JPH11186573A - Manufacture of integrated thin-film photoelectric converter - Google Patents

Manufacture of integrated thin-film photoelectric converter

Info

Publication number
JPH11186573A
JPH11186573A JP9355153A JP35515397A JPH11186573A JP H11186573 A JPH11186573 A JP H11186573A JP 9355153 A JP9355153 A JP 9355153A JP 35515397 A JP35515397 A JP 35515397A JP H11186573 A JPH11186573 A JP H11186573A
Authority
JP
Japan
Prior art keywords
electrode layer
photoelectric conversion
separation groove
peripheral
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9355153A
Other languages
Japanese (ja)
Other versions
JP3815875B2 (en
Inventor
Katsuhiko Hayashi
克彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP35515397A priority Critical patent/JP3815875B2/en
Publication of JPH11186573A publication Critical patent/JPH11186573A/en
Application granted granted Critical
Publication of JP3815875B2 publication Critical patent/JP3815875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a large-area integrated thin film photoelectric converter which is high in both photoelectric conversion efficiency and reliability. SOLUTION: In a method of manufacturing an integrated thin-film photoelectric converter 1, a transparent electrode layer peripheral edge separating groove 9a2 is formed by a laser scribing method for separating a transparent electrode layer 3 which is formed on a transparent insulating substrate 2 into an integrated region and a peripheral edge region, a semiconductor photoelectric conversion layer 5 and a rear-side electrode layer 7 are formed to cover the electrode layer 3. Photoelectric conversion layer peripheral edge separation groove 9b2 and a rear electrode layer peripheral edge separation groove 9b2 are made in the layers 5 and 7 for separating a cell integrated region and a peripheral edge region by the laser scribing method by directing a laser beam 7 from the side of the transparent substrate 2. Planar positions of the transparent layer separation groove, conversion layer separation groove and rear-side electrode layer separation groove are overlapped with each other, at least partly in their groove widths.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は集積型薄膜光電変換
装置の製造方法に関し、特に、高い光電変換効率と高い
信頼性を有する集積型薄膜光電変換装置を歩留りよく製
造し得る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an integrated thin film photoelectric conversion device, and more particularly to a method of manufacturing an integrated thin film photoelectric conversion device having high photoelectric conversion efficiency and high reliability with high yield. .

【0002】[0002]

【従来の技術】太陽光のエネルギを直接電気エネルギに
変換する光電変換装置である太陽電池の実用化は近年本
格的に進められており、単結晶シリコンや多結晶シリコ
ン等を利用した結晶系太陽電池は屋外の電力用太陽電池
として既に実用化されている。他方、非結晶シリコン系
の薄膜太陽電池は、その製造のための原材料が少なくて
すみ、かつ大面積の集積型太陽電池が絶縁基板上に直接
作製可能なことから、低コストの太陽電池として注目さ
れている。しかし、非結晶系薄膜太陽電池は屋外用とし
ては未だ開発段階にあり、既に普及している電卓などの
民生機器の電源用途における実績をもとにして、屋外用
途に発展させるために研究開発が進められている。
2. Description of the Related Art In recent years, practical use of a solar cell, which is a photoelectric conversion device for directly converting the energy of sunlight into electric energy, has been advanced in earnest, and a crystalline solar cell using monocrystalline silicon, polycrystalline silicon, or the like has been developed. Batteries have already been put to practical use as outdoor power solar cells. On the other hand, amorphous silicon-based thin-film solar cells have attracted attention as low-cost solar cells because they require fewer raw materials for their production and can be used to directly produce large-area integrated solar cells on insulating substrates. Have been. However, amorphous thin-film solar cells are still in the development stage for outdoor use, and research and development is needed to develop them for outdoor use based on the results of power supply applications for consumer appliances such as calculators that have already become widespread. Is underway.

【0003】薄膜太陽電池の製造においては、CVD法
やスパッタリング法などによる薄膜の堆積ステップとレ
ーザスクライブ法などによるパターニングステップの適
宜の繰返しや組合せを含む製造プロセスによって、所望
の構造が形成される。通常は、1枚の絶縁基板上に複数
の光電変換セルが電気的に直列接続された集積型構造が
採用され、屋外用途のための電力用太陽電池では、たと
えば0.4m×0.8mを超える大面積の基板が用いら
れ、高い出力電圧を生じ得る装置にされる。
In manufacturing a thin film solar cell, a desired structure is formed by a manufacturing process including an appropriate repetition or combination of a thin film deposition step by a CVD method or a sputtering method and a patterning step by a laser scribe method or the like. Usually, an integrated structure in which a plurality of photoelectric conversion cells are electrically connected in series on one insulating substrate is employed. For example, a power solar cell for outdoor use has a size of 0.4 m × 0.8 m. Larger substrates are used, making the device capable of producing higher output voltages.

【0004】さらに、屋外用太陽電池の性能としては、
耐風圧やフロントカバーの衝撃強度などの機械的特性と
ともに、耐電圧性能などの電気的特性が一定以上である
ことも要求される。たとえば、結晶系太陽電池モジュー
ルについては、JIS−C8918において電気的性能
の中に絶縁に関する記述があり、その試験方法などが記
載されている。それによれば、太陽電池モジュールの正
負出力端子を互いに短絡し、それらの端子とフレームま
たは接地端子との間に、高圧発生電源によってそのモジ
ュールの最大電圧の2倍プラス1000Vの直流電圧を
印加しても絶縁破壊などの異常が発生しないことが要求
されている。これは、太陽電池モジュールの発電領域と
フレームとの間で、何らかの方法で電気的に絶縁する必
要があることを意味している。
Further, the performance of outdoor solar cells is as follows.
Electrical characteristics such as withstand voltage performance as well as mechanical characteristics such as wind resistance and impact strength of the front cover need to be at least a certain level. For example, regarding a crystalline solar cell module, JIS-C8918 describes electrical performance in terms of insulation, and describes a test method and the like. According to this, the positive and negative output terminals of the solar cell module are short-circuited to each other, and a DC voltage of twice the maximum voltage of the module plus 1000 V is applied between the terminals and the frame or the ground terminal by a high-voltage generating power supply. It is also required that abnormalities such as dielectric breakdown do not occur. This means that the power generation area of the solar cell module and the frame need to be electrically insulated in some way.

【0005】図5は、集積型薄膜太陽電池の一例の構造
を模式的な断面図で示している。なお、本願の各図にお
いて、図面の明瞭化と簡略化のために寸法関係は適宜に
変更されていて実際の寸法関係を反映しておらず、他
方、同一の参照符号は同一部分を表わしている。
FIG. 5 is a schematic sectional view showing an example of the structure of an integrated thin-film solar cell. In each drawing of the present application, the dimensional relationship is appropriately changed for clarity and simplification of the drawings and does not reflect the actual dimensional relationship, while the same reference numerals represent the same parts. I have.

