造方法での断面構造
The initial intrinsic photoelectric conversion efficiency under simulated sunlight of AM1.5 was compared between the integrated thin film solar cell manufactured by the above-described method of the present invention and the conventional product manufactured by the conventional manufacturing method. As a result, the efficiency of the conventional product was 9%, whereas the efficiency of the invention product was 10%, indicating a significant improvement effect. Cross-sectional structure of integrated thin-film solar cell Cross-sectional structure of conventional integrated thin-film solar cell manufacturing method Cross-sectional structure of integrated thin-film solar cell manufacturing method of the present invention

【図面の簡単な説明】[Brief description of the drawings]

【図1】 集積化薄膜太陽電池の断面構造FIG. 1 Cross-sectional structure of integrated thin-film solar cell

【図2】 従来の集積化薄膜太陽電池製造方法での断面
構造
FIG. 2 is a cross-sectional structure in a conventional integrated thin-film solar cell manufacturing method.

【図3】 本発明の集積化薄膜太陽電池製造方法での断
面構造
FIG. 3 is a cross-sectional structure in the method for manufacturing an integrated thin-film solar cell of the present invention.

【符号の説明】[Explanation of symbols]

1:基板 2:第1電極層 3:半導体層 4:第2電極層 5:第3電極層 6:分離溝 7:接続用開口部 8:上部分離溝 61:6を設ける際の膜面側からのレーザビーム照射方
向 62:6を設ける際の透光性絶縁基板側からのレーザビ
ーム照射方向 71:従来法での7を設ける際の透光性絶縁基板側から
のレーザビーム照射方向 72:本発明での7を設ける際の膜面側からのレーザビ
ーム照射方向 81:8を設ける際の透光性絶縁基板側からのレーザビ
ーム照射方向
1: Substrate 2: First electrode layer 3: Semiconductor layer 4: Second electrode layer 5: Third electrode layer 6: Separation groove 7: Connection opening 8: Upper separation groove 61: Film surface side when providing 6: 6 62: Direction of laser beam irradiation from the transparent insulating substrate side when providing 6: 6: 71: Direction of laser beam irradiation from the transparent insulating substrate side when providing 7 in the conventional method 72: Laser beam irradiation direction from the film surface side when providing 7 in the present invention 81: Laser beam irradiation direction from the translucent insulating substrate side when providing 8: 8

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 透光性絶縁基板上に順次積層された第1
電極層、半導体光電変換層、第2電極層及び第3電極層
が複数の太陽電池セルを形成するように実質的に直線状
で互いに平行な複数の分割線によって分割されていてか
つそれらの複数のセルが電気的に直列接続された集積型
薄膜太陽電池の製造方法であって、それらの第1電極層
と隣接する太陽電池セルの第3電極層との接続のための
半導体光電変換層と第2電極層との積層体の接続用開口
部の形成が積層面側からのレーザービームの照射によっ
て行われることを特徴とする集積化薄膜太陽電池の製造
方法。
A first insulating layer formed on a light-transmitting insulating substrate;
The electrode layer, the semiconductor photoelectric conversion layer, the second electrode layer, and the third electrode layer are divided by a plurality of substantially linear and parallel dividing lines so as to form a plurality of solar cells, and the plurality of the dividing lines are formed. A method for manufacturing an integrated thin-film solar cell in which cells are electrically connected in series, comprising a semiconductor photoelectric conversion layer for connection between the first electrode layer and a third electrode layer of an adjacent solar cell. A method for manufacturing an integrated thin-film solar cell, wherein the formation of the connection opening of the laminate with the second electrode layer is performed by irradiating a laser beam from the lamination surface side.
JP9173871A 1997-06-30 1997-06-30 Manufacture of integrated thin film solar cell Pending JPH1126795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9173871A JPH1126795A (en) 1997-06-30 1997-06-30 Manufacture of integrated thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9173871A JPH1126795A (en) 1997-06-30 1997-06-30 Manufacture of integrated thin film solar cell

Publications (1)

Publication Number Publication Date
JPH1126795A true JPH1126795A (en) 1999-01-29

Family

ID=15968686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9173871A Pending JPH1126795A (en) 1997-06-30 1997-06-30 Manufacture of integrated thin film solar cell

Country Status (1)

