WO2013125143A1 - Method for producing photoelectric conversion device - Google Patents

Method for producing photoelectric conversion device Download PDF

Info

Publication number
WO2013125143A1
WO2013125143A1 PCT/JP2012/082902 JP2012082902W WO2013125143A1 WO 2013125143 A1 WO2013125143 A1 WO 2013125143A1 JP 2012082902 W JP2012082902 W JP 2012082902W WO 2013125143 A1 WO2013125143 A1 WO 2013125143A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
scribe line
electrode layer
layer
region
Prior art date
Application number
PCT/JP2012/082902
Other languages
French (fr)
Japanese (ja)
Inventor
幸大 宮本
智 中原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013125143A1 publication Critical patent/WO2013125143A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for manufacturing a photoelectric conversion device.
  • Patent Document 1 Japanese Patent Laid-Open No. 2011-181826 discloses a method for manufacturing a thin film solar cell including the following steps (i) to (iv).
  • a transparent electrode layer is formed on a transparent insulating substrate, and a part of the transparent electrode layer is removed by laser light irradiation to form a first separation groove.
  • a photoelectric conversion layer is formed on the transparent electrode layer, a part of the photoelectric conversion layer is removed by laser light irradiation, and a second separation groove is formed.
  • a back electrode layer is formed on the photoelectric conversion layer, and a part of each of the photoelectric conversion layer and the back electrode layer is removed by laser light irradiation to form a scribe line.
  • Patent Document 2 Japanese Patent Laid-Open No. 2006-245507 discloses a method for manufacturing a thin film solar cell including the following steps (I) to (IV).
  • a transparent conductive film is formed on an insulating translucent substrate, and a part of the transparent conductive film is removed by laser light irradiation to form a first separation groove.
  • a back electrode is formed on the photoelectric conversion layer, and a part of each of the photoelectric conversion layer and the back electrode is removed by laser light irradiation to form a scribe line.
  • the step of forming the peripheral insulating region includes an electric shock accident due to leakage from a frame body such as an aluminum frame attached to the peripheral insulating region or an end of the transparent insulating substrate. It is essential to prevent.
  • the residue of the transparent conductive film, the photoelectric conversion layer, or the back electrode remains in a part of the peripheral insulating region, the appearance viewed from the insulating translucent substrate side may be impaired.
  • an insulation failure or an appearance failure may occur in the vicinity of the scribe line in the peripheral insulating region.
  • an object of the present invention is to provide a method for manufacturing a photoelectric conversion device capable of suppressing the occurrence of insulation failure or appearance failure in the vicinity of a scribe line in a peripheral insulating region.
  • the present invention relates to a transparent insulating substrate in which a transparent electrode layer, a photoelectric conversion layer, and a back electrode layer are laminated in this order, a transparent electrode layer, a photoelectric conversion layer, and a back electrode layer on the entire periphery of the transparent insulating substrate.
  • the method further includes a scribe line forming step of forming a scribe line by linearly removing the photoelectric conversion layer and the back electrode layer, and in the scribe line forming step, a peripheral insulating step In the region where the peripheral insulating region is formed, it is preferable to leave at least one of the photoelectric conversion layer and the back electrode layer.
  • the scribe line forming step includes a step of removing the photoelectric conversion layer and the back electrode layer by laser light irradiation to form a scribe line, and a peripheral insulating step in the peripheral insulating step. It is preferable that the region for forming the region includes a step of stopping the irradiation of the laser light.
  • the scribe line forming step includes a step of covering a region where the peripheral insulating region is formed in the peripheral insulating step with a mask, and a photoelectric conversion layer and a back electrode layer by laser light irradiation. And a step of forming a scribe line.
  • the method for producing a photoelectric conversion device of the present invention includes a step of laminating a photoelectric conversion layer on a transparent electrode layer laminated on a transparent insulating substrate, a step of laminating a back electrode layer on the photoelectric conversion layer, A part of each of the conversion layer and the back electrode layer is removed by laser light irradiation to form a scribe line, and the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer on the entire periphery of the transparent insulating substrate are laser-treated. Forming a peripheral insulating region by removing the light by irradiating while moving the light. In the step of forming the peripheral insulating region, the moving speed of the laser beam may be reduced in the region where the scribe line is formed. preferable.
  • the moving speed of the laser beam is temporarily made zero in the scribe line forming region in the step of forming the peripheral insulating region.
  • the method for producing a photoelectric conversion device of the present invention further includes a step of forming a cross scribe line that intersects the scribe line by removing a part of each of the photoelectric conversion layer and the back electrode layer by laser light irradiation, In the step of forming the peripheral insulating region, it is preferable to reduce the moving speed of the laser light in the formation region of the intersecting scribe line.
  • the moving speed of the laser light is temporarily made zero in the formation region of the cross scribe line in the step of forming the peripheral insulating region.
  • the present invention it is possible to provide a method for manufacturing a photoelectric conversion device that can suppress the occurrence of insulation failure or appearance failure in the vicinity of the scribe line in the peripheral insulating region.
  • FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3.
  • FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3.
  • FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3.
  • FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3.
  • FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3.
  • FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3.
  • FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3.
  • FIG. 3 is a schematic plan view illustrating an example of a part of the manufacturing process of the photoelectric conversion device manufacturing method according to the first embodiment.
  • FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3.
  • FIG. 6 is a schematic plan view illustrating an example of a part of the manufacturing process of the manufacturing method of the photoelectric conversion device according to Embodiments 1 and 3.
  • FIG. It is the typical top view which looked at the transparent insulation board
  • FIG. 6 is a schematic plan view illustrating another example of a part of the manufacturing process of the photoelectric conversion device manufacturing method according to the first embodiment.
  • FIG. 10 is a schematic plan view illustrating an example of a part of the manufacturing process of the photoelectric conversion device manufacturing method according to the second embodiment.
  • FIG. 12 is a schematic plan view illustrating another example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to the second embodiment.
  • FIG. 12 is a schematic plan view illustrating still another example of part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to the second embodiment.
  • FIG. 10 is a schematic enlarged plan view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to the third embodiment.
  • FIG. 10 is a schematic plan view illustrating an example of a part of the manufacturing process of the photoelectric conversion device manufacturing method according to the fourth embodiment.
  • FIG. 10 is a schematic plan view illustrating an example of a part of the manufacturing process of the photoelectric conversion device manufacturing method according to the fourth embodiment.
  • FIG. 10 is a schematic enlarged plan view illustrating an example of a part of the manufacturing process of the photoelectric conversion device manufacturing method according to the fourth embodiment.
  • the transparent electrode layer 2 is laminated on the transparent insulating substrate 1.
  • a glass substrate etc. can be used, for example.
  • the transparent electrode layer 2 for example, a layer made of SnO 2 (tin oxide), ITO (Indium Tin Oxide) or ZnO (zinc oxide) can be used.
  • the formation method of the transparent electrode layer 2 is not specifically limited, For example, conventionally well-known thermal CVD method, sputtering method, a vapor deposition method, or an ion plating method etc. can be used.
  • a fundamental wave (wavelength: 1064 nm) of YAG (Yttrium Aluminum Garnet) laser beam or a fundamental wave (wavelength: 1064 nm) of YVO 4 (Yttrium Orthovanadate) laser beam is used. It is preferable to use it.
  • the surface of the transparent insulating substrate 1 is subjected to ultrasonic cleaning using pure water, for example, and then the transparent electrode layer 2 separated by the first separation groove 5.
  • the photoelectric conversion layer 3 is laminated so as to cover.
  • a semiconductor photoelectric conversion layer can be used as the photoelectric conversion layer 3.
  • a top cell in which a p layer, an i layer, and an n layer made of an amorphous silicon thin film are stacked in this order from the transparent insulating substrate 1 side.
  • Conversion layer and a bottom cell (second photoelectric conversion layer) in which a p layer, an i layer, and an n layer made of a microcrystalline silicon thin film are stacked in this order can be stacked on the top cell by, for example, a plasma CVD method. .
  • the photoelectric conversion layer 3 includes, for example, a top cell (first photoelectric conversion layer) in which a p layer, an i layer, and an n layer made of an amorphous silicon thin film are stacked in this order from the transparent insulating substrate 1 side, and a top cell.
  • a middle cell second photoelectric conversion layer in which a p layer, an i layer and an n layer made of an amorphous silicon thin film are laminated in this order, and a p layer, an i layer and an n layer made of a microcrystalline silicon thin film are formed on the middle cell.
  • the bottom cell (third photoelectric conversion layer) stacked in order may be stacked by, for example, a plasma CVD method. Note that the number of photoelectric conversion layers can be increased.
  • the photoelectric conversion layers from the first photoelectric conversion layer to the third photoelectric conversion layer may all be made of the same type of silicon-based semiconductor, or may be made of different types of silicon-based semiconductor.
  • each photoelectric conversion layer from the first photoelectric conversion layer to the third photoelectric conversion layer includes a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer, respectively, the p-type semiconductor layer and the i-type semiconductor layer and the i-type semiconductor
  • Each semiconductor layer of the layer and the n-type semiconductor layer may be made of a silicon-based semiconductor, for example.
  • Each semiconductor layer included in the photoelectric conversion layer 3 may be made of the same kind of silicon-based semiconductor, or may be made of different types of silicon-based semiconductor.
  • the p-type semiconductor layer and the i-type semiconductor layer may be formed of amorphous silicon, and the n-type semiconductor layer may be formed of microcrystalline silicon.
  • the p-type semiconductor layer and the n-type semiconductor layer may be formed of silicon carbide or silicon germanium, and the i-type semiconductor layer may be formed of silicon.
  • each of the p-type, i-type and n-type semiconductor layers may have a single-layer structure or a multi-layer structure.
  • each semiconductor layer may be composed of different types of silicon-based semiconductors.
  • the concept of an amorphous silicon thin film includes a thin film made of a hydrogenated amorphous silicon-based semiconductor (a-Si: H) in which dangling bonds of silicon are terminated with hydrogen.
  • the concept of a microcrystalline silicon thin film includes a thin film made of a hydrogenated microcrystalline silicon-based semiconductor ( ⁇ c-Si: H) in which dangling bonds of silicon are terminated with hydrogen.
  • the thickness of the photoelectric conversion layer 3 is not particularly limited, and can be, for example, 200 nm or more and 5 ⁇ m or less.
  • the formation method of the photoelectric conversion layer 3 is not limited to the plasma CVD method.
  • the laser light is linearly moved in the extending direction of the first separation groove 5 and irradiated from the transparent insulating substrate 1 side and / or the photoelectric conversion layer 3 side.
  • a part of the photoelectric conversion layer 3 is removed in a stripe shape, and a second separation groove 6 for separating the photoelectric conversion layer 3 is formed.
  • the laser beam used for forming the second separation groove 6 it is preferable to use the second harmonic (wavelength: 532 nm) of the YAG laser beam or the second harmonic (wavelength: 532 nm) of the YVO 4 laser beam. Since the second harmonic of the YAG laser light and the second harmonic of the YVO 4 laser light tend to pass through the transparent insulating substrate 1 and the transparent electrode layer 2 and be absorbed by the photoelectric conversion layer 3, respectively, the photoelectric conversion layer 3 The photoelectric conversion layer 3 tends to be selectively evaporated by heating.
  • the back electrode layer 4 is laminated so as to cover the photoelectric conversion layer 3. Thereby, as shown in FIG. 5, the second separation groove 6 is filled with the back electrode layer 4.
  • the back electrode layer 4 for example, a laminate of a metal thin film made of silver or aluminum and a transparent conductive film such as ZnO can be used.
  • the thickness of the metal thin film can be, for example, 100 nm or more and 1 ⁇ m or less
  • the thickness of the transparent conductive film can be, for example, 20 nm or more and 200 nm or less.
  • the back electrode layer 4 only a single metal thin film layer or a plurality of metal thin film layers may be used.
  • the method for forming the back electrode layer 4 is not particularly limited, and for example, a sputtering method or the like can be used.
  • laser light is directed in the extending direction of the first separation groove 5 and the second separation groove 6 from the transparent insulating substrate 1 side and / or the back electrode layer 4 side.
  • a scribe line 7 is formed by removing a part of the photoelectric conversion layer 3 and the back electrode layer 4 in a stripe shape by moving in a straight line and irradiating the photoelectric conversion layer 3 and the back electrode layer 4.
  • a line forming process is performed.
  • the laser light used for forming the scribe line 7 it is preferable to use the second harmonic (wavelength: 532 nm) of the YAG laser light or the second harmonic (wavelength: 532 nm) of the YVO 4 laser light. Since the second harmonic of the YAG laser light and the second harmonic of the YVO 4 laser light tend to pass through the transparent insulating substrate 1 and the transparent electrode layer 2 and be absorbed by the photoelectric conversion layer 3, respectively, the photoelectric conversion layer 3 Is selectively heated, and the photoelectric conversion layer 3 and the back electrode layer 4 tend to be selectively evaporated.
  • the region 9 where the peripheral insulating region is formed in the peripheral insulating step for forming the peripheral insulating region described later is irradiated with laser light.
  • the scribe line 7 is formed so that at least one of the photoelectric conversion layer 3 and the back electrode layer 4 is left in the region 9 where the peripheral insulating region is formed in the peripheral insulating step.
  • the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 on the entire periphery of the transparent insulating substrate 1 are removed by laser light irradiation to thereby perform peripheral insulation.
  • a peripheral insulating process for forming the region 10 is performed. Accordingly, as shown in the schematic plan view of FIG. 9, the peripheral insulating region in which the surface of the transparent insulating substrate 1 is exposed so as to surround the string 12 in which the adjacent power generation cells 11 are sequentially connected in series. 10 is formed, and the photoelectric conversion device of Embodiment 1 can be manufactured.
  • the peripheral insulating step at least one of the photoelectric conversion layer 3 and the back electrode layer 4 exists in the region where the peripheral insulating region 10 is formed.
  • the laser light used for forming the peripheral insulating region 10 it is preferable to use the fundamental wave of YAG laser light (wavelength: 1064 nm) or the fundamental wave of YVO 4 laser light (wavelength: 1064 nm). Further, since the peripheral insulating region 10 is generally formed wide, the irradiation width of the laser light (the length in the direction orthogonal to the moving direction of the laser light) is preferably 150 ⁇ m or more, and preferably 400 ⁇ m or more. Is more preferable. Further, when the peripheral insulating region 10 is formed, the laser beam can be irradiated from the transparent insulating substrate 1 side and / or the back electrode layer 4 side.
  • the intensity distribution of the laser light is preferably a rectangular distribution in each of the moving direction and the width direction of the laser light.
  • an optical system using a galvano scan or an optical system using a square fiber can be used without any particular limitation.
  • a transparent adhesive made of, for example, an EVA sheet or the like is placed on the surface of the back electrode layer 4 after the current extraction electrode is formed, and the transparent adhesive is, for example, PET (polyester) / Al (aluminum) / PET.
  • the irradiation of the laser beam is stopped in the region 9 where the peripheral insulating region 10 is formed in the peripheral insulating step.
  • the scribe line 7 is formed so that at least one of the photoelectric conversion layer 3 and the back electrode layer 4 remains.
  • peripheral insulation is achieved by removing the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer by laser light irradiation.
  • a residue 111 of the transparent electrode layer remains in the vicinity of the scribe line 107 of the peripheral insulating region 110, and this residue 111 is converted into the peripheral insulating region. This is because it has been determined that this is the cause of an insulation failure or an appearance failure in the vicinity of 110 scribe line 107.
  • the irradiation of the laser beam is stopped, so that the region before the peripheral insulating region 10 is formed.
  • the transparent electrode layer 2 but also at least one of the photoelectric conversion layer 3 and the back electrode layer 4 can be left on the entire circumference of the transparent insulating substrate 1.
  • the energy of the laser beam irradiated at the time of forming the peripheral insulating region 10 is sufficiently absorbed not only in the transparent electrode layer 2 but also in at least one of the photoelectric conversion layer 3 and the back electrode layer 4 to be converted into thermal energy. Therefore, generation
  • the present invention is not limited to this method. .
  • the region 9 where the peripheral insulating area 10 is formed in the peripheral insulating process is covered with a mask 13 such as a metal plate. Irradiation can remove the photoelectric conversion layer 3 and the back electrode layer 4 to form the scribe line 7.
  • the transparent electrode layer 2 not only the transparent electrode layer 2 but also at least one of the photoelectric conversion layer 3 and the back electrode layer 4 can be left on the entire periphery of the transparent insulating substrate 1 before the formation of the peripheral insulating region 10, Since generation
  • the adjustment method of the irradiation position of the laser beam at the time of formation of the scribe line 7 is not specifically limited,
  • the method of adjusting by alignment of the transparent insulating substrate 1 on the stage of a laser scribing apparatus, the transparent insulating substrate 1 Use a method of detecting the end in advance and adjusting the distance from the end of the transparent insulating substrate 1 or adjusting using an alignment mark formed when the first separation groove 5 is formed. Can do.
  • the first separation groove 5 and the second separation groove 6 may be formed in the region 9 where the peripheral insulating region 10 is formed in the peripheral insulating step.
  • a cross scribe line that intersects the scribe line 7 is formed, and at the time of forming the cross scribe line, the region 9 in which the peripheral insulating region 10 is formed in the peripheral insulating step.
  • a step of forming the intersecting scribe line 8 by forming the intersecting scribe line 8 intersecting with the scribe line 7 is performed.