【0006】図5の集積型薄膜太陽電池1においては、
透明絶縁基板2上に透明電極層3、非晶質シリコンなど
からなる半導体光電変換層5、および裏面電極層7が順
次積層されており、パターニングによって半導体層5に
設けられた接続用開口溝6を介して、互いに左右に隣接
し合う光電変換セルが電気的に直列に接続されている。
透明電極層3としては、一般に酸化スズ(SnO2 )、
酸化亜鉛(ZnO)、酸化インジウムスズ(ITO)等
の透明導電膜が用いられ得る。また、裏面電極層7とし
ては、銀(Ag)、アルミニウム(Al)、クロム(C
r)等の金属膜が用いられ得る。なお、裏面電極層7
は、透明導電膜と金属膜の積層体として形成されてもよ
い。
In the integrated thin-film solar cell 1 shown in FIG.
A transparent electrode layer 3, a semiconductor photoelectric conversion layer 5 made of amorphous silicon or the like, and a back electrode layer 7 are sequentially laminated on a transparent insulating substrate 2, and a connection opening groove 6 provided in the semiconductor layer 5 by patterning. , Photoelectric conversion cells adjacent to each other on the left and right are electrically connected in series.
As the transparent electrode layer 3, tin oxide (SnO 2 ),
A transparent conductive film such as zinc oxide (ZnO) or indium tin oxide (ITO) can be used. Further, as the back electrode layer 7, silver (Ag), aluminum (Al), chromium (C
Metal films such as r) can be used. The back electrode layer 7
May be formed as a laminate of a transparent conductive film and a metal film.

【0007】図5に示されているような構造を有する集
積型薄膜太陽電池1は、一般に次のような方法によって
作製される。まず、ガラス基板2上にSnO2 、Zn
O、ITO等の透明導電膜が透明電極層3として堆積さ
れ、その透明電極層3を複数の光電変換セルに対応する
複数の領域に分離するために、レーザスクライブ法によ
って透明電極分離溝4が形成される。すなわち、これら
の透明電極分離溝4は、図5の紙面に直交する方向に直
線状に延びている。
The integrated thin-film solar cell 1 having the structure as shown in FIG. 5 is generally manufactured by the following method. First, SnO 2 , Zn
A transparent conductive film such as O or ITO is deposited as the transparent electrode layer 3, and the transparent electrode separation groove 4 is formed by a laser scribing method in order to separate the transparent electrode layer 3 into a plurality of regions corresponding to a plurality of photoelectric conversion cells. It is formed. That is, these transparent electrode separation grooves 4 extend linearly in a direction perpendicular to the paper surface of FIG.

【0008】そして、複数の領域に分離された透明電極
層3を覆うように、プラズマCVD法を用いて、pin
接合を含む非晶質シリコンの半導体光電変換層5が堆積
される。この半導体層5には、左右に隣接する光電変換
セルを電気的に直列接続するための接続用開口溝6がレ
ーザスクライブ法によって形成される。これらの接続用
溝6も、図5の紙面に垂直な方向に直線状に延びてい
る。
Then, a pin is formed by a plasma CVD method so as to cover the transparent electrode layer 3 separated into a plurality of regions.
An amorphous silicon semiconductor photoelectric conversion layer 5 including a junction is deposited. In this semiconductor layer 5, a connection opening groove 6 for electrically connecting left and right adjacent photoelectric conversion cells in series is formed by a laser scribe method. These connecting grooves 6 also extend linearly in a direction perpendicular to the paper surface of FIG.

【0009】続いて、これらの接続用溝6を埋めかつ半
導体層5を覆うように、Ag、Al、Cr等の金属膜の
単層または複層が裏面電極層7として堆積される。透明
電極層3の場合と同様に、裏面電極層7を複数の光電変
換セルに対応する複数の領域に分離するように、裏面電
極分離溝8がレーザスクライブ法によって形成される。
これらの裏面電極分離溝8も図5の紙面に直交する方向
に直線状に延びており、かつ好ましくは第1電極層に至
る深さを有している。このようにして、図5に示されて
いるような集積型薄膜太陽電池が形成される。
Subsequently, a single layer or a multiple layer of a metal film of Ag, Al, Cr or the like is deposited as a back electrode layer 7 so as to fill these connection grooves 6 and cover the semiconductor layer 5. Similarly to the case of the transparent electrode layer 3, the back electrode separation groove 8 is formed by a laser scribe method so as to separate the back electrode layer 7 into a plurality of regions corresponding to a plurality of photoelectric conversion cells.
These back electrode separation grooves 8 also extend linearly in a direction perpendicular to the paper surface of FIG. 5, and preferably have a depth reaching the first electrode layer. Thus, an integrated thin-film solar cell as shown in FIG. 5 is formed.

【0010】一般に、図5に示されているような集積型
薄膜太陽電池の製造においては、光入射側の透明電極3
やその反対側の裏面金属電極7を形成するときに、絶縁
基板2の端面や下面に透明導電材料や金属材料が回り込
んで付着する。このため、集積化される個々の光電変換
セルが基板上で互いに分離していても、基板端面や基板
下面に付着した透明導電材料や金属材料を介して互いに
導通し、その集積型薄膜太陽電池の出力特性が低下させ
られる。
Generally, in the manufacture of an integrated thin-film solar cell as shown in FIG.
When the back metal electrode 7 on the opposite side is formed, a transparent conductive material or a metal material wraps around and adheres to the end face or the lower face of the insulating substrate 2. For this reason, even if the individual photoelectric conversion cells to be integrated are separated from each other on the substrate, they are electrically connected to each other via a transparent conductive material or a metal material attached to the substrate end surface or the substrate lower surface, and the integrated thin-film solar cell Output characteristics are degraded.

【0011】この問題を改善するために、図6の平面図
とその図6中の一点鎖線X−Xに沿った断面図である図
7に示されているように、集積型薄膜太陽電池の裏面金
属電極7および裏面電極分離溝8を含むセル集積領域と
その周縁にそった周縁領域10とを互いに電気的に分離
する絶縁ラインとしての周縁分離溝9が、透明基板2側
からレーザビームを入射させるレーザスクライブ法によ
って形成される。すなわち、周縁分離溝9を形成するこ
とによって、基板端面や基板下面に付着した透明導電材
料や金属材料による光電変換セル相互間の短絡を防止
し、集積型薄膜太陽電池の出力特性、絶縁特性、および
耐電圧特性を改善することを目的としている。レーザス
クライブ法によって形成される周縁分離溝9は、一般に
約50μmの幅を有し、このスクライブラインによって
セル集積領域と周縁領域10とが電気的に分離される。
なお、図6においては図面の明瞭化のために12段の直
列接続されたセルが例示されているが、実際にはさらに
多くの段数のセルが形成され得る。
In order to solve this problem, as shown in FIG. 6 which is a plan view of FIG. 6 and a cross-sectional view taken along a dashed line XX in FIG. A peripheral separation groove 9 serving as an insulating line for electrically separating a cell integration region including the back metal electrode 7 and the back electrode separation groove 8 from a peripheral region 10 along the periphery of the cell integration region transmits a laser beam from the transparent substrate 2 side. It is formed by a laser scribing method in which light is incident. That is, by forming the peripheral separation groove 9, a short circuit between the photoelectric conversion cells due to the transparent conductive material or the metal material attached to the substrate end surface or the substrate lower surface is prevented, and the output characteristics, the insulating characteristics, And to improve withstand voltage characteristics. The peripheral separation groove 9 formed by the laser scribe method generally has a width of about 50 μm, and the scribe line electrically separates the cell integration region and the peripheral region 10.
Although FIG. 6 illustrates cells connected in series in 12 stages for clarity of the drawing, cells having more stages can be actually formed.