Country Link
JP (1) JPH1126795A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990030106A (en) * 1997-09-26 1999-04-26 다카노 야스아키 Integrated photovoltaic device and manufacturing method thereof
WO2009057951A3 (en) * 2007-11-02 2009-07-16 Jusung Eng Co Ltd Thin film type solar cell and method for manufacturing the same
CN101630704A (en) * 2008-07-18 2010-01-20 三星电子株式会社 Solar cell and manufacturing method thereof
EP2157622A2 (en) * 2008-08-21 2010-02-24 Applied Materials, Inc. Solar cell substrates and methods of manufacture
WO2010030546A1 (en) * 2008-09-09 2010-03-18 United Solar Ovonic Llc Monolithic photovoltaic module
KR101241467B1 (en) 2011-10-13 2013-03-11 엘지이노텍 주식회사 Solar cell and preparing method of the same
US8754325B2 (en) 2007-11-02 2014-06-17 Jusung Engineering Co., Ltd. Thin film type solar cell and method for manufacturing the same
CN113894432A (en) * 2021-12-06 2022-01-07 中国华能集团清洁能源技术研究院有限公司 Laser scribing method and solar cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990030106A (en) * 1997-09-26 1999-04-26 다카노 야스아키 Integrated photovoltaic device and manufacturing method thereof
WO2009057951A3 (en) * 2007-11-02 2009-07-16 Jusung Eng Co Ltd Thin film type solar cell and method for manufacturing the same
US8754325B2 (en) 2007-11-02 2014-06-17 Jusung Engineering Co., Ltd. Thin film type solar cell and method for manufacturing the same
CN101630704A (en) * 2008-07-18 2010-01-20 三星电子株式会社 Solar cell and manufacturing method thereof
EP2157622A2 (en) * 2008-08-21 2010-02-24 Applied Materials, Inc. Solar cell substrates and methods of manufacture
EP2157622A3 (en) * 2008-08-21 2012-11-21 Applied Materials, Inc. Solar cell substrates and methods of manufacture
WO2010030546A1 (en) * 2008-09-09 2010-03-18 United Solar Ovonic Llc Monolithic photovoltaic module
CN102210027A (en) * 2008-09-09 2011-10-05 联合太阳能奥佛有限公司 Monolithic photovoltaic module
KR101241467B1 (en) 2011-10-13 2013-03-11 엘지이노텍 주식회사 Solar cell and preparing method of the same
CN113894432A (en) * 2021-12-06 2022-01-07 中国华能集团清洁能源技术研究院有限公司 Laser scribing method and solar cell

Similar Documents

Publication Publication Date Title
TWI431792B (en) An integrated multi-junction photoelectric conversion device, and a method of manufacturing the same
US7098395B2 (en) Thin-film solar cell module of see-through type
US6870088B2 (en) Solar battery cell and manufacturing method thereof
JP3653800B2 (en) Method for manufacturing integrated thin film solar cell
JPWO2004064167A1 (en) Translucent thin film solar cell module and manufacturing method thereof
US8168881B2 (en) Monolithic photovoltaic module
KR20190000339A (en) Thin-Film Solar Cell Module Structure and Method for Producing the Same
JP3755048B2 (en) Integrated thin film tandem solar cell and manufacturing method thereof
CN102239571A (en) Method for manufacturing thin-film photoelectric conversion device
CN113178501A (en) Flexible photovoltaic module and preparation method thereof
WO2008026581A1 (en) Solar battery module
JPH11186573A (en) Manufacture of integrated thin-film photoelectric converter
JP2000150944A (en) Solar cell module
KR20100006205A (en) Cigs solarcells module and manufacturing method thereof
JPH1126795A (en) Manufacture of integrated thin film solar cell
JP2002203976A (en) Thin film solar cell and its fabricating method
KR101295547B1 (en) Thin film type solar cell module and manufacturing method thereof
JPH05251723A (en) Integrated solar battery module
US20110030769A1 (en) Solar cell and method for manufacturing the same
CN111540803B (en) Solar cell module and manufacturing method thereof
JPH0779004A (en) Thin film solar cell
JP4261169B2 (en) Translucent thin film solar cell and method for producing translucent thin film solar cell module
JP4077456B2 (en) Integrated thin film solar cell
CN113690339A (en) Manufacturing method and system of solar cell module
JP2000277764A (en) Solar cell module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050719