  • the irradiation of the laser beam is stopped in the region 9 where the peripheral insulating region 10 is formed in the peripheral insulating step.
  • the laser light can be irradiated from the transparent insulating substrate 1 side and / or the back electrode layer 4 side.
  • peripheral insulation is achieved by removing the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer by laser light irradiation.
  • the transparent electrode layer residue remains not only in the vicinity of the scribe line but also in the vicinity of the cross scribe line, and this residue is in the vicinity of the scribe line and the cross scribe line in the peripheral insulating region. This is because it has been found that this is the cause of an insulation failure or an appearance failure.
  • the region where the peripheral insulating region 10 is formed in the step of forming the peripheral insulating region 10. 9 by stopping the laser light irradiation, not only the transparent electrode layer 2 but also at least one of the photoelectric conversion layer 3 and the back electrode layer 4 can be left in the region 9.
  • the laser beam irradiated at the time of forming the peripheral insulating region 10 in both the step of forming the scribe line 7 and the step of forming the intersecting scribe line 8. Can be absorbed not only in the transparent electrode layer 2 but also in at least one of the photoelectric conversion layer 3 and the back electrode layer 4 to be converted into thermal energy, thereby suppressing the generation of residues in the transparent electrode layer 2 In addition, it is possible to suppress the occurrence of poor insulation or poor appearance in the vicinity of the scribe line 7 and the cross scribe line 8 in the peripheral insulating region 10.
  • the angle formed between the scribe line 7 and the intersecting scribe line 8 can be set to 90 ° ⁇ 10 °, for example.
  • the photoelectric conversion layer 3 and the back electrode layer 4 may be removed by laser light irradiation, and the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 may be removed. All may be removed by laser light irradiation.
  • the second scribe line 8 by removing all of the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 by laser light irradiation in the step of forming the intersecting scribe line 8 It is not necessary to form the intersecting scribe lines 8 by the above method.
  • the method of adjusting the type of laser light and the irradiation position of the laser light at the time of forming the second scribe line 8 is not particularly limited, and for example, the same type of laser light and laser light as at the time of forming the scribe line 7 are used. An irradiation position adjustment method or the like can be used.
  • the forming method is not limited to this method.
  • the region 9 in which the peripheral insulating region 10 is formed in the peripheral insulating step is covered with a mask 13 such as a metal plate.
  • the cross scribe line 8 can also be formed by irradiating laser light.
  • the transparent electrode layer 2 not only the transparent electrode layer 2 but also at least one of the photoelectric conversion layer 3 and the back electrode layer 4 can be left on the entire periphery of the transparent insulating substrate 1 before the formation of the peripheral insulating region 10, Since generation
  • the cross scribe line 8 when the cross scribe line 8 is formed, it is not necessary to finely adjust the stop position of the laser beam irradiation. Therefore, the insulation defect or the appearance defect in the vicinity of the cross scribe line 8 in the peripheral insulating region 10 is eliminated. The reproducibility of occurrence suppression can be improved.
  • the region 9 in which the peripheral insulating region 10 is formed in the peripheral insulating step is covered in advance with a mask 13 such as a metal plate, and laser light is irradiated in this state.
  • the scribe line 7 and the intersecting scribe line 8 can also be formed.
  • not only the transparent electrode layer 2 but also at least one of the photoelectric conversion layer 3 and the back electrode layer 4 can be left in the region 9 where the peripheral insulating region 10 is formed in the peripheral insulating step.
  • production of the residue of the layer 2 can be suppressed and generation
  • a transparent electrode layer 2 is laminated on a transparent insulating substrate 1.
  • a transparent insulating substrate a glass substrate etc. can be used, for example.
  • the transparent electrode layer 2 for example, a layer made of SnO 2 (tin oxide), ITO (Indium Tin Oxide) or ZnO (zinc oxide) can be used.
  • the formation method of the transparent electrode layer 2 is not specifically limited, For example, conventionally well-known thermal CVD method, sputtering method, a vapor deposition method, or an ion plating method etc. can be used.
  • the transparent electrode layer corresponding to the irradiated portion of the laser beam is irradiated by moving the laser beam linearly from the transparent insulating substrate 1 side and / or the transparent electrode layer 2 side.
  • a part of 2 is removed in a stripe shape to form a first separation groove 5 for separating the transparent electrode layer 2.
  • a fundamental wave (wavelength: 1064 nm) of YAG (Yttrium Aluminum Garnet) laser beam or a fundamental wave (wavelength: 1064 nm) of YVO 4 (Yttrium Orthovanadate) laser beam is used. It is preferable to use it. Since the fundamental wave of YAG laser light and the fundamental wave of YVO 4 laser light tend to pass through the transparent insulating substrate 1 and be absorbed by the transparent electrode layer 2, the transparent electrode layer 2 is selectively heated to evaporate. It tends to be able to be made.
  • the surface of the transparent insulating substrate 1 is subjected to ultrasonic cleaning using pure water, for example, and then photoelectrically covered so as to cover the transparent electrode layer 2 separated by the first separation groove 5.
  • the conversion layer 3 is laminated.
  • a semiconductor photoelectric conversion layer can be used as the photoelectric conversion layer 3.
  • a top cell in which a p layer, an i layer, and an n layer made of an amorphous silicon thin film are stacked in this order from the transparent insulating substrate 1 side.
  • Conversion layer and a bottom cell (second photoelectric conversion layer) in which a p layer, an i layer, and an n layer made of a microcrystalline silicon thin film are stacked in this order can be stacked on the top cell by, for example, a plasma CVD method. .
  • the photoelectric conversion layer 3 includes, for example, a top cell (first photoelectric conversion layer) in which a p layer, an i layer, and an n layer made of an amorphous silicon thin film are stacked in this order from the transparent insulating substrate 1 side, and a top cell.
  • a middle cell second photoelectric conversion layer in which a p layer, an i layer and an n layer made of an amorphous silicon thin film are laminated in this order, and a p layer, an i layer and an n layer made of a microcrystalline silicon thin film are formed on the middle cell.
  • the bottom cell (third photoelectric conversion layer) stacked in order may be stacked by, for example, a plasma CVD method. Note that the number of photoelectric conversion layers can be increased.
  • the photoelectric conversion layers from the first photoelectric conversion layer to the third photoelectric conversion layer may all be made of the same type of silicon-based semiconductor, or may be made of different types of silicon-based semiconductor.
  • each photoelectric conversion layer from the first photoelectric conversion layer to the third photoelectric conversion layer includes a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer, respectively, the p-type semiconductor layer and the i-type semiconductor layer and the i-type semiconductor
  • Each semiconductor layer of the layer and the n-type semiconductor layer may be made of, for example, a silicon-based semiconductor.
  • Each semiconductor layer included in the photoelectric conversion layer 3 may be made of the same kind of silicon-based semiconductor, or may be made of different types of silicon-based semiconductor.
  • the p-type semiconductor layer and the i-type semiconductor layer may be formed of amorphous silicon, and the n-type semiconductor layer may be formed of microcrystalline silicon.
  • the p-type semiconductor layer and the n-type semiconductor layer may be formed of silicon carbide or silicon germanium, and the i-type semiconductor layer may be formed of silicon.
  • each of the p-type, i-type and n-type semiconductor layers may have a single-layer structure or a multi-layer structure.
  • each semiconductor layer may be composed of different types of silicon-based semiconductors.
  • the concept of an amorphous silicon thin film includes a thin film made of a hydrogenated amorphous silicon-based semiconductor (a-Si: H) in which dangling bonds of silicon are terminated with hydrogen.
  • the concept of a microcrystalline silicon thin film includes a thin film made of a hydrogenated microcrystalline silicon-based semiconductor ( ⁇ c-Si: H) in which dangling bonds of silicon are terminated with hydrogen.
  • the thickness of the photoelectric conversion layer 3 is not particularly limited, and can be, for example, 200 nm or more and 5 ⁇ m or less.
  • the formation method of the photoelectric conversion layer 3 is not limited to the plasma CVD method.
  • the laser light is linearly moved in the extending direction of the first separation groove 5 and irradiated from the transparent insulating substrate 1 side and / or the photoelectric conversion layer 3 side.
  • a part of the conversion layer 3 is removed in a stripe shape to form a second separation groove 6 that separates the photoelectric conversion layer 3.
  • the laser beam used for forming the second separation groove 6 it is preferable to use the second harmonic (wavelength: 532 nm) of the YAG laser beam or the second harmonic (wavelength: 532 nm) of the YVO 4 laser beam. Since the second harmonic of the YAG laser light and the second harmonic of the YVO 4 laser light tend to pass through the transparent insulating substrate 1 and the transparent electrode layer 2 and be absorbed by the photoelectric conversion layer 3, respectively, the photoelectric conversion layer 3 The photoelectric conversion layer 3 tends to be selectively evaporated by heating.
  • the back electrode layer 4 is laminated so as to cover the photoelectric conversion layer 3. Thereby, as shown in FIG. 5, the second separation groove 6 is filled with the back electrode layer 4.
  • the back electrode layer 4 for example, a laminate of a metal thin film made of silver or aluminum and a transparent conductive film such as ZnO can be used.
  • the thickness of the metal thin film can be, for example, 100 nm or more and 1 ⁇ m or less
  • the thickness of the transparent conductive film can be, for example, 20 nm or more and 200 nm or less.
  • the back electrode layer 4 only a single metal thin film layer or a plurality of metal thin film layers may be used.
  • the method for forming the back electrode layer 4 is not particularly limited, and for example, a sputtering method or the like can be used.
  • the laser beam is linearly moved in the extending direction of the first separation groove 5 and the second separation groove 6 from the transparent insulating substrate 1 side and / or the back electrode layer 4 side.
  • a part of the photoelectric conversion layer 3 and the back electrode layer 4 is removed in a stripe shape, and a scribe line 7 for separating the photoelectric conversion layer 3 and the back electrode layer 4 is formed.
  • the laser light used for forming the scribe line 7 it is preferable to use the second harmonic (wavelength: 532 nm) of the YAG laser light or the second harmonic (wavelength: 532 nm) of the YVO 4 laser light. Since the second harmonic of the YAG laser light and the second harmonic of the YVO 4 laser light tend to pass through the transparent insulating substrate 1 and the transparent electrode layer 2 and be absorbed by the photoelectric conversion layer 3, respectively, the photoelectric conversion layer 3 Is selectively heated, and the photoelectric conversion layer 3 and the back electrode layer 4 tend to be selectively evaporated.
  • the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 on the entire periphery of the transparent insulating substrate 1 are removed by irradiation while moving the laser beam.
  • the peripheral insulating region 10 is formed so that the surface of the transparent insulating substrate 1 is exposed so as to surround the string 12 in which the adjacent power generation cells 11 are sequentially connected in series.
  • the photoelectric conversion device of Embodiment 3 can be manufactured.
  • the laser light used for forming the peripheral insulating region 10 it is preferable to use the fundamental wave of YAG laser light (wavelength: 1064 nm) or the fundamental wave of YVO 4 laser light (wavelength: 1064 nm). Since the fundamental wave of the YAG laser beam and the fundamental wave of the YVO 4 laser beam tend to pass through the transparent insulating substrate 1 and be absorbed by the transparent electrode layer 2, the transparent electrode layer 2 is selectively heated to be transparent. The electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 tend to evaporate and be removed.
  • the irradiation width of the laser light (the length in the direction orthogonal to the moving direction of the laser light) is preferably 150 ⁇ m or more, and preferably 400 ⁇ m or more. Is more preferable. Further, when the peripheral insulating region 10 is formed, the laser beam can be irradiated from the transparent insulating substrate 1 side and / or the back electrode layer 4 side.
  • a transparent adhesive made of, for example, an EVA sheet or the like is placed on the surface of the back electrode layer 4 after the current extraction electrode is formed, and the transparent adhesive is, for example, PET (polyester) / Al (aluminum) / PET.
  • the scribe line 7 is formed in the formation region of the scribe line 7 when the peripheral insulating region 10 is formed.
  • the transparent electrode layer 2 and the photoelectric conversion are performed by irradiating the laser beam by reducing the moving speed of the laser beam (that is, by narrowing the interval of the laser beam irradiation region 14) as compared with the region that is not formed.
  • the peripheral insulating region 10 is formed by evaporating the layer 3 and the back electrode layer 4.
  • peripheral insulation is achieved by removing the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer by laser light irradiation.
  • a residue 111 of the transparent electrode layer remains in the vicinity of the scribe line 107 of the peripheral insulating region 110, and this residue 111 is converted into the peripheral insulating region. This is because it has been determined that this is the cause of an insulation failure or an appearance failure in the vicinity of 110 scribe line 107.
  • the moving speed of the laser beam is reduced in the region where the scribe line 7 is formed compared to the region where the scribe line 7 is not formed. , The amount of energy applied to the formation region of the scribe line 7 is increased, and the removal capability by laser light irradiation is locally improved. Thereby, since it can suppress that the transparent electrode layer 2 remains as a residue in the formation area of the scribe line 7, generation
  • the moving speed of the laser light in the region where the scribe line 7 is not formed when the peripheral insulating region 10 is formed is preferably 10 mm / second or more and 400 mm / second or less, and 50 mm / second or more and 150 mm / second or less. It is more preferable that it is 80 mm / second or more and 110 mm / second or less.
  • the moving speed of the laser light in the region where the scribe line 7 is not formed when the peripheral insulating region 10 is formed is 10 mm / second or more and 400 mm / second or less, more preferably 50 mm / second or more and 150 mm / second or less.
  • the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 can be removed more efficiently and more reliably. Tends to be formed more efficiently.
  • the moving speed of the laser light in the region where the scribe line 7 is formed when the peripheral insulating region 10 is formed is lower than the moving speed of the laser light in the region where the scribe line 7 is not formed and is 5 mm / second or more. It is preferably 200 mm / second or less, more preferably 10 mm / second or more and 100 mm / second or less, and further preferably 50 mm / second or more and 90 mm / second or less.
  • the moving speed of the laser light in the region where the scribe line 7 is formed is lower than the moving speed of the laser light in the region where the scribe line 7 is not formed, and is 5 mm / second or more and 200 mm / second.
  • the transparent electrode layer 2 of the scribe line 7 is more efficiently and more reliable. Therefore, the peripheral insulating region 10 tends to be formed more efficiently.
  • the moving speed of the laser light is temporarily made zero in the region where the scribe line 7 is formed. In this case, the transparent electrode layer 2 tends to be removed more reliably.
  • the adjustment method of the irradiation position of the laser beam at the time of formation of the peripheral insulating region 10 is not specifically limited, For example, the method of adjusting by the alignment of the transparent insulating substrate 1 on the stage of a laser scribing apparatus, the transparent insulating substrate 1 A method of detecting the end portion of the transparent insulating substrate 1 in advance and adjusting it at a predetermined distance from the end portion of the transparent insulating substrate 1 or a method of adjusting using an alignment mark formed at the time of forming the first separation groove 5 is used. be able to.
  • a cross scribe line intersecting the scribe line 7 is formed, and not only the formation region of the scribe line 7 but also the formation of the cross scribe line is formed when the peripheral insulating region 10 is formed. Even in the region, the moving speed of the laser beam is reduced.
  • the same processes as those of the third embodiment are performed until the scribe line 7 is formed.
  • an intersecting scribe line 8 that intersects the scribe line 7 is formed.
  • the laser beam can be irradiated from the transparent insulating substrate 1 side and / or the back electrode layer 4 side.
  • the peripheral insulating region 10 where the surface of the transparent insulating substrate 1 is exposed is formed so as to surround the periphery of the string 12 in which the adjacent power generation cells 11 are sequentially connected in series.
  • a conversion device can be made.
  • the region where the scribe line 7 is formed is compared with the region where the scribe line 7 is not formed. Then, the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer are irradiated by irradiating the laser beam by reducing the moving speed of the laser beam (that is, by narrowing the interval between the laser beam irradiation regions 14). 4 is evaporated to form the peripheral insulating region 10.
  • the moving speed of the laser beam is reduced (that is, the interval between the laser beam irradiation regions 14 is narrowed) and the transparent electrode layer 2 is irradiated with the laser beam. Then, the photoelectric conversion layer 3 and the back electrode layer 4 are evaporated to form the peripheral insulating region 10.
  • peripheral insulation is achieved by removing the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer by laser light irradiation.
  • the transparent electrode layer residue remains not only in the vicinity of the scribe line but also in the vicinity of the cross scribe line, and this residue is in the vicinity of the scribe line and the cross scribe line in the peripheral insulating region. This is because it has been found that this is the cause of an insulation failure or an appearance failure.
  • the region where the scribe line 7 and the cross scribe line 8 are formed is compared with the region where the scribe line 7 and the cross scribe line 8 are not formed. Then, by irradiating the laser beam while reducing the moving speed of the laser beam, the amount of energy applied to the formation region of the scribe line 7 and the intersecting scribe line 8 is increased, and the removal capability by the laser beam irradiation is locally improved. .
  • the photoelectric conversion layer 3 and the back electrode layer 4 may be removed by laser light irradiation, and all of the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 are removed. May be removed by laser light irradiation. Only when the photoelectric conversion layer 3 and the back electrode layer 4 are removed by laser light irradiation to form the cross scribe line 8, the laser beam is formed in the formation region of the cross scribe line 8 when forming the peripheral insulating region 10. It is only necessary to irradiate the laser beam at a lower moving speed.