【0012】最後に、正負両電極をそれらの絶縁性を考
慮しつつ取出し、集積化された薄膜太陽電池の裏面全体
を覆うようにエポキシ樹脂等の適当なパッシベーション
層11が塗布形成され、さらにアルミフレームや端子ボ
ックス等を取付けることによって大面積の集積型薄膜光
電変換装置が完成する。
Finally, the positive and negative electrodes are taken out in consideration of their insulating properties, and an appropriate passivation layer 11 such as epoxy resin is applied and formed so as to cover the entire back surface of the integrated thin-film solar cell. By mounting a frame, a terminal box, and the like, a large-area integrated thin-film photoelectric conversion device is completed.

【0013】[0013]

【発明が解決しようとする課題】ところが、図7で示さ
れているような従来のレーザスクライブ法で形成された
周縁分離溝9を有する集積型薄膜光電変換装置において
は、良好な光電変換効率やセル集積領域と周縁領域との
間の十分な絶縁性が得られないという問題があった。
However, in the integrated type thin film photoelectric conversion device having the peripheral edge separation groove 9 formed by the conventional laser scribe method as shown in FIG. There was a problem that sufficient insulation between the cell integration region and the peripheral region could not be obtained.

【0014】このような問題の原因について本発明者が
詳細に検討した結果、図7に示されているように透明基
板2側からレーザビームを入射させて透明電極層3、半
導体層5、および裏面電極層7を貫通する周縁分離溝9
を同時に形成する方法では、その周縁分離溝9が十分な
絶縁帯として機能していないことが判明した。たとえ
ば、周縁分離溝9が形成されるときに透明電極層3から
昇華した透明導電性物質が周縁分離溝9の内壁に付着
し、これが透明電極層3と裏面電極層7との間で漏れ電
流を生じさせて光電変換効率を低下させていることがわ
かった。
As a result of a detailed study of the cause of such a problem by the present inventor, as shown in FIG. 7, a laser beam is incident from the transparent substrate 2 side and the transparent electrode layer 3, the semiconductor layer 5, and Peripheral separation groove 9 penetrating back electrode layer 7
It has been found that, in the method of forming simultaneously, the peripheral separation groove 9 does not function as a sufficient insulating band. For example, when the peripheral edge separation groove 9 is formed, the transparent conductive substance sublimated from the transparent electrode layer 3 adheres to the inner wall of the peripheral edge separation groove 9, and this causes a leakage current between the transparent electrode layer 3 and the back surface electrode layer 7. Was generated, and the photoelectric conversion efficiency was reduced.

【0015】このような先行技術の課題に鑑み、本発明
は、たとえば0.4m×0.4m以上の大きな面積を有
していても高い光電変換効率と外部に対する良好な絶縁
性を有する信頼性の高い集積型薄膜光電変換装置を歩留
りよく製造し得る方法を提供することを目的としてい
る。
In view of the above-mentioned problems of the prior art, the present invention is directed to a reliability having high photoelectric conversion efficiency and good insulation to the outside even if it has a large area of, for example, 0.4 m × 0.4 m or more. It is an object of the present invention to provide a method capable of manufacturing an integrated thin-film photoelectric conversion device with high yield with a high yield.

【0016】[0016]

【課題を解決するための手段】本発明の1つの態様によ
れば、透明絶縁基板上に順次積層された透明電極層、半
導体光電変換層、および裏面電極層を含む積層体を備
え、その積層体は周縁分離溝によって光電変換セル集積
領域と周縁領域とに分離されており、そのセル集積領域
は複数の光電変換セルを形成するように分割されかつそ
れらの複数のセルが電気的に直列接続されている集積型
薄膜光電変換装置の製造方法は、透明絶縁基板上に透明
電極層を形成し、その透明電極層をセル集積領域と周縁
領域とに分離するための透明電極層周縁分離溝をレーザ
スクライブ法によって形成し、透明電極層を覆うように
光電変換層と裏面電極層を形成し、これらの光電変換層
と裏面電極層をセル集積領域と周縁領域とに分離するた
めの光電変換層周縁分離溝と裏面電極層周縁分離溝を透
明基板側からレーザビームを入射させるレーザスクライ
ブ法によって形成し、そして、透明電極層周縁分離溝、
光電変換層周縁分離溝、および裏面電極層周縁分離溝が
基板上で占める平面的位置は、それらの溝の幅の少なく
とも一部が相互に重複する関係にさせられることを特徴
としている。
According to one aspect of the present invention, there is provided a laminate comprising a transparent electrode layer, a semiconductor photoelectric conversion layer, and a backside electrode layer which are sequentially laminated on a transparent insulating substrate. The body is separated into a photoelectric conversion cell integration region and a peripheral region by a peripheral separation groove, and the cell integration region is divided so as to form a plurality of photoelectric conversion cells, and the plurality of cells are electrically connected in series. A method of manufacturing an integrated thin-film photoelectric conversion device is to form a transparent electrode layer on a transparent insulating substrate and form a transparent electrode layer peripheral separation groove for separating the transparent electrode layer into a cell integration region and a peripheral region. A photoelectric conversion layer formed by a laser scribe method, a photoelectric conversion layer and a back electrode layer are formed so as to cover the transparent electrode layer, and a photoelectric conversion layer for separating the photoelectric conversion layer and the back electrode layer into a cell integration region and a peripheral region. Margin Hanaremizo a back electrode layer peripheral edge separation groove formed by laser scribing method for entering the laser beam from the transparent substrate side, and the transparent electrode layer perimeter isolation trench,
The planar position occupied on the substrate by the photoelectric conversion layer peripheral separation groove and the back electrode layer peripheral separation groove is characterized in that at least a part of the width of the groove overlaps each other.

【0017】本発明のもう1つの態様によれば、透明絶
縁基板上に順次積層された透明電極層、半導体光電変換
層、および裏面電極層を含む積層体を備え、この積層体
は周縁分離溝によって光電変換セル集積領域と周縁領域
とに分離されており、その集積領域は複数の光電変換セ
ルを形成するように分割されかつそれらの複数のセルが
電気的に直列接続されている集積型薄膜光電変換装置の
製造方法は、透明絶縁基板上に透明電極層、半導体光電
変換層、および裏面電極層を順次形成し、透明電極層を
セル集積領域と周縁領域とに分離するために、透明基板
側からレーザビームを入射させるレーザスクライブ法に
よって、透明電極層、光電変換層、および裏面電極層を
貫通して透明電極層周縁分離溝を形成し、光電変換層と
裏面電極層をセル集積領域と周縁分離領域とに分離する
ために、透明基板側からレーザビームを入射させるレー
ザスクライブ法によって、光電変換層周縁分離溝と裏面
電極層周縁分離溝を形成し、そして、光電変換層周縁分
離溝と裏面電極層周縁分離溝の少なくともセル集積領域
側の内壁は、透明電極層周縁分離溝のセル集積領域側の
内壁より後退させられることを特徴としている。
According to another aspect of the present invention, there is provided a laminate including a transparent electrode layer, a semiconductor photoelectric conversion layer, and a back electrode layer sequentially laminated on a transparent insulating substrate, wherein the laminate includes a peripheral separation groove. The integrated thin film is divided into a photoelectric conversion cell integration region and a peripheral region by the separation region, and the integration region is divided so as to form a plurality of photoelectric conversion cells, and the plurality of cells are electrically connected in series. A method for manufacturing a photoelectric conversion device includes forming a transparent electrode layer, a semiconductor photoelectric conversion layer, and a back electrode layer on a transparent insulating substrate in order, and separating the transparent electrode layer into a cell integration region and a peripheral region. A laser scribe method in which a laser beam is incident from the side, a transparent electrode layer peripheral separation groove is formed through the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer, and the photoelectric conversion layer and the back electrode layer are connected to the cell. In order to separate the photoelectric conversion layer into a peripheral region and a peripheral separation region, a laser scribe method in which a laser beam is incident from the transparent substrate side is used to form a photoelectric conversion layer peripheral separation groove and a back electrode layer peripheral separation groove. At least the inner wall of the separation groove and the back electrode layer peripheral separation groove on the cell integration region side is set back from the inner wall of the transparent electrode layer peripheral separation groove on the cell integration region side.

【0018】以上のように、本発明の集積型薄膜光電変
換装置の製造方法においては、透明電極層周縁分離溝、
光電変換層周縁分離溝および裏面電極層周縁分離溝が同
時に形成されることなく、光電変換層周縁分離溝と裏面
電極層周縁分離溝は透明電極層周縁分離溝を形成するた
めのレーザ加工工程と異なるその後のレーザ加工工程に
よって形成されるので、透明電極層から昇華した透明導
電物質が光電変換層周縁分離溝の内壁と裏面電極層周縁
分離溝の内壁に付着して透明電極層と裏面電極層との間
に漏れ電流を生じるという問題を解消することができ
る。
As described above, in the manufacturing method of the integrated thin film photoelectric conversion device according to the present invention, the transparent electrode layer peripheral separation groove,
The photoelectric conversion layer peripheral separation groove and the back electrode layer peripheral separation groove are not formed at the same time, and the photoelectric conversion layer peripheral separation groove and the back electrode layer peripheral separation groove are formed by a laser processing step for forming the transparent electrode layer peripheral separation groove. Since it is formed by a different subsequent laser processing step, the transparent conductive material sublimated from the transparent electrode layer adheres to the inner wall of the photoelectric conversion layer peripheral separation groove and the inner wall of the back electrode layer peripheral separation groove, and the transparent electrode layer and the back electrode layer Can be solved.

【0019】[0019]

【発明の実施の形態】以下において、本発明の種々の実
施の形態に対応した種々の実施例を説明することによ
り、本発明をより具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described more specifically by describing various examples corresponding to various embodiments of the present invention.

【0020】(実施例1)図1、図5および図6を参照
しつつ、実施例1による集積型薄膜光電変換装置の製造
方法を説明する。まず、ガラス基板2上に、SnO2
ZnO、またはITO等の透明電極層3が形成された。
この透明電極層3は、レーザビームを走査してスクライ
ブライン4を形成することによって、複数の短冊状の領
域に分割された。また、透明電極層周縁分離溝9a1
が、約200μmの幅で形成された。なお、透明電極層
3においては1回のレーザビームの走査によって約50
μmの幅の溝が形成され得るので、200μm幅の透明
電極層周縁分離溝9a1は、レーザビームを複数回走査
させることによって形成された。また、このときのレー
ザビームは透明基板側と透明電極層側のいずれから入射
させてもよいが、その焦点は透明電極層に合わせられ
る。
(Embodiment 1) A method of manufacturing an integrated thin film photoelectric conversion device according to Embodiment 1 will be described with reference to FIGS. 1, 5 and 6. First, SnO 2 ,
A transparent electrode layer 3 such as ZnO or ITO was formed.
The transparent electrode layer 3 was divided into a plurality of strip-shaped regions by forming a scribe line 4 by scanning with a laser beam. Further, the transparent electrode layer peripheral edge separation groove 9a1
Was formed with a width of about 200 μm. In the transparent electrode layer 3, about 50 scans are performed by one laser beam scan.
Since a groove having a width of μm can be formed, the transparent electrode layer peripheral separation groove 9a1 having a width of 200 μm was formed by scanning the laser beam a plurality of times. The laser beam at this time may be incident from either the transparent substrate side or the transparent electrode layer side, but the focus is set on the transparent electrode layer.

【0021】次に、半導体光電変換層5として、プラズ
マCVD法によって基板側からp型、i型、およびn型
の順に積層されたpin構造を有する水素化非晶質シリ
コン層5が堆積された。この半導体層はあくまでも一例
であり、この他に、たとえばnip構造を有する半導体
層でもよく、また複数の光電変換ユニット層が積層され
たタンデム構造の半導体層が形成されてもよい。半導体
層の主要材料としても、水素化非晶質シリコンだけでな
く、非晶質、多結晶、または微結晶あるいはこれらの組
合せでもよく、シリコン材料以外にもシリコンカーバイ
ド、シリコンゲルマニウム、ゲルマニウム、3−5族化
合物、2−6族化合物、3−4−5族化合物、さらには
これらの組合せを用いることもできる。
Next, as the semiconductor photoelectric conversion layer 5, a hydrogenated amorphous silicon layer 5 having a pin structure laminated in the order of p-type, i-type, and n-type from the substrate side was deposited by a plasma CVD method. . This semiconductor layer is merely an example, and a semiconductor layer having a nip structure, for example, or a tandem semiconductor layer in which a plurality of photoelectric conversion unit layers are stacked may be formed. The main material of the semiconductor layer may be not only hydrogenated amorphous silicon but also amorphous, polycrystalline, or microcrystalline or a combination thereof. In addition to the silicon material, silicon carbide, silicon germanium, germanium, Group 5 compounds, group 2-6 compounds, group 3-4-5 compounds, and combinations thereof can also be used.

【0022】このような半導体層5にレーザビームを照
射して、接続用開口溝6が形成された。
By irradiating such a semiconductor layer 5 with a laser beam, a connection opening groove 6 was formed.

【0023】半導体層5上には、裏面電極層7が堆積さ
れた。この裏面電極層7の材料としては、ZnOの他に
SnO2 やITO等の透明導電材料、またはAl、A
g、Cr等の金属材料を用いることができ、さらには透
明導電材料と金属材料の積層体を用いてもよい。
On the semiconductor layer 5, a back electrode layer 7 is deposited. As a material of the back electrode layer 7, in addition to ZnO, a transparent conductive material such as SnO 2 or ITO, or Al, A
A metal material such as g or Cr can be used, and a laminate of a transparent conductive material and a metal material may be used.

【0024】この裏面電極層7と半導体層5には、レー
ザスクライブ法によって裏面電極分離溝8が形成され
た。これにより、複数の光電変換セルが直列接続された
ことになる。
A back electrode separating groove 8 was formed in the back electrode layer 7 and the semiconductor layer 5 by a laser scribe method. This means that the plurality of photoelectric conversion cells are connected in series.