  • the method of adjusting the type of laser light and the irradiation position of the laser light when forming the intersecting scribe line 8 is not particularly limited, and for example, the same type of laser light and the irradiation position of the laser light as when forming the scribe line 7 are used. Can be used.
  • the moving speed of the laser light in the formation area of the cross scribe line 8 when forming the peripheral insulating region 10 is lower than the moving speed of the laser light in the area where the scribe line 7 and the cross scribe line 8 are not formed.
  • it is preferably 5 mm / second or more and 200 mm / second or less, more preferably 10 mm / second or more and 100 mm / second or less, and further preferably 50 mm / second or more and 90 mm / second or less.
  • the moving speed of the laser light in the region where the cross scribe line 8 is formed is lower than the moving speed of the laser light in the region where the scribe line 7 and the cross scribe line 8 are not formed, and 5 mm.
  • Transparent electrode layer 2 of the crossed scribe line 8 when it is 10 mm / second or more and 200 mm / second or less, more preferably 10 mm / second or more and 100 mm / second or less, particularly 50 mm / second or more and 90 mm / second or less. Therefore, the peripheral insulating region 10 tends to be formed more efficiently.
  • the moving speed of the laser light is temporarily reduced to zero in the region where the cross scribe line 8 is formed. In this case, the transparent electrode layer 2 tends to be removed more reliably.
  • the present invention can be used for a method for manufacturing a photoelectric conversion device, and can be particularly preferably used for a method for manufacturing a thin film solar cell.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A method for producing a photoelectric conversion device, in which a photoelectric conversion layer (3) and/or a back-side electrode layer (4) is present in a region in which a periphery-insulated region (10) is to be formed when a periphery insulation step is carried out.

Description

光電変換装置の製造方法Method for manufacturing photoelectric conversion device
 本発明は、光電変換装置の製造方法に関する。 The present invention relates to a method for manufacturing a photoelectric conversion device.
 太陽光のエネルギを直接電気エネルギに変換する太陽電池の種類としては、各種のものが実用化されている。なかでも、薄膜太陽電池は、低温プロセスおよび大面積化が容易であるという特徴から低コストで製造可能であるため、開発が進められている。 Various types of solar cells that directly convert solar energy into electrical energy have been put into practical use. In particular, thin-film solar cells are being developed because they can be manufactured at low cost because of their low temperature process and easy area enlargement.
 たとえば特許文献1(特開2011-181826号公報)には、以下の(i)~(iv)の工程を含む薄膜太陽電池の製造方法が開示されている。 For example, Patent Document 1 (Japanese Patent Laid-Open No. 2011-181826) discloses a method for manufacturing a thin film solar cell including the following steps (i) to (iv).
 (i)まず、透明絶縁基板上に透明電極層を形成し、レーザ光の照射により透明電極層の一部を除去して、第1の分離溝を形成する。 (I) First, a transparent electrode layer is formed on a transparent insulating substrate, and a part of the transparent electrode layer is removed by laser light irradiation to form a first separation groove.
 (ii)次に、透明電極層上に光電変換層を形成し、レーザ光の照射により光電変換層の一部を除去して、第2の分離溝を形成する。 (Ii) Next, a photoelectric conversion layer is formed on the transparent electrode layer, a part of the photoelectric conversion layer is removed by laser light irradiation, and a second separation groove is formed.
 (iii)次に、光電変換層上に裏面電極層を形成し、レーザ光の照射により光電変換層および裏面電極層のそれぞれの一部を除去して、スクライブラインを形成する。 (Iii) Next, a back electrode layer is formed on the photoelectric conversion layer, and a part of each of the photoelectric conversion layer and the back electrode layer is removed by laser light irradiation to form a scribe line.
 (iv)その後、透明絶縁基板の周縁全周の透明電極層、光電変換層および裏面電極層をレーザ光の照射により除去して周縁絶縁領域を形成する。 (Iv) Thereafter, the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer around the entire periphery of the transparent insulating substrate are removed by laser light irradiation to form a peripheral insulating region.
 また、特許文献2(特開2006-245507号公報)には、以下の(I)~(IV)の工程を含む薄膜太陽電池の製造方法が開示されている。 Patent Document 2 (Japanese Patent Laid-Open No. 2006-245507) discloses a method for manufacturing a thin film solar cell including the following steps (I) to (IV).
 (I)まず、絶縁透光性基板上に透明導電膜を形成し、レーザ光の照射により透明導電膜の一部を除去して、第1の分離溝を形成する。 (I) First, a transparent conductive film is formed on an insulating translucent substrate, and a part of the transparent conductive film is removed by laser light irradiation to form a first separation groove.
 (II)次に、透明導電膜上に光電変換層を形成し、レーザ光の照射により透明導電膜の一部を除去して、第2の分離溝を形成する。 (II) Next, a photoelectric conversion layer is formed on the transparent conductive film, a part of the transparent conductive film is removed by laser light irradiation, and a second separation groove is formed.
 (III)次に、光電変換層上に裏面電極を形成し、レーザ光の照射により光電変換層および裏面電極のそれぞれの一部を除去して、スクライブラインを形成する。 (III) Next, a back electrode is formed on the photoelectric conversion layer, and a part of each of the photoelectric conversion layer and the back electrode is removed by laser light irradiation to form a scribe line.
 (IV)次に、絶縁透光性基板側から、スクライブラインと直交する方向にレーザ光を照射することにより透明導電膜の一部を除去して、交差スクライブラインを形成する。 (IV) Next, a part of the transparent conductive film is removed by irradiating a laser beam in a direction orthogonal to the scribe line from the insulating translucent substrate side to form a cross scribe line.
特開2011-181826号公報JP 2011-181826 A 特開2006-245507号公報JP 2006-245507 A
 上記の特許文献1に記載の薄膜太陽電池の製造方法において、周縁絶縁領域を形成する工程は、周縁絶縁領域に取り付けられるアルミニウムフレームなどの枠体や透明絶縁基板の端部からの漏電による感電事故を防止するために必須である。 In the method for manufacturing a thin-film solar cell described in Patent Document 1, the step of forming the peripheral insulating region includes an electric shock accident due to leakage from a frame body such as an aluminum frame attached to the peripheral insulating region or an end of the transparent insulating substrate. It is essential to prevent.
 また、透明導電膜、光電変換層または裏面電極の残渣が周縁絶縁領域の一部に残ると、絶縁透光性基板側から見た外観が損なわれる場合がある。 Moreover, when the residue of the transparent conductive film, the photoelectric conversion layer, or the back electrode remains in a part of the peripheral insulating region, the appearance viewed from the insulating translucent substrate side may be impaired.
 しかしながら、特許文献1に記載の薄膜太陽電池の製造方法においては、上記の周縁絶縁領域のスクライブラインの近傍において絶縁不良または外観不良を生じることがあった。 However, in the method for manufacturing a thin-film solar cell described in Patent Document 1, an insulation failure or an appearance failure may occur in the vicinity of the scribe line in the peripheral insulating region.
 また、特許文献2に記載の薄膜太陽電池の製造方法においても、周縁絶縁領域を形成した場合にも、上記と同様に、周縁絶縁領域のスクライブラインおよび交差スクライブラインの近傍において絶縁不良または外観不良を生じることがあった。 Further, in the method of manufacturing the thin-film solar cell described in Patent Document 2, even when the peripheral insulating region is formed, in the same manner as described above, the insulation defect or the appearance defect is poor in the vicinity of the scribe line and the cross scribe line in the peripheral insulating region. May occur.
 上記の事情に鑑みて、本発明の目的は、周縁絶縁領域のスクライブラインの近傍における絶縁不良または外観不良の発生を抑えることができる光電変換装置の製造方法を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a method for manufacturing a photoelectric conversion device capable of suppressing the occurrence of insulation failure or appearance failure in the vicinity of a scribe line in a peripheral insulating region.
 本発明は、透明電極層と光電変換層と裏面電極層とがこの順で積層された透明絶縁基板に対して、透明絶縁基板の周縁全周上の透明電極層、光電変換層および裏面電極層をレーザ光の照射により除去して周縁絶縁領域を形成する周縁絶縁工程を含み、周縁絶縁工程を行なうときには、周縁絶縁領域を形成する領域には、光電変換層および裏面電極層の少なくとも一方が存在している光電変換装置の製造方法である。 The present invention relates to a transparent insulating substrate in which a transparent electrode layer, a photoelectric conversion layer, and a back electrode layer are laminated in this order, a transparent electrode layer, a photoelectric conversion layer, and a back electrode layer on the entire periphery of the transparent insulating substrate. A peripheral insulating step of forming a peripheral insulating region by removing the laser beam by irradiation with a laser beam, and when performing the peripheral insulating step, at least one of a photoelectric conversion layer and a back electrode layer exists in the region forming the peripheral insulating region It is the manufacturing method of the photoelectric conversion apparatus which is doing.
 ここで、本発明の光電変換装置の製造方法において、光電変換層および裏面電極層を線状に除去してスクライブラインを形成するスクライブライン形成工程をさらに含み、スクライブライン形成工程において、周縁絶縁工程にて周縁絶縁領域を形成する領域では、光電変換層および裏面電極層の少なくとも一方を残すことが好ましい。 Here, in the method for manufacturing a photoelectric conversion device of the present invention, the method further includes a scribe line forming step of forming a scribe line by linearly removing the photoelectric conversion layer and the back electrode layer, and in the scribe line forming step, a peripheral insulating step In the region where the peripheral insulating region is formed, it is preferable to leave at least one of the photoelectric conversion layer and the back electrode layer.
 また、本発明の光電変換装置の製造方法において、スクライブライン形成工程は、レーザ光の照射により光電変換層および裏面電極層を除去してスクライブラインを形成する工程と、周縁絶縁工程にて周縁絶縁領域を形成する領域ではレーザ光の照射を停止する工程とを含むことが好ましい。 In the method for manufacturing a photoelectric conversion device of the present invention, the scribe line forming step includes a step of removing the photoelectric conversion layer and the back electrode layer by laser light irradiation to form a scribe line, and a peripheral insulating step in the peripheral insulating step. It is preferable that the region for forming the region includes a step of stopping the irradiation of the laser light.
 また、本発明の光電変換装置の製造方法において、スクライブライン形成工程は、周縁絶縁工程にて周縁絶縁領域を形成する領域をマスクで覆う工程と、レーザ光の照射により光電変換層および裏面電極層を除去してスクライブラインを形成する工程とを含むことが好ましい。 In the method for manufacturing a photoelectric conversion device of the present invention, the scribe line forming step includes a step of covering a region where the peripheral insulating region is formed in the peripheral insulating step with a mask, and a photoelectric conversion layer and a back electrode layer by laser light irradiation. And a step of forming a scribe line.
 また、本発明の光電変換装置の製造方法においては、周縁絶縁工程の前にスクライブライン形成工程を行なうことが好ましい。 In the method for manufacturing a photoelectric conversion device of the present invention, it is preferable to perform a scribe line forming step before the peripheral insulating step.
 また、本発明の光電変換装置の製造方法は、透明絶縁基板上に積層された透明電極層上に光電変換層を積層する工程と、光電変換層上に裏面電極層を積層する工程と、光電変換層および裏面電極層のそれぞれの一部をレーザ光の照射により除去してスクライブラインを形成する工程と、透明絶縁基板の周縁全周上の透明電極層、光電変換層および裏面電極層をレーザ光を移動させながら照射することにより除去して周縁絶縁領域を形成する工程と、を含み、周縁絶縁領域を形成する工程においては、スクライブラインの形成領域ではレーザ光の移動速度を低下させることが好ましい。 The method for producing a photoelectric conversion device of the present invention includes a step of laminating a photoelectric conversion layer on a transparent electrode layer laminated on a transparent insulating substrate, a step of laminating a back electrode layer on the photoelectric conversion layer, A part of each of the conversion layer and the back electrode layer is removed by laser light irradiation to form a scribe line, and the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer on the entire periphery of the transparent insulating substrate are laser-treated. Forming a peripheral insulating region by removing the light by irradiating while moving the light. In the step of forming the peripheral insulating region, the moving speed of the laser beam may be reduced in the region where the scribe line is formed. preferable.
 また、本発明の光電変換装置の製造方法においては、周縁絶縁領域を形成する工程において、スクライブラインの形成領域でレーザ光の移動速度を一時的にゼロにすることが好ましい。 In the method of manufacturing a photoelectric conversion device of the present invention, it is preferable that the moving speed of the laser beam is temporarily made zero in the scribe line forming region in the step of forming the peripheral insulating region.
 また、本発明の光電変換装置の製造方法は、光電変換層および裏面電極層のそれぞれの一部をレーザ光の照射により除去してスクライブラインに交差する交差スクライブラインを形成する工程をさらに含み、周縁絶縁領域を形成する工程においては、交差スクライブラインの形成領域でレーザ光の移動速度を低下させることが好ましい。 The method for producing a photoelectric conversion device of the present invention further includes a step of forming a cross scribe line that intersects the scribe line by removing a part of each of the photoelectric conversion layer and the back electrode layer by laser light irradiation, In the step of forming the peripheral insulating region, it is preferable to reduce the moving speed of the laser light in the formation region of the intersecting scribe line.
 また、本発明の光電変換装置の製造方法においては、周縁絶縁領域を形成する工程において、交差スクライブラインの形成領域でレーザ光の移動速度を一時的にゼロにすることが好ましい。 In the method of manufacturing a photoelectric conversion device of the present invention, it is preferable that the moving speed of the laser light is temporarily made zero in the formation region of the cross scribe line in the step of forming the peripheral insulating region.
 本発明によれば、周縁絶縁領域のスクライブラインの近傍における絶縁不良または外観不良の発生を抑えることができる光電変換装置の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a photoelectric conversion device that can suppress the occurrence of insulation failure or appearance failure in the vicinity of the scribe line in the peripheral insulating region.
実施の形態1および3の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3. 実施の形態1および3の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3. 実施の形態1および3の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3. 実施の形態1および3の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3. 実施の形態1および3の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3. 実施の形態1および3の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3. 実施の形態1の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な平面図である。FIG. 3 is a schematic plan view illustrating an example of a part of the manufacturing process of the photoelectric conversion device manufacturing method according to the first embodiment. 実施の形態1および3の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to Embodiments 1 and 3. 実施の形態1および3の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な平面図である。6 is a schematic plan view illustrating an example of a part of the manufacturing process of the manufacturing method of the photoelectric conversion device according to Embodiments 1 and 3. FIG. 従来の薄膜太陽電池の製造方法の製造工程における周縁絶縁領域の形成前の透明絶縁基板を上方から見た模式的な平面図である。It is the typical top view which looked at the transparent insulation board | substrate before formation of the peripheral insulation area | region in the manufacturing process of the manufacturing method of the conventional thin film solar cell from the upper direction. 実施の形態1の光電変換装置の製造方法の製造工程の一部の他の一例を図解する模式的な平面図である。FIG. 6 is a schematic plan view illustrating another example of a part of the manufacturing process of the photoelectric conversion device manufacturing method according to the first embodiment. 実施の形態2の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な平面図である。FIG. 10 is a schematic plan view illustrating an example of a part of the manufacturing process of the photoelectric conversion device manufacturing method according to the second embodiment. 実施の形態2の光電変換装置の製造方法の製造工程の一部の他の一例を図解する模式的な平面図である。FIG. 12 is a schematic plan view illustrating another example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to the second embodiment. 実施の形態2の光電変換装置の製造方法の製造工程の一部のさらに他の一例を図解する模式的な平面図である。FIG. 12 is a schematic plan view illustrating still another example of part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to the second embodiment. 実施の形態3の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な拡大平面図である。FIG. 10 is a schematic enlarged plan view illustrating an example of a part of the manufacturing process of the method for manufacturing the photoelectric conversion device according to the third embodiment. 実施の形態4の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な平面図である。FIG. 10 is a schematic plan view illustrating an example of a part of the manufacturing process of the photoelectric conversion device manufacturing method according to the fourth embodiment. 実施の形態4の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な平面図である。FIG. 10 is a schematic plan view illustrating an example of a part of the manufacturing process of the photoelectric conversion device manufacturing method according to the fourth embodiment. 実施の形態4の光電変換装置の製造方法の製造工程の一部の一例を図解する模式的な拡大平面図である。FIG. 10 is a schematic enlarged plan view illustrating an example of a part of the manufacturing process of the photoelectric conversion device manufacturing method according to the fourth embodiment.
 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。 Hereinafter, embodiments of the present invention will be described. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts.
 <実施の形態1>
 まず、図1の模式的断面図に示すように、透明絶縁基板1上に透明電極層2を積層する。ここで、透明絶縁基板1としては、たとえばガラス基板などを用いることができる。また、透明電極層2としては、たとえば、SnO2(酸化スズ)、ITO(Indium Tin Oxide)またはZnO(酸化亜鉛)からなる層等を用いることができる。透明電極層2の形成方法は特に限定されず、たとえば従来から公知の熱CVD法、スパッタリング法、蒸着法またはイオンプレーティング法などを用いることができる。
<Embodiment 1>
First, as shown in the schematic sectional view of FIG. 1, the transparent electrode layer 2 is laminated on the transparent insulating substrate 1. Here, as the transparent insulating substrate 1, a glass substrate etc. can be used, for example. Further, as the transparent electrode layer 2, for example, a layer made of SnO 2 (tin oxide), ITO (Indium Tin Oxide) or ZnO (zinc oxide) can be used. The formation method of the transparent electrode layer 2 is not specifically limited, For example, conventionally well-known thermal CVD method, sputtering method, a vapor deposition method, or an ion plating method etc. can be used.