【0025】その後、セル集積領域と周縁領域との間に
おいて半導体層5と裏面電極層7のための周縁分離溝9
b1が、透明基板2側からレーザビームを照射すること
によって形成された。半導体層5と裏面電極層7をレー
ザスクライブするとき、半導体材料が昇華して裏面電極
層は半導体層から昇華したガスによって機械的に吹き飛
ばされる。このようなレーザスクライブにおいて半導体
層5と裏面電極層6はレーザビームの1回の走査におい
て約80μmの幅の溝が形成されるので、約100μm
の幅を有する裏面電極層周縁分離溝9b1が複数回のレ
ーザビーム走査によって形成された。
Thereafter, a peripheral separation groove 9 for the semiconductor layer 5 and the back electrode layer 7 is provided between the cell integration region and the peripheral region.
b1 was formed by irradiating a laser beam from the transparent substrate 2 side. When the semiconductor layer 5 and the back electrode layer 7 are laser scribed, the semiconductor material is sublimated, and the back electrode layer is mechanically blown off by the gas sublimated from the semiconductor layer. In such a laser scribe, a groove having a width of about 80 μm is formed in the semiconductor layer 5 and the back electrode layer 6 in one scan of the laser beam, so that about 100 μm
Is formed by a plurality of times of laser beam scanning.

【0026】最後に、集積化された光電変換装置の裏面
全体を覆うように、エポキシ樹脂等の適当なパッシベー
ション層11が塗布形成された。
Finally, an appropriate passivation layer 11 made of epoxy resin or the like was applied and formed so as to cover the entire back surface of the integrated photoelectric conversion device.

【0027】図7に示されているような従来の方法で周
縁分離溝9が形成されたことを除けば上述の実施例1と
同様に形成された従来の集積型薄膜光電変換装置におい
てはその光電変換効率が8.0%であり、セル集積領域
と周縁領域との間に1000Vの電圧を印加したときの
抵抗は1MΩであったのに対して、上述の実施例1では
光電変換効率が9.0%であり、セル集積領域と周縁領
域との間で1000Vの印加時において抵抗が1000
MΩであった。
The conventional integrated thin film photoelectric conversion device formed in the same manner as in the first embodiment except that the peripheral separation groove 9 is formed by the conventional method as shown in FIG. The photoelectric conversion efficiency was 8.0%, and the resistance when a voltage of 1000 V was applied between the cell integration region and the peripheral region was 1 MΩ. 9.0%, and the resistance is 1000 when a voltage of 1000 V is applied between the cell integration region and the peripheral region.
MΩ.

【0028】(実施例2)図2は、実施例2による集積
型薄膜光電変換装置における周縁分離溝の形成方法を図
解している。この実施例2においては、実施例1の場合
と同様にガラス基板2上に透明電極層3を形成し、透明
電極層周縁分離溝9a2としては約100μmの幅の溝
がレーザスクライブ法によって形成された。
Embodiment 2 FIG. 2 illustrates a method of forming a peripheral separation groove in an integrated thin film photoelectric conversion device according to Embodiment 2. In the second embodiment, the transparent electrode layer 3 is formed on the glass substrate 2 in the same manner as in the first embodiment, and a groove having a width of about 100 μm is formed as the transparent electrode layer peripheral separation groove 9a2 by a laser scribe method. Was.

【0029】その後、実施例1の場合と同様に半導体層
5および裏面電極層7が堆積され、これらの層のための
周縁分離溝9b2が、ガラス基板側からレーザビームを
照射することによって約200μmの幅に形成された。
このとき、半導体層5は透明電極層3に比べてレーザビ
ームに対して大きな吸収率を有するので、周縁分離溝9
a2を形成するときより小さなエネルギ密度のレーザビ
ームを用いて、透明電極層3に損傷を与えることなく半
導体層5と裏面電極層7のための周縁分離溝9b2を形
成することができる。
Thereafter, the semiconductor layer 5 and the back electrode layer 7 are deposited in the same manner as in the first embodiment, and the peripheral separation grooves 9b2 for these layers are formed to about 200 μm by irradiating a laser beam from the glass substrate side. Formed in width.
At this time, since the semiconductor layer 5 has a higher absorptance to the laser beam than the transparent electrode layer 3, the peripheral separation groove 9
By using a laser beam having a smaller energy density than when forming a2, the peripheral separation groove 9b2 for the semiconductor layer 5 and the back electrode layer 7 can be formed without damaging the transparent electrode layer 3.

【0030】このように形成された実施例2による集積
型薄膜光電変換装置においてはその光電変換効率が8.
9%であり、セル集積領域と周縁領域との間に1000
Vを印加したときの抵抗は1000MΩであった。
In the integrated thin film photoelectric conversion device according to Embodiment 2 thus formed, the photoelectric conversion efficiency is 8.
9%, and 1000 between the cell integration region and the peripheral region.
The resistance when V was applied was 1000 MΩ.

【0031】なお、図2の実施例では、上述のように半
導体層5が形成される前に透明電極層周縁分離溝9a2
が形成されてもよいが、半導体層5と裏面電極層7が形
成された後に透明電極層周縁分離溝9a2が形成されて
もよい。その場合、透明電極層周縁分離溝9a2はその
透明電極層3のみならず半導体層5と裏面電極層7をも
貫通するように形成され、その後にさらに半導体層5と
裏面電極層7のための周縁分離溝9b2が、透明電極層
周縁分離溝9a2の幅より大きな幅で形成される。した
がって、半導体層5と裏面電極層7のための周縁分離溝
9b2が形成された後にその溝の内壁に透明電極層3か
ら昇華した透明導電物質が付着しているということはあ
り得ない。
In the embodiment shown in FIG. 2, before the semiconductor layer 5 is formed as described above, the transparent electrode layer peripheral edge separation groove 9a2 is formed.
May be formed, or the transparent electrode layer peripheral separation groove 9a2 may be formed after the semiconductor layer 5 and the back electrode layer 7 are formed. In this case, the transparent electrode layer peripheral edge separation groove 9a2 is formed so as to penetrate not only the transparent electrode layer 3 but also the semiconductor layer 5 and the back electrode layer 7, and thereafter further formed for the semiconductor layer 5 and the back electrode layer 7. The peripheral edge separation groove 9b2 is formed with a width larger than the width of the transparent electrode layer peripheral edge separation groove 9a2. Therefore, it is unlikely that the transparent conductive material sublimated from the transparent electrode layer 3 adheres to the inner wall of the groove after the peripheral separation groove 9b2 for the semiconductor layer 5 and the back electrode layer 7 is formed.

【0032】(実施例3)図3は、実施例3による集積
型薄膜光電変換装置における周縁分離溝の形成方法を図
解している。実施例3においても、実施例2の場合と同
様にガラス基板2上に透明電極層3が形成された後に透
明電極層周縁分離溝9a3がレーザスクライブ法で約1
00μmの幅に形成される。
(Embodiment 3) FIG. 3 illustrates a method of forming a peripheral separation groove in an integrated type thin film photoelectric conversion device according to Embodiment 3. Also in the third embodiment, after the transparent electrode layer 3 is formed on the glass substrate 2 as in the case of the second embodiment, the transparent electrode layer peripheral separation groove 9a3 is formed by about 1
It is formed to a width of 00 μm.

【0033】その後、半導体層5と裏面電極層7が形成
された後に、ガラス基板側からレーザビームを照射する
ことによって、半導体層5と裏面電極層7のための周縁
分離溝9b3が約100μmの幅に形成される。このと
き、両方の溝9a3と9b3が基板2上で占める位置
が、それらの幅の少なくとも一部が相互に重複する関係
にあればよい。
Thereafter, after the semiconductor layer 5 and the back electrode layer 7 are formed, a laser beam is irradiated from the glass substrate side so that the peripheral separation groove 9b3 for the semiconductor layer 5 and the back electrode layer 7 has a thickness of about 100 μm. Formed in width. At this time, the position occupied by the two grooves 9a3 and 9b3 on the substrate 2 only needs to be such that at least a part of their widths overlap each other.

【0034】このような実施例3による集積型薄膜光電
変換装置においては、その光電変換効率が9.0%であ
り、セル集積領域と周縁領域との間に1000Vを印加
したときの抵抗は500MΩであった。
The integrated thin-film photoelectric conversion device according to the third embodiment has a photoelectric conversion efficiency of 9.0% and a resistance of 500 MΩ when 1000 V is applied between the cell integrated region and the peripheral region. Met.

【0035】(実施例4)図4は、実施例4による集積
型薄膜光電変換装置における周縁分離溝の形成方法を図
解している。この実施例4においても、実施例3の場合
と同様にガラス基板上に透明導電層3が形成された後に
透明導電層周縁分離溝9a4がレーザスクライブ法によ
って約100μmの幅に形成された。
(Embodiment 4) FIG. 4 illustrates a method of forming a peripheral separation groove in an integrated type thin film photoelectric conversion device according to Embodiment 4. Also in the fourth embodiment, after the transparent conductive layer 3 was formed on the glass substrate as in the third embodiment, the transparent conductive layer peripheral separation groove 9a4 was formed to have a width of about 100 μm by the laser scribe method.

【0036】その後、半導体層5と裏面電極層7を形成
した後に、透明基板側からレーザビームを照射すること
によって、半導体層5と裏面電極層7のための周縁分離
溝9b4が150μmの幅に形成された。
Thereafter, after the semiconductor layer 5 and the back electrode layer 7 are formed, a laser beam is irradiated from the transparent substrate side so that the peripheral separation groove 9b4 for the semiconductor layer 5 and the back electrode layer 7 has a width of 150 μm. Been formed.

【0037】このような実施例4による集積型薄膜光電
変換装置における変換効率とその周縁分離溝の絶縁特性
は実施例3の場合とほぼ同様であった。
The conversion efficiency and the insulating characteristics of the peripheral separation groove in the integrated type thin film photoelectric conversion device according to the fourth embodiment are almost the same as those in the third embodiment.

【0038】なお、図4の実施例では、半導体層5と裏
面電極層7が形成された後に透明電極層周縁分離溝9a
4が形成されてもよい。その場合、透明電極層周縁分離
溝9a4はその透明電極層3のみならず半導体層5と裏
面電極層7をも貫通して形成される。その後、半導体層
5と裏面電極層7のための周縁分離溝9b4は少なくと
もその溝のセル集積領域側の内壁が透明電極層周縁分離
溝9a4のセル集積領域側の内壁より後退させられるよ
うに形成される。したがって、半導体層5と裏面電極層
7のための周縁分離溝9b4が形成された後には、少な
くともそのセル集積領域側の内壁が透明電極層3から昇
華した透明導電物質で汚染されていることはあり得な
い。したがって、透明電極層3と裏面電極層7との間に
漏れ電流を生じることがなく、高い光電変換効率が得ら
れる。
In the embodiment shown in FIG. 4, after the semiconductor layer 5 and the back surface electrode layer 7 are formed, the transparent electrode layer peripheral separation groove 9a is formed.
4 may be formed. In this case, the transparent electrode layer peripheral separation groove 9a4 is formed so as to penetrate not only the transparent electrode layer 3 but also the semiconductor layer 5 and the back electrode layer 7. Thereafter, the peripheral separation groove 9b4 for the semiconductor layer 5 and the back electrode layer 7 is formed such that at least the inner wall of the groove on the cell integration region side is recessed from the inner wall of the transparent electrode layer peripheral separation groove 9a4 on the cell integration region side. Is done. Therefore, after the peripheral separation grooves 9b4 for the semiconductor layer 5 and the back electrode layer 7 are formed, at least the inner wall on the cell integration region side is contaminated with the transparent conductive material sublimated from the transparent electrode layer 3. impossible. Therefore, no leakage current occurs between the transparent electrode layer 3 and the back electrode layer 7, and high photoelectric conversion efficiency can be obtained.

【0039】[0039]

【発明の効果】以上のように、本発明に従う集積型薄膜
光電変換装置の製造方法によれば、高い光電変換効率と
高い信頼を有する大面積の集積型薄膜光電変換装置を歩
留りよく提供することができる。
As described above, according to the method of manufacturing an integrated thin film photoelectric conversion device according to the present invention, a large area integrated thin film photoelectric conversion device having high photoelectric conversion efficiency and high reliability can be provided with good yield. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1による集積型薄膜光電変換装
置の製造方法を説明するための模式的な断面図である。
FIG. 1 is a schematic cross-sectional view for explaining a method for manufacturing an integrated thin-film photoelectric conversion device according to Embodiment 1 of the present invention.

【図2】本発明の実施例2による集積型薄膜光電変換装
置の製造方法を説明するための模式的な断面図である。
FIG. 2 is a schematic cross-sectional view for explaining a method of manufacturing an integrated thin-film photoelectric conversion device according to a second embodiment of the present invention.

【図3】本発明の実施例3による集積型薄膜光電変換装
置の製造方法を説明するための模式的な断面図である。
FIG. 3 is a schematic cross-sectional view for explaining a method of manufacturing an integrated thin-film photoelectric conversion device according to a third embodiment of the present invention.

【図4】本発明の実施例4による集積型薄膜光電変換装
置の製造方法を説明するための模式的な断面図である。
FIG. 4 is a schematic cross-sectional view for explaining a method for manufacturing an integrated thin-film photoelectric conversion device according to Embodiment 4 of the present invention.

【図5】集積型薄膜光電変換装置の一部の構造を示す模
式的な断面図である。
FIG. 5 is a schematic cross-sectional view illustrating a partial structure of an integrated thin-film photoelectric conversion device.

【図6】集積型薄膜光電変換装置の一例を示す模式的な
平面図である。
FIG. 6 is a schematic plan view illustrating an example of an integrated thin-film photoelectric conversion device.

【図7】先行技術による集積型薄膜光電変換装置の製造
方法を説明するための模式的な断面図である。
FIG. 7 is a schematic cross-sectional view for explaining a method of manufacturing an integrated thin-film photoelectric conversion device according to the prior art.