 次に、図2の模式的断面図に示すように、透明絶縁基板1側および/または透明電極層2側から、レーザ光を直線状に移動させて照射することによって、レーザ光の照射部分に相当する透明電極層2の一部をストライプ状に除去して、透明電極層2を分離する第1の分離溝5を形成する。 Next, as shown in the schematic cross-sectional view of FIG. 2, by irradiating the laser beam from the transparent insulating substrate 1 side and / or the transparent electrode layer 2 side by moving the laser beam linearly, A part of the corresponding transparent electrode layer 2 is removed in a stripe shape to form a first separation groove 5 for separating the transparent electrode layer 2.
 第1の分離溝5の形成に用いられるレーザ光としては、YAG(Yttrium Aluminum Garnet)レーザ光の基本波(波長:1064nm)またはYVO4(Yttrium Orthovanadate)レーザ光の基本波(波長:1064nm)を用いることが好ましい。 As a laser beam used for forming the first separation groove 5, a fundamental wave (wavelength: 1064 nm) of YAG (Yttrium Aluminum Garnet) laser beam or a fundamental wave (wavelength: 1064 nm) of YVO 4 (Yttrium Orthovanadate) laser beam is used. It is preferable to use it.
 次に、図3の模式的断面図に示すように、透明絶縁基板1の表面をたとえば純水を用いて超音波洗浄を行なった後、第1の分離溝5で分離された透明電極層2を覆うように光電変換層3を積層する。 Next, as shown in the schematic cross-sectional view of FIG. 3, the surface of the transparent insulating substrate 1 is subjected to ultrasonic cleaning using pure water, for example, and then the transparent electrode layer 2 separated by the first separation groove 5. The photoelectric conversion layer 3 is laminated so as to cover.
 光電変換層3としては、半導体光電変換層を用いることができ、たとえば、透明絶縁基板1側から、アモルファスシリコン薄膜からなるp層、i層およびn層をこの順に積層したトップセル(第1光電変換層)と、トップセル上に、微結晶シリコン薄膜からなるp層、i層およびn層をこの順に積層したボトムセル(第2光電変換層)と、をたとえばプラズマCVD法により積層することができる。 As the photoelectric conversion layer 3, a semiconductor photoelectric conversion layer can be used. For example, a top cell (first photoelectric layer) in which a p layer, an i layer, and an n layer made of an amorphous silicon thin film are stacked in this order from the transparent insulating substrate 1 side. Conversion layer) and a bottom cell (second photoelectric conversion layer) in which a p layer, an i layer, and an n layer made of a microcrystalline silicon thin film are stacked in this order can be stacked on the top cell by, for example, a plasma CVD method. .
 また、光電変換層3としては、たとえば、透明絶縁基板1側から、アモルファスシリコン薄膜からなるp層、i層およびn層をこの順に積層したトップセル(第1光電変換層)と、トップセル上に、アモルファスシリコン薄膜からなるp層、i層およびn層をこの順に積層したミドルセル(第2光電変換層)と、ミドルセル上に、微結晶シリコン薄膜からなるp層、i層およびn層をこの順に積層したボトムセル(第3光電変換層)と、をたとえばプラズマCVD法により積層してもよい。なお、光電変換層の数をこれ以上とすることもできる。 The photoelectric conversion layer 3 includes, for example, a top cell (first photoelectric conversion layer) in which a p layer, an i layer, and an n layer made of an amorphous silicon thin film are stacked in this order from the transparent insulating substrate 1 side, and a top cell. In addition, a middle cell (second photoelectric conversion layer) in which a p layer, an i layer and an n layer made of an amorphous silicon thin film are laminated in this order, and a p layer, an i layer and an n layer made of a microcrystalline silicon thin film are formed on the middle cell. The bottom cell (third photoelectric conversion layer) stacked in order may be stacked by, for example, a plasma CVD method. Note that the number of photoelectric conversion layers can be increased.
 第1光電変換層から第3光電変換層の各光電変換層は、すべて同種のシリコン系半導体からなっていてもよく、互いに異なる種類のシリコン系半導体からなっていてもよい。 The photoelectric conversion layers from the first photoelectric conversion layer to the third photoelectric conversion layer may all be made of the same type of silicon-based semiconductor, or may be made of different types of silicon-based semiconductor.
 第1光電変換層から第3光電変換層の各光電変換層が、それぞれ、p型半導体層、i型半導体層およびn型半導体層を含んでいる場合には、p型半導体層、i型半導体層およびn型半導体層の各半導体層は、たとえば、シリコン系半導体からなってもよい。 When each photoelectric conversion layer from the first photoelectric conversion layer to the third photoelectric conversion layer includes a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer, respectively, the p-type semiconductor layer and the i-type semiconductor Each semiconductor layer of the layer and the n-type semiconductor layer may be made of a silicon-based semiconductor, for example.
 光電変換層3に含まれる各半導体層は、すべて同種のシリコン系半導体からなっていてもよく、互いに異なる種類のシリコン系半導体からなっていてもよい。たとえば、p型半導体層とi型半導体層をアモルファスシリコンで形成し、n型半導体層を微結晶シリコンで形成してもよい。また、たとえば、p型半導体層とn型半導体層とをシリコンカーバイドまたはシリコンゲルマニウムで形成し、i型半導体層をシリコンで形成してもよい。 Each semiconductor layer included in the photoelectric conversion layer 3 may be made of the same kind of silicon-based semiconductor, or may be made of different types of silicon-based semiconductor. For example, the p-type semiconductor layer and the i-type semiconductor layer may be formed of amorphous silicon, and the n-type semiconductor layer may be formed of microcrystalline silicon. Further, for example, the p-type semiconductor layer and the n-type semiconductor layer may be formed of silicon carbide or silicon germanium, and the i-type semiconductor layer may be formed of silicon.
 また、p型、i型およびn型の各半導体層は、1層構造であってもよく、複数層構造であってもよい。複数層構造である場合には、各半導体層は、互いに異なる種類のシリコン系半導体からなっていてもよい。 Further, each of the p-type, i-type and n-type semiconductor layers may have a single-layer structure or a multi-layer structure. In the case of a multi-layer structure, each semiconductor layer may be composed of different types of silicon-based semiconductors.
 アモルファスシリコン薄膜の概念には、シリコンの未結合手(ダングリングボンド)が水素で終端された水素化アモルファスシリコン系半導体(a-Si:H)からなる薄膜が含まれる。微結晶シリコン薄膜の概念には、シリコンの未結合手(ダングリングボンド)が水素で終端された水素化微結晶シリコン系半導体(μc-Si:H)からなる薄膜が含まれる。光電変換層3の厚みは、特には限定されず、たとえば200nm以上5μm以下とすることができる。光電変換層3の形成方法もプラズマCVD法に限定されるものではない。 The concept of an amorphous silicon thin film includes a thin film made of a hydrogenated amorphous silicon-based semiconductor (a-Si: H) in which dangling bonds of silicon are terminated with hydrogen. The concept of a microcrystalline silicon thin film includes a thin film made of a hydrogenated microcrystalline silicon-based semiconductor (μc-Si: H) in which dangling bonds of silicon are terminated with hydrogen. The thickness of the photoelectric conversion layer 3 is not particularly limited, and can be, for example, 200 nm or more and 5 μm or less. The formation method of the photoelectric conversion layer 3 is not limited to the plasma CVD method.
 次に、図4の模式的断面図に示すように、透明絶縁基板1側および/または光電変換層3側から、レーザ光を第1の分離溝5の伸長方向に直線状に移動させて照射することによって、光電変換層3の一部をストライプ状に除去して、光電変換層3を分離する第2の分離溝6を形成する。 Next, as shown in the schematic cross-sectional view of FIG. 4, the laser light is linearly moved in the extending direction of the first separation groove 5 and irradiated from the transparent insulating substrate 1 side and / or the photoelectric conversion layer 3 side. By doing so, a part of the photoelectric conversion layer 3 is removed in a stripe shape, and a second separation groove 6 for separating the photoelectric conversion layer 3 is formed.
 第2の分離溝6の形成に用いられるレーザ光としては、YAGレーザ光の第2高調波(波長:532nm)またはYVO4レーザ光の第2高調波(波長:532nm)を用いることが好ましい。YAGレーザ光の第2高調波およびYVO4レーザ光の第2高調波はそれぞれ透明絶縁基板1および透明電極層2を透過し、光電変換層3に吸収される傾向にあるため、光電変換層3を選択的に加熱して光電変換層3を選択的に蒸散させることができる傾向にある。 As the laser beam used for forming the second separation groove 6, it is preferable to use the second harmonic (wavelength: 532 nm) of the YAG laser beam or the second harmonic (wavelength: 532 nm) of the YVO 4 laser beam. Since the second harmonic of the YAG laser light and the second harmonic of the YVO 4 laser light tend to pass through the transparent insulating substrate 1 and the transparent electrode layer 2 and be absorbed by the photoelectric conversion layer 3, respectively, the photoelectric conversion layer 3 The photoelectric conversion layer 3 tends to be selectively evaporated by heating.
 次に、図5の模式的断面図に示すように、光電変換層3を覆うようにして裏面電極層4を積層する。これにより、図5に示すように、裏面電極層4で第2の分離溝6が埋められる。 Next, as shown in the schematic cross-sectional view of FIG. 5, the back electrode layer 4 is laminated so as to cover the photoelectric conversion layer 3. Thereby, as shown in FIG. 5, the second separation groove 6 is filled with the back electrode layer 4.
 裏面電極層4としては、たとえば、銀またはアルミニウムからなる金属薄膜とZnO等の透明導電膜との積層体を用いることができる。ここで、金属薄膜の厚みはたとえば100nm以上1μm以下とすることができ、透明導電膜の厚みはたとえば20nm以上200nm以下とすることができる。単層または複数層の金属薄膜からなる裏面電極層4と光電変換層3との間に透明導電膜を設置した場合には、金属薄膜からなる裏面電極層4から光電変換層3に金属原子が拡散するのを防止することができ、さらに裏面電極層4による太陽光の反射率が向上する傾向にある点で好ましい。裏面電極層4としては、金属薄膜の単層のみまたは金属薄膜の複数層のみを用いてもよいことは言うまでもない。裏面電極層4の形成方法は特に限定されず、たとえばスパッタリング法などを用いることができる。 As the back electrode layer 4, for example, a laminate of a metal thin film made of silver or aluminum and a transparent conductive film such as ZnO can be used. Here, the thickness of the metal thin film can be, for example, 100 nm or more and 1 μm or less, and the thickness of the transparent conductive film can be, for example, 20 nm or more and 200 nm or less. When a transparent conductive film is installed between the back electrode layer 4 made of a single layer or multiple layers of metal thin film and the photoelectric conversion layer 3, metal atoms are transferred from the back electrode layer 4 made of metal thin film to the photoelectric conversion layer 3. It is preferable in that it can be prevented from diffusing and the reflectance of sunlight by the back electrode layer 4 tends to be improved. Needless to say, as the back electrode layer 4, only a single metal thin film layer or a plurality of metal thin film layers may be used. The method for forming the back electrode layer 4 is not particularly limited, and for example, a sputtering method or the like can be used.
 次に、図6の模式的断面図に示すように、透明絶縁基板1側および/または裏面電極層4側から、レーザ光を第1の分離溝5および第2の分離溝6の伸長方向に直線状に移動させて照射することによって、光電変換層3および裏面電極層4の一部をストライプ状に除去して、光電変換層3および裏面電極層4を分離するスクライブライン7を形成するスクライブライン形成工程を行なう。 Next, as shown in the schematic cross-sectional view of FIG. 6, laser light is directed in the extending direction of the first separation groove 5 and the second separation groove 6 from the transparent insulating substrate 1 side and / or the back electrode layer 4 side. A scribe line 7 is formed by removing a part of the photoelectric conversion layer 3 and the back electrode layer 4 in a stripe shape by moving in a straight line and irradiating the photoelectric conversion layer 3 and the back electrode layer 4. A line forming process is performed.
 スクライブライン7の形成に用いられるレーザ光としては、YAGレーザ光の第2高調波(波長:532nm)またはYVO4レーザ光の第2高調波(波長:532nm)を用いることが好ましい。YAGレーザ光の第2高調波およびYVO4レーザ光の第2高調波はそれぞれ透明絶縁基板1および透明電極層2を透過し、光電変換層3に吸収される傾向にあるため、光電変換層3を選択的に加熱して、光電変換層3および裏面電極層4を選択的に蒸散させることができる傾向にある。 As the laser light used for forming the scribe line 7, it is preferable to use the second harmonic (wavelength: 532 nm) of the YAG laser light or the second harmonic (wavelength: 532 nm) of the YVO 4 laser light. Since the second harmonic of the YAG laser light and the second harmonic of the YVO 4 laser light tend to pass through the transparent insulating substrate 1 and the transparent electrode layer 2 and be absorbed by the photoelectric conversion layer 3, respectively, the photoelectric conversion layer 3 Is selectively heated, and the photoelectric conversion layer 3 and the back electrode layer 4 tend to be selectively evaporated.
 ここで、実施の形態1においては、たとえば図7の模式的平面図に示すように、後述する周縁絶縁領域を形成する周縁絶縁工程において周縁絶縁領域が形成される領域9では、レーザ光の照射を停止する。これにより、スクライブライン形成工程においては、周縁絶縁工程において周縁絶縁領域が形成される領域9に、光電変換層3および裏面電極層4の少なくとも一方が残されるようにして、スクライブライン7が形成される。なお、図7においては、説明の便宜のため、すべてのスクライブライン7を示していない。 Here, in the first embodiment, for example, as shown in the schematic plan view of FIG. 7, the region 9 where the peripheral insulating region is formed in the peripheral insulating step for forming the peripheral insulating region described later is irradiated with laser light. To stop. Thereby, in the scribe line forming step, the scribe line 7 is formed so that at least one of the photoelectric conversion layer 3 and the back electrode layer 4 is left in the region 9 where the peripheral insulating region is formed in the peripheral insulating step. The In FIG. 7, not all scribe lines 7 are shown for convenience of explanation.
 次に、図8の模式的断面図に示すように、透明絶縁基板1の周縁全周上の透明電極層2、光電変換層3および裏面電極層4をレーザ光の照射により除去して周縁絶縁領域10を形成する周縁絶縁工程を行なう。これにより、図9の模式的平面図に示すように、隣り合う発電セル11同士が順次直列に接続されてなるストリング12の周囲を取り囲むようにして透明絶縁基板1の表面が露出する周縁絶縁領域10が形成されて、実施の形態1の光電変換装置を作製することができる。なお、周縁絶縁工程を行なうときには、周縁絶縁領域10を形成する領域には、光電変換層3および裏面電極層4の少なくとも一方が存在している。 Next, as shown in the schematic cross-sectional view of FIG. 8, the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 on the entire periphery of the transparent insulating substrate 1 are removed by laser light irradiation to thereby perform peripheral insulation. A peripheral insulating process for forming the region 10 is performed. Accordingly, as shown in the schematic plan view of FIG. 9, the peripheral insulating region in which the surface of the transparent insulating substrate 1 is exposed so as to surround the string 12 in which the adjacent power generation cells 11 are sequentially connected in series. 10 is formed, and the photoelectric conversion device of Embodiment 1 can be manufactured. When performing the peripheral insulating step, at least one of the photoelectric conversion layer 3 and the back electrode layer 4 exists in the region where the peripheral insulating region 10 is formed.
 周縁絶縁領域10の形成に用いられるレーザ光としては、YAGレーザ光の基本波(波長:1064nm)またはYVO4レーザ光の基本波(波長:1064nm)を用いることが好ましい。また、周縁絶縁領域10は一般的に幅広に形成されるため、レーザ光の照射幅(レーザ光の移動方向に直交する方向の長さ)は150μm以上であることが好ましく、400μm以上であることがより好ましい。また、周縁絶縁領域10の形成時において、レーザ光は、透明絶縁基板1側および/または裏面電極層4側から、照射することができる。 As the laser light used for forming the peripheral insulating region 10, it is preferable to use the fundamental wave of YAG laser light (wavelength: 1064 nm) or the fundamental wave of YVO 4 laser light (wavelength: 1064 nm). Further, since the peripheral insulating region 10 is generally formed wide, the irradiation width of the laser light (the length in the direction orthogonal to the moving direction of the laser light) is preferably 150 μm or more, and preferably 400 μm or more. Is more preferable. Further, when the peripheral insulating region 10 is formed, the laser beam can be irradiated from the transparent insulating substrate 1 side and / or the back electrode layer 4 side.
 レーザ光の照射後の周縁絶縁領域10の状態を良好にするため、レーザ光の強度分布は、レーザ光の移動方向および幅方向のそれぞれについて矩形状の分布にすることが好ましい。また、この場合には、たとえばガルバノスキャンを用いた光学系や角ファイバーを用いた光学系を特に限定なく併せて用いることもできる。 In order to improve the state of the peripheral insulating region 10 after irradiation with laser light, the intensity distribution of the laser light is preferably a rectangular distribution in each of the moving direction and the width direction of the laser light. In this case, for example, an optical system using a galvano scan or an optical system using a square fiber can be used without any particular limitation.