【符号の説明】 1:集積型薄膜光電変換装置 2:透明絶縁基板 3:透明電極層 4:透明電極分離溝 5:半導体光電変換層 6:接続用開口溝 7:裏面電極層 8:裏面電極分離溝 9:周縁分離溝 9a1,9a2,9a3,9a4:透明電極層周縁分離
溝 9b1,9b2,9b3,9b4:半導体層と裏面電極
層のための周縁分離溝 10 周縁領域 11 パッシベーション層
[Description of Signs] 1: Integrated thin-film photoelectric conversion device 2: Transparent insulating substrate 3: Transparent electrode layer 4: Transparent electrode separation groove 5: Semiconductor photoelectric conversion layer 6: Connection opening groove 7: Back electrode layer 8: Back electrode Separation groove 9: Peripheral separation groove 9a1, 9a2, 9a3, 9a4: Transparent electrode layer peripheral separation groove 9b1, 9b2, 9b3, 9b4: Peripheral separation groove for semiconductor layer and back electrode layer 10 Peripheral area 11 Passivation layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 透明絶縁基板上に順次積層された透明電
極層、半導体光電変換層、および裏面電極層を含む積層
体を備え、前記積層体は周縁分離溝によって光電変換セ
ル集積領域と周縁領域とに分離されており、前記セル集
積領域は複数の光電変換セルを形成するように分割され
かつそれらの複数のセルが電気的に直列接続されている
集積型薄膜光電変換装置の製造方法であって、 前記透明絶縁基板上に前記透明電極層を形成し、 前記透明電極層を前記セル集積領域と前記周縁領域とに
分離するための透明電極層周縁分離溝をレーザスクライ
ブ法によって形成し、 前記透明電極層を覆うように前記光電変換層と前記裏面
電極層を形成し、 前記光電変換層と前記裏面電極層を前記セル集積領域と
前記周縁領域とに分離するための光電変換層周縁分離溝
と裏面電極層周縁分離溝を前記透明絶縁基板側からレー
ザビームを入射させるレーザスクライブ法によって形成
し、 前記透明電極層周縁分離溝、前記光電変換層周縁分離
溝、および前記裏面電極層周縁分離溝が前記基板上で占
める平面的位置は、それらの溝の幅の少なくとも一部が
相互に重複する関係にあることを特徴とする集積型薄膜
光電変換装置の製造方法。
1. A laminate comprising a transparent electrode layer, a semiconductor photoelectric conversion layer, and a back electrode layer sequentially laminated on a transparent insulating substrate, wherein the laminate is formed by a peripheral separation groove and a photoelectric conversion cell integrated region and a peripheral region. Wherein the cell integrated region is divided so as to form a plurality of photoelectric conversion cells, and the plurality of cells are electrically connected in series. Forming the transparent electrode layer on the transparent insulating substrate, forming a transparent electrode layer peripheral separation groove for separating the transparent electrode layer into the cell integration region and the peripheral region by a laser scribe method; Forming the photoelectric conversion layer and the back electrode layer so as to cover a transparent electrode layer; and surrounding the photoelectric conversion layer for separating the photoelectric conversion layer and the back electrode layer into the cell integration region and the peripheral region. Forming a separation groove and a back electrode layer peripheral separation groove by a laser scribing method in which a laser beam is incident from the transparent insulating substrate side; the transparent electrode layer peripheral separation groove, the photoelectric conversion layer peripheral separation groove, and the back electrode layer peripheral edge; A method of manufacturing an integrated thin-film photoelectric conversion device, wherein the planar position occupied by the separation groove on the substrate is such that at least a part of the width of the groove overlaps each other.
【請求項2】 前記光電変換層周縁分離溝と前記裏面電
極層周縁分離溝の幅は前記透明電極層周縁分離溝の幅の
内側に含まれていることを特徴とする請求項1に記載の
集積型薄膜光電変換装置の製造方法。
2. The method according to claim 1, wherein the width of the peripheral separation groove of the photoelectric conversion layer and the width of the peripheral separation groove of the back electrode layer are included inside the width of the peripheral separation groove of the transparent electrode layer. A method for manufacturing an integrated thin-film photoelectric conversion device.
【請求項3】 前記光電変換装層周縁分離溝と前記裏面
電極層周縁分離溝の幅の内側に前記透明電極層周縁分離
溝の幅が含まれていることを特徴とする請求項1に記載
の集積型薄膜光電変換装置の製造方法。
3. The transparent electrode layer peripheral separation groove width is included inside the width of the photoelectric conversion device layer peripheral separation groove and the back electrode layer peripheral separation groove. Manufacturing method of an integrated thin-film photoelectric conversion device.
【請求項4】 透明絶縁基板上に順次積層された透明電
極層、半導体光電変換層、および裏面電極層を含む積層
体を備え、前記積層体は周縁分離溝によって光電変換セ
ル集積領域と周縁領域とに分離されており、前記セル集
積領域は複数の光電変換セルを形成するように分割され
かつそれらの複数のセルが電気的に直列接続されている
集積型薄膜光電変換装置の製造方法であって、 前記透明絶縁基板上に前記透明電極層、前記光電変換
層、および前記裏面電極層を順次形成し、 前記透明電極層を前記セル集積領域と前記周縁領域とに
分離するために、前記透明基板側からレーザビームを入
射させるレーザスクライブ法によって、前記透明電極
層、前記光電変換層、および前記裏面電極層を貫通して
透明電極層周縁分離溝を形成し、 前記光電変換層と前記裏面電極層を前記セル集積領域と
前記周縁領域とに分離するために、前記透明基板側から
レーザビームを入射させるレーザスクライブ法によっ
て、光電変換層周縁分離溝と裏面電極層周縁分離溝を形
成し、 前記光電変換層周縁分離溝と前記裏面電極層周縁分離溝
の少なくとも前記セル集積領域側の内壁は、前記透明電
極層周縁分離溝の前記セル集積領域側の内壁より後退さ
せられることを特徴とする集積型薄膜光電変換装置の製
造方法。
4. A laminate comprising a transparent electrode layer, a semiconductor photoelectric conversion layer, and a back electrode layer sequentially laminated on a transparent insulating substrate, wherein the laminate is formed by a peripheral separation groove and a photoelectric conversion cell integrated region and a peripheral region. Wherein the cell integrated region is divided so as to form a plurality of photoelectric conversion cells, and the plurality of cells are electrically connected in series. Forming the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer on the transparent insulating substrate in order, and separating the transparent electrode layer into the cell integration region and the peripheral region. Forming a transparent electrode layer peripheral separation groove through the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer by a laser scribing method in which a laser beam is incident from the substrate side; In order to separate the exchange layer and the back electrode layer into the cell integration region and the peripheral region, a laser scribe method in which a laser beam is incident from the transparent substrate side, the photoelectric conversion layer peripheral separation groove and the back electrode layer peripheral separation are performed. A groove is formed, and at least the inner wall of the photoelectric conversion layer peripheral separation groove and the back electrode layer peripheral separation groove on the cell integration region side is recessed from the inner wall of the transparent electrode layer peripheral separation groove on the cell integration region side. A method for manufacturing an integrated thin-film photoelectric conversion device, comprising:
JP35515397A 1997-12-24 1997-12-24 Manufacturing method of integrated thin film photoelectric conversion device Expired - Lifetime JP3815875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35515397A JP3815875B2 (en) 1997-12-24 1997-12-24 Manufacturing method of integrated thin film photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35515397A JP3815875B2 (en) 1997-12-24 1997-12-24 Manufacturing method of integrated thin film photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPH11186573A true JPH11186573A (en) 1999-07-09
JP3815875B2 JP3815875B2 (en) 2006-08-30