 なお、発電セル11の長手方向に直交する方向の両端の裏面電極層4の表面上にそれぞれ、銀ペーストなどの金属ペーストを介して発電セル11の長手方向に伸長する電流取り出し用の電極を形成することもできる。 In addition, on the surface of the back electrode layer 4 at both ends in the direction orthogonal to the longitudinal direction of the power generation cell 11, current extraction electrodes extending in the longitudinal direction of the power generation cell 11 are formed via a metal paste such as silver paste. You can also
 また、電流取り出し用の電極の形成後の裏面電極層4の表面上にたとえばEVAシートなどからなる透明接着材を設置し、透明接着材上に、たとえばPET(ポリエステル)/Al(アルミニウム)/PETの3層積層フィルムなどからなる裏面封止材を設置した後に、これらを加熱圧着し、裏面封止材に端子ボックスを接着し、端子ボックス内をシリコーンで充填し、アルミニウムフレームなどの枠体を取り付けることもできる。 Further, a transparent adhesive made of, for example, an EVA sheet or the like is placed on the surface of the back electrode layer 4 after the current extraction electrode is formed, and the transparent adhesive is, for example, PET (polyester) / Al (aluminum) / PET. After installing the backside sealing material composed of the three-layer laminated film, etc., these are thermocompression bonded, the terminal box is bonded to the backside sealing material, the inside of the terminal box is filled with silicone, and a frame body such as an aluminum frame is formed. It can also be attached.
 以上のように、実施の形態1の光電変換装置の製造方法においては、スクライブライン形成工程において、周縁絶縁工程にて周縁絶縁領域10が形成される領域9ではレーザ光の照射を停止して、光電変換層3および裏面電極層4の少なくとも一方が残されるようにしてスクライブライン7を形成している。 As described above, in the method for manufacturing the photoelectric conversion device according to the first embodiment, in the scribe line forming step, the irradiation of the laser beam is stopped in the region 9 where the peripheral insulating region 10 is formed in the peripheral insulating step. The scribe line 7 is formed so that at least one of the photoelectric conversion layer 3 and the back electrode layer 4 remains.
 これは、本発明者が鋭意検討した結果、従来の特許文献1に記載の薄膜太陽電池の製造方法においては、レーザ光の照射による透明電極層、光電変換層および裏面電極層の除去によって周縁絶縁領域を形成する際に、たとえば図10の模式的平面図に示すように、周縁絶縁領域110のスクライブライン107の近傍において透明電極層の残渣111が残っており、この残渣111が、周縁絶縁領域110のスクライブライン107の近傍において絶縁不良または外観不良を生じさせる原因であることを突き止めたことによるものである。 As a result of intensive studies by the present inventors, in the conventional method for manufacturing a thin film solar cell described in Patent Document 1, peripheral insulation is achieved by removing the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer by laser light irradiation. When forming the region, for example, as shown in the schematic plan view of FIG. 10, a residue 111 of the transparent electrode layer remains in the vicinity of the scribe line 107 of the peripheral insulating region 110, and this residue 111 is converted into the peripheral insulating region. This is because it has been determined that this is the cause of an insulation failure or an appearance failure in the vicinity of 110 scribe line 107.
 すなわち、従来の特許文献1に記載の薄膜太陽電池の製造方法において、周縁絶縁領域110が形成される領域のスクライブライン107においては、透明絶縁基板の表面上に透明電極層のみが残った状態となっているため、周縁絶縁領域110の形成時に照射されるレーザ光のエネルギが十分に透明電極層に吸収されず、透明電極層の残渣111が残ることがあった。 That is, in the conventional method for manufacturing a thin-film solar cell described in Patent Document 1, in the scribe line 107 in the region where the peripheral insulating region 110 is formed, only the transparent electrode layer remains on the surface of the transparent insulating substrate. Therefore, the energy of the laser beam irradiated when forming the peripheral insulating region 110 is not sufficiently absorbed by the transparent electrode layer, and the residue 111 of the transparent electrode layer may remain.
 そこで、たとえば図7に示すように、スクライブライン形成工程において、周縁絶縁工程にて周縁絶縁領域10が形成される領域9ではレーザ光の照射を停止することによって、周縁絶縁領域10の形成前の透明絶縁基板1の周縁全周上に、透明電極層2だけでなく、光電変換層3および裏面電極層4の少なくとも一方も残すことができる。 Therefore, for example, as shown in FIG. 7, in the scribe line forming step, in the region 9 where the peripheral insulating region 10 is formed in the peripheral insulating step, the irradiation of the laser beam is stopped, so that the region before the peripheral insulating region 10 is formed. Not only the transparent electrode layer 2 but also at least one of the photoelectric conversion layer 3 and the back electrode layer 4 can be left on the entire circumference of the transparent insulating substrate 1.
 これにより、周縁絶縁領域10の形成時に照射されるレーザ光のエネルギを透明電極層2だけでなく、光電変換層3および裏面電極層4の少なくとも一方にも十分に吸収させて熱エネルギに変換することができるため、透明電極層2の残渣の発生を抑制でき、周縁絶縁領域10のスクライブライン7の近傍における絶縁不良または外観不良の発生を抑えることができる。 Thereby, the energy of the laser beam irradiated at the time of forming the peripheral insulating region 10 is sufficiently absorbed not only in the transparent electrode layer 2 but also in at least one of the photoelectric conversion layer 3 and the back electrode layer 4 to be converted into thermal energy. Therefore, generation | occurrence | production of the residue of the transparent electrode layer 2 can be suppressed, and generation | occurrence | production of the insulation defect or appearance defect in the vicinity of the scribe line 7 of the peripheral insulating region 10 can be suppressed.
 なお、上記においては、スクライブライン形成工程において、周縁絶縁工程にて周縁絶縁領域10が形成される領域9ではレーザ光の照射を停止する場合について説明したが、この方法に限定されるものではない。 In the above description, in the scribe line forming step, the case where the irradiation of the laser beam is stopped in the region 9 where the peripheral insulating region 10 is formed in the peripheral insulating step has been described. However, the present invention is not limited to this method. .
 たとえば図11の模式的平面図に示すように、スクライブライン形成工程において、周縁絶縁工程にて周縁絶縁領域10が形成される領域9をたとえば金属板などのマスク13で覆った状態でレーザ光を照射することによって光電変換層3および裏面電極層4を除去し、スクライブライン7を形成することもできる。この場合にも、周縁絶縁領域10の形成前の透明絶縁基板1の周縁全周上に、透明電極層2だけでなく、光電変換層3および裏面電極層4の少なくとも一方も残すことができ、透明電極層2の残渣の発生を抑制できることから周縁絶縁領域10のスクライブライン7の近傍における絶縁不良または外観不良の発生を抑えることができる。 For example, as shown in the schematic plan view of FIG. 11, in the scribe line forming process, the region 9 where the peripheral insulating area 10 is formed in the peripheral insulating process is covered with a mask 13 such as a metal plate. Irradiation can remove the photoelectric conversion layer 3 and the back electrode layer 4 to form the scribe line 7. Also in this case, not only the transparent electrode layer 2 but also at least one of the photoelectric conversion layer 3 and the back electrode layer 4 can be left on the entire periphery of the transparent insulating substrate 1 before the formation of the peripheral insulating region 10, Since generation | occurrence | production of the residue of the transparent electrode layer 2 can be suppressed, generation | occurrence | production of the insulation defect or the appearance defect in the vicinity of the scribe line 7 of the peripheral insulating region 10 can be suppressed.
 また、この場合には、スクライブライン7の形成時において、レーザ光の照射を停止するための照射位置の細かい調整が不要となるため、周縁絶縁領域10のスクライブライン7の近傍における絶縁不良または外観不良の発生の抑制の再現性を高めることができる。 Further, in this case, when the scribe line 7 is formed, it is not necessary to finely adjust the irradiation position for stopping the irradiation of the laser beam, so that the insulation failure or appearance in the vicinity of the scribe line 7 in the peripheral insulating region 10 is eliminated. The reproducibility of suppressing the occurrence of defects can be improved.
 なお、スクライブライン7の形成時のレーザ光の照射位置の調整方法は、特に限定されず、たとえば、レーザスクライブ装置のステージ上の透明絶縁基板1の位置合わせにより調整する方法、透明絶縁基板1の端部を事前に検出して透明絶縁基板1の端部から一定距離を空けて調整する方法、または第1の分離溝5の形成時に形成したアライメントマークを利用して調整する方法などを用いることができる。 In addition, the adjustment method of the irradiation position of the laser beam at the time of formation of the scribe line 7 is not specifically limited, For example, the method of adjusting by alignment of the transparent insulating substrate 1 on the stage of a laser scribing apparatus, the transparent insulating substrate 1 Use a method of detecting the end in advance and adjusting the distance from the end of the transparent insulating substrate 1 or adjusting using an alignment mark formed when the first separation groove 5 is formed. Can do.
 また、上記において、第1の分離溝5および第2の分離溝6については、周縁絶縁工程にて周縁絶縁領域10が形成される領域9に形成されていてもよい。 In the above, the first separation groove 5 and the second separation groove 6 may be formed in the region 9 where the peripheral insulating region 10 is formed in the peripheral insulating step.
 <実施の形態2>
 実施の形態2の光電変換装置の製造方法においては、スクライブライン7に交差する交差スクライブラインを形成し、交差スクライブラインの形成時において、周縁絶縁工程において周縁絶縁領域10が形成される領域9には交差スクライブラインを形成せず、その領域9に、光電変換層3および裏面電極層4の少なくとも一方を残すことを特徴としている。
<Embodiment 2>
In the method of manufacturing the photoelectric conversion device according to the second embodiment, a cross scribe line that intersects the scribe line 7 is formed, and at the time of forming the cross scribe line, the region 9 in which the peripheral insulating region 10 is formed in the peripheral insulating step. Is characterized in that at least one of the photoelectric conversion layer 3 and the back electrode layer 4 is left in the region 9 without forming a cross scribe line.
 すなわち、スクライブライン7を形成する工程を行なうまでは、実施の形態1と同様の工程を行なう。 That is, the same process as in the first embodiment is performed until the process of forming the scribe line 7 is performed.
 次に、図12の模式的平面図に示すように、スクライブライン7に交差する交差スクライブライン8を形成して交差スクライブライン8を形成する工程を行なう。ここで、交差スクライブライン8を形成する工程において、周縁絶縁工程にて周縁絶縁領域10が形成される領域9では、レーザ光の照射が停止される。これにより、周縁絶縁工程にて周縁絶縁領域10が形成される領域9には、透明電極層2だけでなく、光電変換層3および裏面電極層4の少なくとも一方も残ることになる。なお、交差スクライブライン8を形成する工程において、レーザ光は、透明絶縁基板1側および/または裏面電極層4側から、照射することができる。 Next, as shown in the schematic plan view of FIG. 12, a step of forming the intersecting scribe line 8 by forming the intersecting scribe line 8 intersecting with the scribe line 7 is performed. Here, in the step of forming the intersecting scribe lines 8, the irradiation of the laser beam is stopped in the region 9 where the peripheral insulating region 10 is formed in the peripheral insulating step. Thereby, not only the transparent electrode layer 2 but also at least one of the photoelectric conversion layer 3 and the back electrode layer 4 remains in the region 9 where the peripheral insulating region 10 is formed in the peripheral insulating step. In the step of forming the intersecting scribe lines 8, the laser light can be irradiated from the transparent insulating substrate 1 side and / or the back electrode layer 4 side.
 これは、本発明者が鋭意検討した結果、従来の特許文献2に記載の薄膜太陽電池の製造方法においては、レーザ光の照射による透明電極層、光電変換層および裏面電極層の除去によって周縁絶縁領域を形成する際に、スクライブラインの近傍だけでなく、交差スクライブラインの近傍においても透明電極層の残渣が残っており、この残渣が、周縁絶縁領域のスクライブラインおよび交差スクライブラインのそれぞれの近傍において絶縁不良または外観不良を生じさせる原因であることを突き止めたことによるものである。 As a result of intensive studies by the present inventors, in the conventional method for manufacturing a thin film solar cell described in Patent Document 2, peripheral insulation is achieved by removing the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer by laser light irradiation. When forming the region, the transparent electrode layer residue remains not only in the vicinity of the scribe line but also in the vicinity of the cross scribe line, and this residue is in the vicinity of the scribe line and the cross scribe line in the peripheral insulating region. This is because it has been found that this is the cause of an insulation failure or an appearance failure.
 すなわち、従来の特許文献2に記載の薄膜太陽電池の製造方法において、周縁絶縁領域が形成される領域のスクライブラインおよび交差スクライブラインにおいては、透明絶縁基板の表面上に透明電極層のみが残った状態となっているため、周縁絶縁領域の形成時に照射されるレーザ光のエネルギが十分に透明電極層に吸収されず、透明電極層の残渣が残ることがある。 That is, in the conventional method for manufacturing a thin-film solar cell described in Patent Document 2, only the transparent electrode layer remains on the surface of the transparent insulating substrate in the scribe line and the cross scribe line in the region where the peripheral insulating region is formed. In this state, the energy of the laser beam irradiated when forming the peripheral insulating region is not sufficiently absorbed by the transparent electrode layer, and a residue of the transparent electrode layer may remain.
 そこで、たとえば図12に示すように、スクライブライン7を形成する工程および交差スクライブライン8を形成する工程のそれぞれにおいては、周縁絶縁領域10を形成する工程にて周縁絶縁領域10が形成される領域9ではレーザ光の照射を停止することによって、その領域9に、透明電極層2だけでなく、光電変換層3および裏面電極層4の少なくとも一方も残すことができる。 Therefore, for example, as shown in FIG. 12, in each of the step of forming the scribe line 7 and the step of forming the intersecting scribe line 8, the region where the peripheral insulating region 10 is formed in the step of forming the peripheral insulating region 10. 9, by stopping the laser light irradiation, not only the transparent electrode layer 2 but also at least one of the photoelectric conversion layer 3 and the back electrode layer 4 can be left in the region 9.
 これにより、実施の形態2の光電変換装置の製造方法においては、スクライブライン7を形成する工程および交差スクライブライン8を形成する工程のいずれにおいても、周縁絶縁領域10の形成時に照射されるレーザ光のエネルギを透明電極層2だけでなく、光電変換層3および裏面電極層4の少なくとも一方にも十分に吸収させて熱エネルギに変換することができるため、透明電極層2の残渣の発生を抑制でき、周縁絶縁領域10のスクライブライン7および交差スクライブライン8のそれぞれの近傍における絶縁不良または外観不良の発生を抑えることができる。 Thereby, in the manufacturing method of the photoelectric conversion device according to the second embodiment, the laser beam irradiated at the time of forming the peripheral insulating region 10 in both the step of forming the scribe line 7 and the step of forming the intersecting scribe line 8. Can be absorbed not only in the transparent electrode layer 2 but also in at least one of the photoelectric conversion layer 3 and the back electrode layer 4 to be converted into thermal energy, thereby suppressing the generation of residues in the transparent electrode layer 2 In addition, it is possible to suppress the occurrence of poor insulation or poor appearance in the vicinity of the scribe line 7 and the cross scribe line 8 in the peripheral insulating region 10.
 なお、本明細書において、スクライブライン7と交差スクライブライン8とが為す角度は、たとえば90°±10°とすることができる。 In the present specification, the angle formed between the scribe line 7 and the intersecting scribe line 8 can be set to 90 ° ± 10 °, for example.
 また、交差スクライブライン8を形成する工程においては、光電変換層3および裏面電極層4のみをレーザ光の照射により除去してもよく、透明電極層2、光電変換層3および裏面電極層4のすべてをレーザ光の照射により除去してもよい。なお、交差スクライブライン8を形成する工程において、透明電極層2、光電変換層3および裏面電極層4のすべてをレーザ光の照射により除去して第2のスクライブライン8を形成する場合には、上記の方法で交差スクライブライン8を形成する必要はない。 In the step of forming the intersecting scribe line 8, only the photoelectric conversion layer 3 and the back electrode layer 4 may be removed by laser light irradiation, and the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 may be removed. All may be removed by laser light irradiation. When forming the second scribe line 8 by removing all of the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 by laser light irradiation in the step of forming the intersecting scribe line 8, It is not necessary to form the intersecting scribe lines 8 by the above method.
 また、第2のスクライブライン8の形成時のレーザ光の種類およびレーザ光の照射位置の調整方法は、特に限定されず、たとえばスクライブライン7の形成時と同様のレーザ光の種類およびレーザ光の照射位置の調整方法などを用いることができる。 The method of adjusting the type of laser light and the irradiation position of the laser light at the time of forming the second scribe line 8 is not particularly limited, and for example, the same type of laser light and laser light as at the time of forming the scribe line 7 are used. An irradiation position adjustment method or the like can be used.
 また、上記においては、周縁絶縁工程にて周縁絶縁領域10が形成される領域9においては、レーザ光の照射を停止して交差スクライブライン8を形成する場合について説明したが、交差スクライブライン8の形成方法は、この方法に限定されない。 Further, in the above description, in the region 9 where the peripheral insulating region 10 is formed in the peripheral insulating step, the case where the laser beam irradiation is stopped and the cross scribe line 8 is formed has been described. The forming method is not limited to this method.
 たとえば図13の模式的平面図に示すように、交差スクライブライン8を形成する工程において、周縁絶縁工程にて周縁絶縁領域10を形成する領域9をたとえば金属板などのマスク13で覆った状態でレーザ光を照射することによって、交差スクライブライン8を形成することもできる。この場合にも、周縁絶縁領域10の形成前の透明絶縁基板1の周縁全周上に、透明電極層2だけでなく、光電変換層3および裏面電極層4の少なくとも一方も残すことができ、透明電極層2の残渣の発生を抑制できることから、周縁絶縁領域10の交差スクライブライン8の近傍における絶縁不良または外観不良の発生を抑えることができる。 For example, as shown in the schematic plan view of FIG. 13, in the step of forming the intersecting scribe lines 8, the region 9 in which the peripheral insulating region 10 is formed in the peripheral insulating step is covered with a mask 13 such as a metal plate. The cross scribe line 8 can also be formed by irradiating laser light. Also in this case, not only the transparent electrode layer 2 but also at least one of the photoelectric conversion layer 3 and the back electrode layer 4 can be left on the entire periphery of the transparent insulating substrate 1 before the formation of the peripheral insulating region 10, Since generation | occurrence | production of the residue of the transparent electrode layer 2 can be suppressed, generation | occurrence | production of the insulation defect or appearance defect in the vicinity of the cross scribe line 8 of the peripheral insulating region 10 can be suppressed.
 また、この場合には、交差スクライブライン8の形成時において、レーザ光の照射の停止位置の細かい調整が不要となるため、周縁絶縁領域10の交差スクライブライン8の近傍における絶縁不良または外観不良の発生の抑制の再現性を高めることができる。 Further, in this case, when the cross scribe line 8 is formed, it is not necessary to finely adjust the stop position of the laser beam irradiation. Therefore, the insulation defect or the appearance defect in the vicinity of the cross scribe line 8 in the peripheral insulating region 10 is eliminated. The reproducibility of occurrence suppression can be improved.
 また、たとえば図14の模式的平面図に示すように、周縁絶縁工程にて周縁絶縁領域10を形成する領域9をたとえば金属板などのマスク13で予め覆っておき、その状態でレーザ光を照射することによって、スクライブライン7および交差スクライブライン8を形成することもできる。この場合にも、周縁絶縁工程にて周縁絶縁領域10を形成する領域9において、透明電極層2だけでなく、光電変換層3および裏面電極層4の少なくとも一方も残すことができることから、透明電極層2の残渣の発生を抑制して、周縁絶縁領域10のスクライブライン7および交差スクライブライン8の近傍における絶縁不良または外観不良の発生を抑えることができる。 For example, as shown in the schematic plan view of FIG. 14, the region 9 in which the peripheral insulating region 10 is formed in the peripheral insulating step is covered in advance with a mask 13 such as a metal plate, and laser light is irradiated in this state. By doing so, the scribe line 7 and the intersecting scribe line 8 can also be formed. Also in this case, not only the transparent electrode layer 2 but also at least one of the photoelectric conversion layer 3 and the back electrode layer 4 can be left in the region 9 where the peripheral insulating region 10 is formed in the peripheral insulating step. Generation | occurrence | production of the residue of the layer 2 can be suppressed and generation | occurrence | production of the insulation defect or the appearance defect in the vicinity of the scribe line 7 and the cross scribe line 8 of the peripheral insulating region 10 can be suppressed.
 また、この場合には、スクライブライン7および交差スクライブライン8のそれぞれの形成時において、レーザ光の照射の停止位置の細かい調整が不要となるため、周縁絶縁領域10のスクライブライン7の近傍および交差スクライブライン8の近傍における絶縁不良または外観不良の発生の抑制の再現性をさらに高めることができる。 Further, in this case, when the scribe line 7 and the intersecting scribe line 8 are formed, it is not necessary to finely adjust the laser beam irradiation stop position. The reproducibility of the suppression of the occurrence of insulation failure or appearance failure in the vicinity of the scribe line 8 can be further enhanced.
 実施の形態2における上記以外の説明は、実施の形態1と同様であるため、その説明についてはここでは省略する。 Since the explanation other than the above in the second embodiment is the same as that in the first embodiment, the explanation thereof is omitted here.
 <実施の形態3>
 まず、図1に示すように、透明絶縁基板1上に透明電極層2を積層する。ここで、透明絶縁基板1としては、たとえばガラス基板などを用いることができる。また、透明電極層2としては、たとえば、SnO2(酸化スズ)、ITO(Indium Tin Oxide)またはZnO(酸化亜鉛)からなる層等を用いることができる。透明電極層2の形成方法は特に限定されず、たとえば従来から公知の熱CVD法、スパッタリング法、蒸着法またはイオンプレーティング法などを用いることができる。
<Embodiment 3>
First, as shown in FIG. 1, a transparent electrode layer 2 is laminated on a transparent insulating substrate 1. Here, as the transparent insulating substrate 1, a glass substrate etc. can be used, for example. Further, as the transparent electrode layer 2, for example, a layer made of SnO 2 (tin oxide), ITO (Indium Tin Oxide) or ZnO (zinc oxide) can be used. The formation method of the transparent electrode layer 2 is not specifically limited, For example, conventionally well-known thermal CVD method, sputtering method, a vapor deposition method, or an ion plating method etc. can be used.
 次に、図2に示すように、透明絶縁基板1側および/または透明電極層2側から、レーザ光を直線状に移動させて照射することによって、レーザ光の照射部分に相当する透明電極層2の一部をストライプ状に除去して、透明電極層2を分離する第1の分離溝5を形成する。 Next, as shown in FIG. 2, the transparent electrode layer corresponding to the irradiated portion of the laser beam is irradiated by moving the laser beam linearly from the transparent insulating substrate 1 side and / or the transparent electrode layer 2 side. A part of 2 is removed in a stripe shape to form a first separation groove 5 for separating the transparent electrode layer 2.
 第1の分離溝5の形成に用いられるレーザ光としては、YAG(Yttrium Aluminum Garnet)レーザ光の基本波(波長:1064nm)またはYVO4(Yttrium Orthovanadate)レーザ光の基本波(波長:1064nm)を用いることが好ましい。YAGレーザ光の基本波およびYVO4レーザ光の基本波はそれぞれ透明絶縁基板1を透過して、透明電極層2に吸収される傾向にあるため、透明電極層2を選択的に加熱して蒸散させることができる傾向にある。 As a laser beam used for forming the first separation groove 5, a fundamental wave (wavelength: 1064 nm) of YAG (Yttrium Aluminum Garnet) laser beam or a fundamental wave (wavelength: 1064 nm) of YVO 4 (Yttrium Orthovanadate) laser beam is used. It is preferable to use it. Since the fundamental wave of YAG laser light and the fundamental wave of YVO 4 laser light tend to pass through the transparent insulating substrate 1 and be absorbed by the transparent electrode layer 2, the transparent electrode layer 2 is selectively heated to evaporate. It tends to be able to be made.
 次に、図3に示すように、透明絶縁基板1の表面をたとえば純水を用いて超音波洗浄を行なった後、第1の分離溝5で分離された透明電極層2を覆うように光電変換層3を積層する。 Next, as shown in FIG. 3, the surface of the transparent insulating substrate 1 is subjected to ultrasonic cleaning using pure water, for example, and then photoelectrically covered so as to cover the transparent electrode layer 2 separated by the first separation groove 5. The conversion layer 3 is laminated.
 光電変換層3としては、半導体光電変換層を用いることができ、たとえば、透明絶縁基板1側から、アモルファスシリコン薄膜からなるp層、i層およびn層をこの順に積層したトップセル(第1光電変換層)と、トップセル上に、微結晶シリコン薄膜からなるp層、i層およびn層をこの順に積層したボトムセル(第2光電変換層)と、をたとえばプラズマCVD法により積層することができる。 As the photoelectric conversion layer 3, a semiconductor photoelectric conversion layer can be used. For example, a top cell (first photoelectric layer) in which a p layer, an i layer, and an n layer made of an amorphous silicon thin film are stacked in this order from the transparent insulating substrate 1 side. Conversion layer) and a bottom cell (second photoelectric conversion layer) in which a p layer, an i layer, and an n layer made of a microcrystalline silicon thin film are stacked in this order can be stacked on the top cell by, for example, a plasma CVD method. .
 また、光電変換層3としては、たとえば、透明絶縁基板1側から、アモルファスシリコン薄膜からなるp層、i層およびn層をこの順に積層したトップセル(第1光電変換層)と、トップセル上に、アモルファスシリコン薄膜からなるp層、i層およびn層をこの順に積層したミドルセル(第2光電変換層)と、ミドルセル上に、微結晶シリコン薄膜からなるp層、i層およびn層をこの順に積層したボトムセル(第3光電変換層)と、をたとえばプラズマCVD法により積層してもよい。なお、光電変換層の数をこれ以上とすることもできる。 The photoelectric conversion layer 3 includes, for example, a top cell (first photoelectric conversion layer) in which a p layer, an i layer, and an n layer made of an amorphous silicon thin film are stacked in this order from the transparent insulating substrate 1 side, and a top cell. In addition, a middle cell (second photoelectric conversion layer) in which a p layer, an i layer and an n layer made of an amorphous silicon thin film are laminated in this order, and a p layer, an i layer and an n layer made of a microcrystalline silicon thin film are formed on the middle cell. The bottom cell (third photoelectric conversion layer) stacked in order may be stacked by, for example, a plasma CVD method. Note that the number of photoelectric conversion layers can be increased.
 第1光電変換層から第3光電変換層の各光電変換層は、すべて同種のシリコン系半導体からなっていてもよく、互いに異なる種類のシリコン系半導体からなっていてもよい。 The photoelectric conversion layers from the first photoelectric conversion layer to the third photoelectric conversion layer may all be made of the same type of silicon-based semiconductor, or may be made of different types of silicon-based semiconductor.
 第1光電変換層から第3光電変換層の各光電変換層が、それぞれ、p型半導体層、i型半導体層およびn型半導体層を含んでいる場合には、p型半導体層、i型半導体層およびn型半導体層の各半導体層は、たとえば、シリコン系半導体からなってもよい。 When each photoelectric conversion layer from the first photoelectric conversion layer to the third photoelectric conversion layer includes a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer, respectively, the p-type semiconductor layer and the i-type semiconductor Each semiconductor layer of the layer and the n-type semiconductor layer may be made of, for example, a silicon-based semiconductor.
 光電変換層3に含まれる各半導体層は、すべて同種のシリコン系半導体からなっていてもよく、互いに異なる種類のシリコン系半導体からなっていてもよい。たとえば、p型半導体層とi型半導体層をアモルファスシリコンで形成し、n型半導体層を微結晶シリコンで形成してもよい。また、たとえば、p型半導体層とn型半導体層とをシリコンカーバイドまたはシリコンゲルマニウムで形成し、i型半導体層をシリコンで形成してもよい。 Each semiconductor layer included in the photoelectric conversion layer 3 may be made of the same kind of silicon-based semiconductor, or may be made of different types of silicon-based semiconductor. For example, the p-type semiconductor layer and the i-type semiconductor layer may be formed of amorphous silicon, and the n-type semiconductor layer may be formed of microcrystalline silicon. Further, for example, the p-type semiconductor layer and the n-type semiconductor layer may be formed of silicon carbide or silicon germanium, and the i-type semiconductor layer may be formed of silicon.
 また、p型、i型およびn型の各半導体層は、1層構造であってもよく、複数層構造であってもよい。複数層構造である場合には、各半導体層は、互いに異なる種類のシリコン系半導体からなっていてもよい。 Further, each of the p-type, i-type and n-type semiconductor layers may have a single-layer structure or a multi-layer structure. In the case of a multi-layer structure, each semiconductor layer may be composed of different types of silicon-based semiconductors.
 アモルファスシリコン薄膜の概念には、シリコンの未結合手(ダングリングボンド)が水素で終端された水素化アモルファスシリコン系半導体(a-Si:H)からなる薄膜が含まれる。微結晶シリコン薄膜の概念には、シリコンの未結合手(ダングリングボンド)が水素で終端された水素化微結晶シリコン系半導体(μc-Si:H)からなる薄膜が含まれる。光電変換層3の厚みは、特には限定されず、たとえば200nm以上5μm以下とすることができる。光電変換層3の形成方法もプラズマCVD法に限定されるものではない。 The concept of an amorphous silicon thin film includes a thin film made of a hydrogenated amorphous silicon-based semiconductor (a-Si: H) in which dangling bonds of silicon are terminated with hydrogen. The concept of a microcrystalline silicon thin film includes a thin film made of a hydrogenated microcrystalline silicon-based semiconductor (μc-Si: H) in which dangling bonds of silicon are terminated with hydrogen. The thickness of the photoelectric conversion layer 3 is not particularly limited, and can be, for example, 200 nm or more and 5 μm or less. The formation method of the photoelectric conversion layer 3 is not limited to the plasma CVD method.
 次に、図4に示すように、透明絶縁基板1側および/または光電変換層3側から、レーザ光を第1の分離溝5の伸長方向に直線状に移動させて照射することによって、光電変換層3の一部をストライプ状に除去して、光電変換層3を分離する第2の分離溝6を形成する。 Next, as shown in FIG. 4, the laser light is linearly moved in the extending direction of the first separation groove 5 and irradiated from the transparent insulating substrate 1 side and / or the photoelectric conversion layer 3 side. A part of the conversion layer 3 is removed in a stripe shape to form a second separation groove 6 that separates the photoelectric conversion layer 3.
 第2の分離溝6の形成に用いられるレーザ光としては、YAGレーザ光の第2高調波(波長:532nm)またはYVO4レーザ光の第2高調波(波長:532nm)を用いることが好ましい。YAGレーザ光の第2高調波およびYVO4レーザ光の第2高調波はそれぞれ透明絶縁基板1および透明電極層2を透過し、光電変換層3に吸収される傾向にあるため、光電変換層3を選択的に加熱して光電変換層3を選択的に蒸散させることができる傾向にある。 As the laser beam used for forming the second separation groove 6, it is preferable to use the second harmonic (wavelength: 532 nm) of the YAG laser beam or the second harmonic (wavelength: 532 nm) of the YVO 4 laser beam. Since the second harmonic of the YAG laser light and the second harmonic of the YVO 4 laser light tend to pass through the transparent insulating substrate 1 and the transparent electrode layer 2 and be absorbed by the photoelectric conversion layer 3, respectively, the photoelectric conversion layer 3 The photoelectric conversion layer 3 tends to be selectively evaporated by heating.
 次に、図5に示すように、光電変換層3を覆うようにして裏面電極層4を積層する。これにより、図5に示すように、裏面電極層4で第2の分離溝6が埋められる。 Next, as shown in FIG. 5, the back electrode layer 4 is laminated so as to cover the photoelectric conversion layer 3. Thereby, as shown in FIG. 5, the second separation groove 6 is filled with the back electrode layer 4.
 裏面電極層4としては、たとえば、銀またはアルミニウムからなる金属薄膜とZnO等の透明導電膜との積層体を用いることができる。ここで、金属薄膜の厚みはたとえば100nm以上1μm以下とすることができ、透明導電膜の厚みはたとえば20nm以上200nm以下とすることができる。単層または複数層の金属薄膜からなる裏面電極層4と光電変換層3との間に透明導電膜を設置した場合には、金属薄膜からなる裏面電極層4から光電変換層3に金属原子が拡散するのを防止することができ、さらに裏面電極層4による太陽光の反射率が向上する傾向にある点で好ましい。裏面電極層4としては、金属薄膜の単層のみまたは金属薄膜の複数層のみを用いてもよいことは言うまでもない。裏面電極層4の形成方法は特に限定されず、たとえばスパッタリング法などを用いることができる。 As the back electrode layer 4, for example, a laminate of a metal thin film made of silver or aluminum and a transparent conductive film such as ZnO can be used. Here, the thickness of the metal thin film can be, for example, 100 nm or more and 1 μm or less, and the thickness of the transparent conductive film can be, for example, 20 nm or more and 200 nm or less. When a transparent conductive film is installed between the back electrode layer 4 made of a single layer or multiple layers of metal thin film and the photoelectric conversion layer 3, metal atoms are transferred from the back electrode layer 4 made of metal thin film to the photoelectric conversion layer 3. It is preferable in that it can be prevented from diffusing and the reflectance of sunlight by the back electrode layer 4 tends to be improved. Needless to say, as the back electrode layer 4, only a single metal thin film layer or a plurality of metal thin film layers may be used. The method for forming the back electrode layer 4 is not particularly limited, and for example, a sputtering method or the like can be used.
 次に、図6に示すように、透明絶縁基板1側および/または裏面電極層4側から、レーザ光を第1の分離溝5および第2の分離溝6の伸長方向に直線状に移動させて照射することによって、光電変換層3および裏面電極層4の一部をストライプ状に除去して、光電変換層3および裏面電極層4を分離するスクライブライン7を形成する。 Next, as shown in FIG. 6, the laser beam is linearly moved in the extending direction of the first separation groove 5 and the second separation groove 6 from the transparent insulating substrate 1 side and / or the back electrode layer 4 side. By irradiating, a part of the photoelectric conversion layer 3 and the back electrode layer 4 is removed in a stripe shape, and a scribe line 7 for separating the photoelectric conversion layer 3 and the back electrode layer 4 is formed.