Family

ID=18442259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35515397A Expired - Lifetime JP3815875B2 (en) 1997-12-24 1997-12-24 Manufacturing method of integrated thin film photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP3815875B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274446A (en) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd Method of manufacturing integrated hybrid thin film solar battery
WO2002064854A1 (en) * 2001-02-15 2002-08-22 Kaneka Corporation Method of forming silicon thin film and silicon thin film solar cell
CN100347864C (en) * 2003-07-14 2007-11-07 仁宝电脑工业股份有限公司 Optoelectronic switching film, storage type device and display using the device
JP2008066453A (en) * 2006-09-06 2008-03-21 Mitsubishi Heavy Ind Ltd Method of manufacturing solar cell module and solar cell module
JP2009158864A (en) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd Solar cell module, and manufacturing method of the same
JP2009297742A (en) * 2008-06-13 2009-12-24 V Technology Co Ltd Laser processing apparatus
US20100282291A1 (en) * 2007-12-05 2010-11-11 Kaneka Corporation Multilayer thin-film photoelectric converter and its manufacturing method
JP2011129383A (en) * 2009-12-18 2011-06-30 Aisin Seiki Co Ltd Dye-sensitized solar cell
EP2469605A2 (en) 2004-02-20 2012-06-27 Sharp Kabushiki Kaisha Substrate for photoelectric conversion device, photoelectric conversion device, and stacked photoelectric conversion device
JP5168428B2 (en) * 2010-03-18 2013-03-21 富士電機株式会社 Method for manufacturing thin film solar cell
WO2013125143A1 (en) * 2012-02-23 2013-08-29 シャープ株式会社 Method for producing photoelectric conversion device
US20130312815A1 (en) * 2012-05-22 2013-11-28 Seung-Yeop Myong Integrated thin film photovoltaic module and manufacturing method thereof
JP2015154071A (en) * 2014-02-12 2015-08-24 聯相光電股▲ふん▼有限公司 Thin film solar cell panel arranged to prevent damage owing to heat
US9142701B2 (en) 2011-11-24 2015-09-22 Intellectual Discovery Co., Ltd. Tandem type integrated photovoltaic module and manufacturing method thereof
US9177917B2 (en) 2010-08-20 2015-11-03 Micron Technology, Inc. Semiconductor constructions

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274446A (en) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd Method of manufacturing integrated hybrid thin film solar battery
WO2002064854A1 (en) * 2001-02-15 2002-08-22 Kaneka Corporation Method of forming silicon thin film and silicon thin film solar cell
US6849560B2 (en) 2001-02-15 2005-02-01 Kaneka Corporation Method of depositing silicon thin film and silicon thin film solar cell
AU2002232197B2 (en) * 2001-02-15 2005-12-15 Kaneka Corporation Method of forming silicon thin film and silicon thin film solar cell
AU2002232197C1 (en) * 2001-02-15 2006-11-09 Kaneka Corporation Method of forming silicon thin film and silicon thin film solar cell
EP1361293A4 (en) * 2001-02-15 2009-03-04 Kaneka Corp Method of forming silicon thin film and silicon thin film solar cell
CN100347864C (en) * 2003-07-14 2007-11-07 仁宝电脑工业股份有限公司 Optoelectronic switching film, storage type device and display using the device
EP2469605A2 (en) 2004-02-20 2012-06-27 Sharp Kabushiki Kaisha Substrate for photoelectric conversion device, photoelectric conversion device, and stacked photoelectric conversion device
US8957300B2 (en) 2004-02-20 2015-02-17 Sharp Kabushiki Kaisha Substrate for photoelectric conversion device, photoelectric conversion device, and stacked photoelectric conversion device
JP2008066453A (en) * 2006-09-06 2008-03-21 Mitsubishi Heavy Ind Ltd Method of manufacturing solar cell module and solar cell module
US9252306B2 (en) * 2007-12-05 2016-02-02 Kaneka Corporation Multilayer thin-film photoelectric converter and its manufacturing method
JP5160565B2 (en) * 2007-12-05 2013-03-13 株式会社カネカ Integrated thin film photoelectric conversion device and manufacturing method thereof
US20100282291A1 (en) * 2007-12-05 2010-11-11 Kaneka Corporation Multilayer thin-film photoelectric converter and its manufacturing method
JP2009158864A (en) * 2007-12-27 2009-07-16 Sanyo Electric Co Ltd Solar cell module, and manufacturing method of the same
JP2009297742A (en) * 2008-06-13 2009-12-24 V Technology Co Ltd Laser processing apparatus
JP2011129383A (en) * 2009-12-18 2011-06-30 Aisin Seiki Co Ltd Dye-sensitized solar cell
JP5168428B2 (en) * 2010-03-18 2013-03-21 富士電機株式会社 Method for manufacturing thin film solar cell
US10879113B2 (en) 2010-08-20 2020-12-29 Micron Technology, Inc. Semiconductor constructions; and methods for providing electrically conductive material within openings
US10121697B2 (en) 2010-08-20 2018-11-06 Micron Technology, Inc. Semiconductor constructions; and methods for providing electrically conductive material within openings
US9177917B2 (en) 2010-08-20 2015-11-03 Micron Technology, Inc. Semiconductor constructions
US9142701B2 (en) 2011-11-24 2015-09-22 Intellectual Discovery Co., Ltd. Tandem type integrated photovoltaic module and manufacturing method thereof
WO2013125143A1 (en) * 2012-02-23 2013-08-29 シャープ株式会社 Method for producing photoelectric conversion device
US20130312815A1 (en) * 2012-05-22 2013-11-28 Seung-Yeop Myong Integrated thin film photovoltaic module and manufacturing method thereof
US9130102B2 (en) * 2012-05-22 2015-09-08 Intellectual Discovery Co., Ltd. Integrated thin film photovoltaic module and manufacturing method thereof
JP2015154071A (en) * 2014-02-12 2015-08-24 聯相光電股▲ふん▼有限公司 Thin film solar cell panel arranged to prevent damage owing to heat

Also Published As

Publication number Publication date
JP3815875B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US9929306B2 (en) Array of monolithically integrated thin film photovoltaic cells and associated methods
US5259891A (en) Integrated type solar battery
EP1727211B1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
US20080121264A1 (en) Thin film solar module and method of fabricating the same
US20100275964A1 (en) Solar cell, solar cell module, and method of manufacturing the solar cell
US20090084433A1 (en) Thin-film solar battery module and method of producing the same
JP3815875B2 (en) Manufacturing method of integrated thin film photoelectric conversion device
US8941160B2 (en) Photoelectric conversion module and method of manufacturing the same
KR20070098723A (en) Photovoltaic module
JP2986875B2 (en) Integrated solar cell
CN114038922A (en) Back contact heterojunction solar cell capable of improving insulation and isolation effects and manufacturing method thereof
JP3755048B2 (en) Integrated thin film tandem solar cell and manufacturing method thereof
US20110155219A1 (en) Thin film solar cell and method for fabricating the same
JP2005277113A (en) Stacked solar cell module
JP2012527112A (en) Photovoltaic device and manufacturing method thereof
US20100186796A1 (en) Solar cell module and method for manufacturing the same
JP3520425B2 (en) Solar cell module and method of manufacturing the same
KR101550927B1 (en) Solar cell and method of fabircating the same
US20110030769A1 (en) Solar cell and method for manufacturing the same
US20120211060A1 (en) Thin-film solar cell module and method for manufacturing the same
JPH1126795A (en) Manufacture of integrated thin film solar cell
CN114335200A (en) Cadmium telluride thin film solar cell module and preparation method thereof
JP2001127319A (en) Solar cell module and method of manufacturing the same
US20120285512A1 (en) Solar cell array and thin-film solar module and production method therefor
JP2001267613A (en) Integral thin-film solar battery and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term