 スクライブライン7の形成に用いられるレーザ光としては、YAGレーザ光の第2高調波(波長:532nm)またはYVO4レーザ光の第2高調波(波長:532nm)を用いることが好ましい。YAGレーザ光の第2高調波およびYVO4レーザ光の第2高調波はそれぞれ透明絶縁基板1および透明電極層2を透過し、光電変換層3に吸収される傾向にあるため、光電変換層3を選択的に加熱して、光電変換層3および裏面電極層4を選択的に蒸散させることができる傾向にある。 As the laser light used for forming the scribe line 7, it is preferable to use the second harmonic (wavelength: 532 nm) of the YAG laser light or the second harmonic (wavelength: 532 nm) of the YVO 4 laser light. Since the second harmonic of the YAG laser light and the second harmonic of the YVO 4 laser light tend to pass through the transparent insulating substrate 1 and the transparent electrode layer 2 and be absorbed by the photoelectric conversion layer 3, respectively, the photoelectric conversion layer 3 Is selectively heated, and the photoelectric conversion layer 3 and the back electrode layer 4 tend to be selectively evaporated.
 次に、図8に示すように、透明絶縁基板1の周縁全周上の透明電極層2、光電変換層3および裏面電極層4をレーザ光を移動させながら照射することにより除去する。これにより、図9に示すように、隣り合う発電セル11同士が順次直列に接続されてなるストリング12の周囲を取り囲むようにして透明絶縁基板1の表面が露出する周縁絶縁領域10が形成されて、実施の形態3の光電変換装置を作製することができる。 Next, as shown in FIG. 8, the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 on the entire periphery of the transparent insulating substrate 1 are removed by irradiation while moving the laser beam. As a result, as shown in FIG. 9, the peripheral insulating region 10 is formed so that the surface of the transparent insulating substrate 1 is exposed so as to surround the string 12 in which the adjacent power generation cells 11 are sequentially connected in series. The photoelectric conversion device of Embodiment 3 can be manufactured.
 周縁絶縁領域10の形成に用いられるレーザ光としては、YAGレーザ光の基本波(波長:1064nm)またはYVO4レーザ光の基本波(波長:1064nm)を用いることが好ましい。YAGレーザ光の基本波およびYVO4レーザ光の基本波はそれぞれ透明絶縁基板1を透過し、透明電極層2に吸収される傾向にあるため、透明電極層2を選択的に加熱して、透明電極層2、光電変換層3および裏面電極層4を蒸散して除去することができる傾向にある。また、周縁絶縁領域10は一般的に幅広に形成されるため、レーザ光の照射幅(レーザ光の移動方向に直交する方向の長さ)は150μm以上であることが好ましく、400μm以上であることがより好ましい。また、周縁絶縁領域10の形成時において、レーザ光は、透明絶縁基板1側および/または裏面電極層4側から、照射することができる。 As the laser light used for forming the peripheral insulating region 10, it is preferable to use the fundamental wave of YAG laser light (wavelength: 1064 nm) or the fundamental wave of YVO 4 laser light (wavelength: 1064 nm). Since the fundamental wave of the YAG laser beam and the fundamental wave of the YVO 4 laser beam tend to pass through the transparent insulating substrate 1 and be absorbed by the transparent electrode layer 2, the transparent electrode layer 2 is selectively heated to be transparent. The electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 tend to evaporate and be removed. Further, since the peripheral insulating region 10 is generally formed wide, the irradiation width of the laser light (the length in the direction orthogonal to the moving direction of the laser light) is preferably 150 μm or more, and preferably 400 μm or more. Is more preferable. Further, when the peripheral insulating region 10 is formed, the laser beam can be irradiated from the transparent insulating substrate 1 side and / or the back electrode layer 4 side.
 なお、発電セル11の長手方向に直交する方向の両端の裏面電極層4の表面上にそれぞれ、銀ペーストなどの金属ペーストを介して発電セル11の長手方向に伸長する電流取り出し用の電極を形成することもできる。 In addition, on the surface of the back electrode layer 4 at both ends in the direction orthogonal to the longitudinal direction of the power generation cell 11, current extraction electrodes extending in the longitudinal direction of the power generation cell 11 are formed via a metal paste such as silver paste. You can also
 また、電流取り出し用の電極の形成後の裏面電極層4の表面上にたとえばEVAシートなどからなる透明接着材を設置し、透明接着材上に、たとえばPET(ポリエステル)/Al(アルミニウム)/PETの3層積層フィルムなどからなる裏面封止材を設置した後に、これらを加熱圧着し、裏面封止材に端子ボックスを接着し、端子ボックス内をシリコーンで充填し、アルミニウムフレームなどの枠体を取り付けることもできる。 Further, a transparent adhesive made of, for example, an EVA sheet or the like is placed on the surface of the back electrode layer 4 after the current extraction electrode is formed, and the transparent adhesive is, for example, PET (polyester) / Al (aluminum) / PET. After installing the backside sealing material composed of the three-layer laminated film, etc., these are thermocompression bonded, the terminal box is bonded to the backside sealing material, the inside of the terminal box is filled with silicone, and a frame body such as an aluminum frame is formed. It can also be attached.
 実施の形態3の光電変換装置の製造方法においては、たとえば図15の模式的拡大平面図に示すように、周縁絶縁領域10の形成時において、スクライブライン7の形成領域では、スクライブライン7が形成されていない領域と比較して、レーザ光の移動速度を低下して(すなわち、レーザ光の照射領域14の間隔を狭くして)、レーザ光を照射することにより、透明電極層2、光電変換層3および裏面電極層4を蒸散して周縁絶縁領域10を形成している。 In the method of manufacturing the photoelectric conversion device according to the third embodiment, for example, as shown in the schematic enlarged plan view of FIG. 15, the scribe line 7 is formed in the formation region of the scribe line 7 when the peripheral insulating region 10 is formed. The transparent electrode layer 2 and the photoelectric conversion are performed by irradiating the laser beam by reducing the moving speed of the laser beam (that is, by narrowing the interval of the laser beam irradiation region 14) as compared with the region that is not formed. The peripheral insulating region 10 is formed by evaporating the layer 3 and the back electrode layer 4.
 これは、本発明者が鋭意検討した結果、従来の特許文献1に記載の薄膜太陽電池の製造方法においては、レーザ光の照射による透明電極層、光電変換層および裏面電極層の除去によって周縁絶縁領域を形成する際に、たとえば図10の模式的平面図に示すように、周縁絶縁領域110のスクライブライン107の近傍において透明電極層の残渣111が残っており、この残渣111が、周縁絶縁領域110のスクライブライン107の近傍において絶縁不良または外観不良を生じさせる原因であることを突き止めたことによるものである。 As a result of intensive studies by the present inventors, in the conventional method for manufacturing a thin film solar cell described in Patent Document 1, peripheral insulation is achieved by removing the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer by laser light irradiation. When forming the region, for example, as shown in the schematic plan view of FIG. 10, a residue 111 of the transparent electrode layer remains in the vicinity of the scribe line 107 of the peripheral insulating region 110, and this residue 111 is converted into the peripheral insulating region. This is because it has been determined that this is the cause of an insulation failure or an appearance failure in the vicinity of 110 scribe line 107.
 すなわち、従来の特許文献1に記載の薄膜太陽電池の製造方法において、周縁絶縁領域110が形成される領域のスクライブライン107においては、透明絶縁基板の表面上に透明電極層のみが残った状態となっているため、周縁絶縁領域110の形成時に照射されるレーザ光のエネルギが十分に透明電極層に吸収されず、透明電極層の残渣111が残ることになる。 That is, in the conventional method for manufacturing a thin-film solar cell described in Patent Document 1, in the scribe line 107 in the region where the peripheral insulating region 110 is formed, only the transparent electrode layer remains on the surface of the transparent insulating substrate. Therefore, the energy of the laser beam irradiated when forming the peripheral insulating region 110 is not sufficiently absorbed by the transparent electrode layer, and the residue 111 of the transparent electrode layer remains.
 そこで、たとえば図15に示すように、周縁絶縁領域10の形成時に、スクライブライン7の形成領域では、スクライブライン7が形成されていない領域と比較してレーザ光の移動速度を低下させてレーザ光を照射することによって、スクライブライン7の形成領域に与えるエネルギ量を増やし、レーザ光の照射による除去能力を局所的に向上させる。これにより、スクライブライン7の形成領域において透明電極層2が残渣として残るのを抑制することができるため、周縁絶縁領域10のスクライブライン7の近傍における絶縁不良または外観不良の発生を抑えることができる。 Therefore, for example, as shown in FIG. 15, when forming the peripheral insulating region 10, the moving speed of the laser beam is reduced in the region where the scribe line 7 is formed compared to the region where the scribe line 7 is not formed. , The amount of energy applied to the formation region of the scribe line 7 is increased, and the removal capability by laser light irradiation is locally improved. Thereby, since it can suppress that the transparent electrode layer 2 remains as a residue in the formation area of the scribe line 7, generation | occurrence | production of the insulation defect or appearance defect in the vicinity of the scribe line 7 of the peripheral insulating area 10 can be suppressed. .
 また、周縁絶縁領域10の形成時におけるスクライブライン7が形成されていない領域でのレーザ光の移動速度は、10mm/秒以上400mm/秒以下であることが好ましく、50mm/秒以上150mm/秒以下であることがより好ましく、80mm/秒以上110mm/秒以下であることがさらに好ましい。周縁絶縁領域10の形成時におけるスクライブライン7が形成されていない領域でのレーザ光の移動速度が10mm/秒以上400mm/秒以下である場合、より好ましくは50mm/秒以上150mm/秒以下である場合、特に80mm/秒以上110mm/秒以下である場合には、透明電極層2、光電変換層3および裏面電極層4をより効率的かつより確実に除去することができるため、周縁絶縁領域10をより効率的に形成できる傾向にある。 Further, the moving speed of the laser light in the region where the scribe line 7 is not formed when the peripheral insulating region 10 is formed is preferably 10 mm / second or more and 400 mm / second or less, and 50 mm / second or more and 150 mm / second or less. It is more preferable that it is 80 mm / second or more and 110 mm / second or less. When the moving speed of the laser light in the region where the scribe line 7 is not formed when the peripheral insulating region 10 is formed is 10 mm / second or more and 400 mm / second or less, more preferably 50 mm / second or more and 150 mm / second or less. In particular, in the case of 80 mm / second or more and 110 mm / second or less, the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 can be removed more efficiently and more reliably. Tends to be formed more efficiently.
 また、周縁絶縁領域10の形成時におけるスクライブライン7の形成領域でのレーザ光の移動速度は、スクライブライン7が形成されていない領域でのレーザ光の移動速度よりも低く、かつ5mm/秒以上200mm/秒以下であることが好ましく、10mm/秒以上100mm/秒以下であることがより好ましく、50mm/秒以上90mm/秒以下であることがさらに好ましい。周縁絶縁領域10の形成時におけるスクライブライン7の形成領域でのレーザ光の移動速度がスクライブライン7が形成されていない領域でのレーザ光の移動速度よりも低く、かつ5mm/秒以上200mm/秒以下である場合、より好ましくは10mm/秒以上100mm/秒以下である場合、特に50mm/秒以上90mm/秒以下である場合には、スクライブライン7の透明電極層2をより効率的かつより確実に除去することができるため、周縁絶縁領域10をより効率的に形成できる傾向にある。 Further, the moving speed of the laser light in the region where the scribe line 7 is formed when the peripheral insulating region 10 is formed is lower than the moving speed of the laser light in the region where the scribe line 7 is not formed and is 5 mm / second or more. It is preferably 200 mm / second or less, more preferably 10 mm / second or more and 100 mm / second or less, and further preferably 50 mm / second or more and 90 mm / second or less. When the peripheral insulating region 10 is formed, the moving speed of the laser light in the region where the scribe line 7 is formed is lower than the moving speed of the laser light in the region where the scribe line 7 is not formed, and is 5 mm / second or more and 200 mm / second. Or less, more preferably 10 mm / second or more and 100 mm / second or less, and particularly 50 mm / second or more and 90 mm / second or less, the transparent electrode layer 2 of the scribe line 7 is more efficiently and more reliable. Therefore, the peripheral insulating region 10 tends to be formed more efficiently.
 また、周縁絶縁領域10の形成時においては、スクライブライン7の形成領域でレーザ光の移動速度を一時的にゼロにすることが好ましい。この場合には、さらに確実に透明電極層2を除去できる傾向にある。 Further, when the peripheral insulating region 10 is formed, it is preferable that the moving speed of the laser light is temporarily made zero in the region where the scribe line 7 is formed. In this case, the transparent electrode layer 2 tends to be removed more reliably.
 なお、周縁絶縁領域10の形成時のレーザ光の照射位置の調整方法は、特に限定されず、たとえば、レーザスクライブ装置のステージ上の透明絶縁基板1の位置合わせにより調整する方法、透明絶縁基板1の端部を事前に検出して透明絶縁基板1の端部から一定距離を空けて調整する方法、または第1の分離溝5の形成時に形成したアライメントマークを利用して調整する方法などを用いることができる。 In addition, the adjustment method of the irradiation position of the laser beam at the time of formation of the peripheral insulating region 10 is not specifically limited, For example, the method of adjusting by the alignment of the transparent insulating substrate 1 on the stage of a laser scribing apparatus, the transparent insulating substrate 1 A method of detecting the end portion of the transparent insulating substrate 1 in advance and adjusting it at a predetermined distance from the end portion of the transparent insulating substrate 1 or a method of adjusting using an alignment mark formed at the time of forming the first separation groove 5 is used. be able to.
 <実施の形態4>
 実施の形態4の光電変換装置の製造方法は、スクライブライン7に交差する交差スクライブラインを形成し、周縁絶縁領域10の形成時において、スクライブライン7の形成領域だけでなく、交差スクライブラインの形成領域でもレーザ光の移動速度を低下させることを特徴としている。
<Embodiment 4>
In the method of manufacturing the photoelectric conversion device according to the fourth embodiment, a cross scribe line intersecting the scribe line 7 is formed, and not only the formation region of the scribe line 7 but also the formation of the cross scribe line is formed when the peripheral insulating region 10 is formed. Even in the region, the moving speed of the laser beam is reduced.
 すなわち、実施の形態4の光電変換装置の製造方法において、スクライブライン7を形成するまでは、実施の形態3と同様の工程を行なう。 That is, in the method of manufacturing the photoelectric conversion device of the fourth embodiment, the same processes as those of the third embodiment are performed until the scribe line 7 is formed.
 次に、図16の模式的平面図に示すように、スクライブライン7に交差する交差スクライブライン8を形成する。ここで、交差スクライブライン8の形成時において、レーザ光は、透明絶縁基板1側および/または裏面電極層4側から、照射することができる。 Next, as shown in the schematic plan view of FIG. 16, an intersecting scribe line 8 that intersects the scribe line 7 is formed. Here, when the intersecting scribe line 8 is formed, the laser beam can be irradiated from the transparent insulating substrate 1 side and / or the back electrode layer 4 side.
 次に、図17の模式的平面図に示すように、透明絶縁基板1の周縁全周上の透明電極層2、光電変換層3および裏面電極層4をレーザ光を移動させながら照射することにより除去除去する。これにより、隣り合う発電セル11同士が順次直列に接続されてなるストリング12の周囲を取り囲むようにして透明絶縁基板1の表面が露出する周縁絶縁領域10が形成されて、実施の形態4の光電変換装置を作製することができる。 Next, as shown in the schematic plan view of FIG. 17, by irradiating the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 on the entire circumference of the transparent insulating substrate 1 while moving the laser beam. Remove and remove. As a result, the peripheral insulating region 10 where the surface of the transparent insulating substrate 1 is exposed is formed so as to surround the periphery of the string 12 in which the adjacent power generation cells 11 are sequentially connected in series. A conversion device can be made.
 実施の形態4の光電変換装置の製造方法においては、たとえば図15に示すように、周縁絶縁領域10の形成時において、スクライブライン7の形成領域では、スクライブライン7が形成されていない領域と比較して、レーザ光の移動速度を低下して(すなわち、レーザ光の照射領域14の間隔を狭くして)、レーザ光を照射することにより、透明電極層2、光電変換層3および裏面電極層4を蒸散して周縁絶縁領域10を形成する。 In the method for manufacturing the photoelectric conversion device of the fourth embodiment, for example, as shown in FIG. 15, when the peripheral insulating region 10 is formed, the region where the scribe line 7 is formed is compared with the region where the scribe line 7 is not formed. Then, the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer are irradiated by irradiating the laser beam by reducing the moving speed of the laser beam (that is, by narrowing the interval between the laser beam irradiation regions 14). 4 is evaporated to form the peripheral insulating region 10.
 さらに、実施の形態4の光電変換装置の製造方法においては、図18の模式的平面図に示すように、周縁絶縁領域10の形成時において、交差スクライブライン8の形成領域では、交差のスクライブライン8が形成されていない領域と比較して、レーザ光の移動速度を低下して(すなわち、レーザ光の照射領域14の間隔を狭くして)、レーザ光を照射することにより、透明電極層2、光電変換層3および裏面電極層4を蒸散して周縁絶縁領域10を形成する。 Furthermore, in the method for manufacturing the photoelectric conversion device according to the fourth embodiment, as shown in the schematic plan view of FIG. 18, when forming the peripheral insulating region 10, Compared with the region where 8 is not formed, the moving speed of the laser beam is reduced (that is, the interval between the laser beam irradiation regions 14 is narrowed) and the transparent electrode layer 2 is irradiated with the laser beam. Then, the photoelectric conversion layer 3 and the back electrode layer 4 are evaporated to form the peripheral insulating region 10.
 これは、本発明者が鋭意検討した結果、従来の特許文献2に記載の薄膜太陽電池の製造方法においては、レーザ光の照射による透明電極層、光電変換層および裏面電極層の除去によって周縁絶縁領域を形成する際に、スクライブラインの近傍だけでなく、交差スクライブラインの近傍においても透明電極層の残渣が残っており、この残渣が、周縁絶縁領域のスクライブラインおよび交差スクライブラインのそれぞれの近傍において絶縁不良または外観不良を生じさせる原因であることを突き止めたことによるものである。 As a result of intensive studies by the present inventors, in the conventional method for manufacturing a thin film solar cell described in Patent Document 2, peripheral insulation is achieved by removing the transparent electrode layer, the photoelectric conversion layer, and the back electrode layer by laser light irradiation. When forming the region, the transparent electrode layer residue remains not only in the vicinity of the scribe line but also in the vicinity of the cross scribe line, and this residue is in the vicinity of the scribe line and the cross scribe line in the peripheral insulating region. This is because it has been found that this is the cause of an insulation failure or an appearance failure.
 すなわち、従来の特許文献2に記載の薄膜太陽電池の製造方法において、周縁絶縁領域が形成される領域のスクライブラインおよび交差スクライブラインにおいては、透明絶縁基板の表面上に透明電極層のみが残った状態となっているため、周縁絶縁領域の形成時に照射されるレーザ光のエネルギが十分に透明電極層に吸収されず、透明電極層の残渣が残ることになる。 That is, in the conventional method for manufacturing a thin-film solar cell described in Patent Document 2, only the transparent electrode layer remains on the surface of the transparent insulating substrate in the scribe line and the cross scribe line in the region where the peripheral insulating region is formed. Thus, the energy of the laser beam irradiated when forming the peripheral insulating region is not sufficiently absorbed by the transparent electrode layer, and the residue of the transparent electrode layer remains.
 そこで、たとえば図15および図18に示すように、周縁絶縁領域10の形成時に、スクライブライン7および交差スクライブライン8の形成領域では、スクライブライン7および交差スクライブライン8が形成されていない領域と比較してレーザ光の移動速度を低下させてレーザ光を照射することによって、スクライブライン7および交差スクライブライン8の形成領域に与えるエネルギ量を増やし、レーザ光の照射による除去能力を局所的に向上させる。これにより、スクライブライン7および交差スクライブライン8の形成領域において透明電極層2が残渣として残るのを抑制することができるため、周縁絶縁領域10のスクライブライン7および交差スクライブライン8のそれぞれの近傍における絶縁不良または外観不良の発生を抑えることができる。 Therefore, for example, as shown in FIGS. 15 and 18, when the peripheral insulating region 10 is formed, the region where the scribe line 7 and the cross scribe line 8 are formed is compared with the region where the scribe line 7 and the cross scribe line 8 are not formed. Then, by irradiating the laser beam while reducing the moving speed of the laser beam, the amount of energy applied to the formation region of the scribe line 7 and the intersecting scribe line 8 is increased, and the removal capability by the laser beam irradiation is locally improved. . Thereby, since it can suppress that the transparent electrode layer 2 remains as a residue in the formation area of the scribe line 7 and the cross scribe line 8, in the vicinity of each of the scribe line 7 and the cross scribe line 8 in the peripheral insulating region 10. Occurrence of insulation failure or appearance failure can be suppressed.
 また、交差スクライブライン8の形成時においては、光電変換層3および裏面電極層4のみをレーザ光の照射により除去してもよく、透明電極層2、光電変換層3および裏面電極層4のすべてをレーザ光の照射により除去してもよい。なお、光電変換層3および裏面電極層4のみをレーザ光の照射により除去して交差スクライブライン8を形成した場合にのみ、周縁絶縁領域10の形成時に、交差スクライブライン8の形成領域でレーザ光の移動速度を低下してレーザ光を照射すればよい。 Further, at the time of forming the intersecting scribe line 8, only the photoelectric conversion layer 3 and the back electrode layer 4 may be removed by laser light irradiation, and all of the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 are removed. May be removed by laser light irradiation. Only when the photoelectric conversion layer 3 and the back electrode layer 4 are removed by laser light irradiation to form the cross scribe line 8, the laser beam is formed in the formation region of the cross scribe line 8 when forming the peripheral insulating region 10. It is only necessary to irradiate the laser beam at a lower moving speed.
 また、交差スクライブライン8の形成時のレーザ光の種類およびレーザ光の照射位置の調整方法は、特に限定されず、たとえばスクライブライン7の形成時と同様のレーザ光の種類およびレーザ光の照射位置の調整方法などを用いることができる。 Further, the method of adjusting the type of laser light and the irradiation position of the laser light when forming the intersecting scribe line 8 is not particularly limited, and for example, the same type of laser light and the irradiation position of the laser light as when forming the scribe line 7 are used. Can be used.
 また、周縁絶縁領域10の形成時における交差スクライブライン8の形成領域でのレーザ光の移動速度は、スクライブライン7および交差スクライブライン8が形成されていない領域でのレーザ光の移動速度よりも低く、かつ5mm/秒以上200mm/秒以下であることが好ましく、10mm/秒以上100mm/秒以下であることがより好ましく、50mm/秒以上90mm/秒以下であることがさらに好ましい。周縁絶縁領域10の形成時における交差スクライブライン8の形成領域でのレーザ光の移動速度がスクライブライン7および交差スクライブライン8が形成されていない領域でのレーザ光の移動速度よりも低く、かつ5mm/秒以上200mm/秒以下である場合、より好ましくは10mm/秒以上100mm/秒以下である場合、特に50mm/秒以上90mm/秒以下である場合には、交差スクライブライン8の透明電極層2をより効率的かつより確実に除去することができるため、周縁絶縁領域10をより効率的に形成できる傾向にある。 Further, the moving speed of the laser light in the formation area of the cross scribe line 8 when forming the peripheral insulating region 10 is lower than the moving speed of the laser light in the area where the scribe line 7 and the cross scribe line 8 are not formed. In addition, it is preferably 5 mm / second or more and 200 mm / second or less, more preferably 10 mm / second or more and 100 mm / second or less, and further preferably 50 mm / second or more and 90 mm / second or less. When the peripheral insulating region 10 is formed, the moving speed of the laser light in the region where the cross scribe line 8 is formed is lower than the moving speed of the laser light in the region where the scribe line 7 and the cross scribe line 8 are not formed, and 5 mm. Transparent electrode layer 2 of the crossed scribe line 8 when it is 10 mm / second or more and 200 mm / second or less, more preferably 10 mm / second or more and 100 mm / second or less, particularly 50 mm / second or more and 90 mm / second or less. Therefore, the peripheral insulating region 10 tends to be formed more efficiently.
 また、周縁絶縁領域10の形成時においては、交差スクライブライン8の形成領域でレーザ光の移動速度を一時的にゼロにすることが好ましい。この場合には、さらに確実に透明電極層2を除去できる傾向にある。 Further, when the peripheral insulating region 10 is formed, it is preferable that the moving speed of the laser light is temporarily reduced to zero in the region where the cross scribe line 8 is formed. In this case, the transparent electrode layer 2 tends to be removed more reliably.
 実施の形態4における上記以外の説明は、実施の形態3と同様であるため、その説明についてはここでは省略する。 Since the description other than the above in the fourth embodiment is the same as that in the third embodiment, the description thereof is omitted here.
 以上のように本発明の実施の形態について説明を行なったが、上述の各実施の形態の構成を適宜組み合わせることも当初から予定している。 As described above, the embodiments of the present invention have been described, but it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、光電変換装置の製造方法に利用することができ、特に薄膜太陽電池の製造方法に好適に利用することができる。 The present invention can be used for a method for manufacturing a photoelectric conversion device, and can be particularly preferably used for a method for manufacturing a thin film solar cell.
 1 透明絶縁基板、2 透明電極層、3 光電変換層、4 裏面電極層、5 第1の分離溝、6 第2の分離溝、7 スクライブライン、8 交差スクライブライン、9 領域、10 周縁絶縁領域、11 発電セル、12 ストリング、13 マスク、14 レーザ光の照射領域、107 スクライブライン、110 周縁絶縁領域、111 残渣。 1 transparent insulation substrate, 2 transparent electrode layer, 3 photoelectric conversion layer, 4 back electrode layer, 5 first separation groove, 6 second separation groove, 7 scribe line, 8 cross scribe line, 9 area, 10 peripheral insulation area , 11 power generation cell, 12 string, 13 mask, 14 laser light irradiation area, 107 scribe line, 110 peripheral insulating area, 111 residue.

Claims (9)

  1.  透明電極層(2)と光電変換層(3)と裏面電極層(4)とがこの順で積層された透明絶縁基板(1)に対して、前記透明絶縁基板(1)の周縁全周上の前記透明電極層(2)、前記光電変換層(3)および前記裏面電極層(4)をレーザ光の照射により除去して周縁絶縁領域(10)を形成する周縁絶縁工程を含み、
     前記周縁絶縁工程を行なうときには、前記周縁絶縁領域(10)を形成する領域には、前記光電変換層(3)および前記裏面電極層(4)の少なくとも一方が存在している、光電変換装置の製造方法。
    On the entire circumference of the transparent insulating substrate (1) with respect to the transparent insulating substrate (1) in which the transparent electrode layer (2), the photoelectric conversion layer (3), and the back electrode layer (4) are laminated in this order. A peripheral insulating step of forming the peripheral insulating region (10) by removing the transparent electrode layer (2), the photoelectric conversion layer (3) and the back electrode layer (4) by irradiation with laser light,
    When performing the peripheral insulating step, in the region of forming the peripheral insulating region (10), at least one of the photoelectric conversion layer (3) and the back electrode layer (4) is present. Production method.
  2.  前記光電変換層(3)および前記裏面電極層(4)を線状に除去してスクライブライン(7)を形成するスクライブライン形成工程をさらに含み、
     前記スクライブライン形成工程において、前記周縁絶縁工程にて前記周縁絶縁領域(10)を形成する領域では、前記光電変換層(3)および前記裏面電極層(4)の少なくとも一方を残す、請求項1に記載の光電変換装置の製造方法。
    A scribe line forming step of forming the scribe line (7) by linearly removing the photoelectric conversion layer (3) and the back electrode layer (4);
    In the scribe line forming step, at least one of the photoelectric conversion layer (3) and the back electrode layer (4) is left in a region where the peripheral insulating region (10) is formed in the peripheral insulating step. The manufacturing method of the photoelectric conversion apparatus of description.
  3.  前記スクライブライン形成工程は、レーザ光の照射により前記光電変換層(3)および前記裏面電極層(4)を除去してスクライブライン(7)を形成する工程と、前記周縁絶縁工程にて前記周縁絶縁領域(10)を形成する領域では前記レーザ光の照射を停止する工程とを含む、請求項2に記載の光電変換装置の製造方法。 The scribe line forming step includes a step of forming the scribe line (7) by removing the photoelectric conversion layer (3) and the back electrode layer (4) by laser light irradiation, and the peripheral insulating step. The method for manufacturing a photoelectric conversion device according to claim 2, further comprising a step of stopping irradiation of the laser light in a region where the insulating region (10) is formed.
  4.  前記スクライブライン形成工程は、前記周縁絶縁工程にて前記周縁絶縁領域(10)を形成する領域をマスク(13)で覆う工程と、レーザ光の照射により前記光電変換層(3)および前記裏面電極層(4)を除去してスクライブライン(7)を形成する工程とを含む、請求項2に記載の光電変換装置の製造方法。 The scribe line forming step includes a step of covering a region where the peripheral insulating region (10) is formed in the peripheral insulating step with a mask (13), and the photoelectric conversion layer (3) and the back electrode by laser light irradiation. The method for manufacturing a photoelectric conversion device according to claim 2, comprising a step of removing the layer (4) to form a scribe line (7).
  5.  前記周縁絶縁工程の前に前記スクライブライン形成工程を行なう、請求項2から4のいずれか1項に記載の光電変換装置の製造方法。 The method for manufacturing a photoelectric conversion device according to any one of claims 2 to 4, wherein the scribe line forming step is performed before the peripheral insulating step.
  6.  透明絶縁基板(1)上に積層された透明電極層(2)上に光電変換層(3)を積層する工程と、
     前記光電変換層(3)上に裏面電極層(4)を積層する工程と、
     前記光電変換層(3)および前記裏面電極層(4)のそれぞれの一部をレーザ光の照射により除去してスクライブライン(7)を形成する工程と、
     前記透明絶縁基板(1)の周縁全周上の前記透明電極層(2)、前記光電変換層(3)および前記裏面電極層(4)をレーザ光を移動させながら照射することにより除去して周縁絶縁領域(10)を形成する工程と、を含み、
     前記周縁絶縁領域(10)を形成する工程においては、前記スクライブライン(7)の形成領域ではレーザ光の移動速度を低下させる、光電変換装置の製造方法。
    Laminating the photoelectric conversion layer (3) on the transparent electrode layer (2) laminated on the transparent insulating substrate (1);
    Laminating a back electrode layer (4) on the photoelectric conversion layer (3);
    Removing a part of each of the photoelectric conversion layer (3) and the back electrode layer (4) by laser light irradiation to form a scribe line (7);
    The transparent electrode layer (2), the photoelectric conversion layer (3) and the back electrode layer (4) on the entire circumference of the transparent insulating substrate (1) are removed by irradiating while moving the laser beam. Forming a peripheral insulating region (10),
    In the step of forming the peripheral insulating region (10), a method for manufacturing a photoelectric conversion device, wherein a moving speed of laser light is reduced in a region where the scribe line (7) is formed.
  7.  前記周縁絶縁領域(10)を形成する工程において、前記スクライブライン(7)の形成領域でレーザ光の移動速度を一時的にゼロにする、請求項6に記載の光電変換装置の製造方法。 The method for manufacturing a photoelectric conversion device according to claim 6, wherein in the step of forming the peripheral insulating region (10), the moving speed of the laser beam is temporarily made zero in the formation region of the scribe line (7).
  8.  前記光電変換層(3)および前記裏面電極層(4)のそれぞれの一部をレーザ光の照射により除去して前記スクライブライン(7)に交差する交差スクライブライン(8)を形成する工程をさらに含み、
     前記周縁絶縁領域(10)を形成する工程においては、前記交差スクライブライン(8)の形成領域でレーザ光の移動速度を低下させる、請求項6または7に記載の光電変換装置の製造方法。
    A step of forming a crossed scribe line (8) intersecting the scribe line (7) by removing a part of each of the photoelectric conversion layer (3) and the back electrode layer (4) by laser light irradiation. Including
    The method for manufacturing a photoelectric conversion device according to claim 6 or 7, wherein, in the step of forming the peripheral insulating region (10), the moving speed of the laser beam is reduced in a region where the intersecting scribe line (8) is formed.
  9.  前記周縁絶縁領域(10)を形成する工程において、前記交差スクライブライン(8)の形成領域でレーザ光の移動速度を一時的にゼロにする、請求項8に記載の光電変換装置の製造方法。 The method for manufacturing a photoelectric conversion device according to claim 8, wherein in the step of forming the peripheral insulating region (10), the moving speed of the laser beam is temporarily made zero in the formation region of the intersecting scribe line (8).
PCT/JP2012/082902 2012-02-23 2012-12-19 Method for producing photoelectric conversion device WO2013125143A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012037342 2012-02-23
JP2012-037342 2012-02-23
JP2012-037346 2012-02-23
JP2012037346 2012-02-23

Publications (1)

Publication Number Publication Date
WO2013125143A1 true WO2013125143A1 (en) 2013-08-29

Family

ID=49005343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082902 WO2013125143A1 (en) 2012-02-23 2012-12-19 Method for producing photoelectric conversion device

Country Status (1)

Country Link
WO (1) WO2013125143A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105855711A (en) * 2015-01-09 2016-08-17 位元奈米科技股份有限公司 Laser etching method of transparent conductive plate and transparent conductive plate manufactured by same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186573A (en) * 1997-12-24 1999-07-09 Kanegafuchi Chem Ind Co Ltd Manufacture of integrated thin-film photoelectric converter
JP2001111078A (en) * 1999-10-13 2001-04-20 Sharp Corp Manufacturing device of thin-film solar cell
JP2006253417A (en) * 2005-03-10 2006-09-21 Mitsubishi Heavy Ind Ltd Solar cell panel and manufacturing method
JP2008109041A (en) * 2006-10-27 2008-05-08 Sharp Corp Thin-film solar cell and thin-film solar-cell manufacturing method
WO2009139389A1 (en) * 2008-05-15 2009-11-19 株式会社アルバック Thin film solar battery module manufacturing method and thin film solar battery module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186573A (en) * 1997-12-24 1999-07-09 Kanegafuchi Chem Ind Co Ltd Manufacture of integrated thin-film photoelectric converter
JP2001111078A (en) * 1999-10-13 2001-04-20 Sharp Corp Manufacturing device of thin-film solar cell
JP2006253417A (en) * 2005-03-10 2006-09-21 Mitsubishi Heavy Ind Ltd Solar cell panel and manufacturing method
JP2008109041A (en) * 2006-10-27 2008-05-08 Sharp Corp Thin-film solar cell and thin-film solar-cell manufacturing method
WO2009139389A1 (en) * 2008-05-15 2009-11-19 株式会社アルバック Thin film solar battery module manufacturing method and thin film solar battery module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105855711A (en) * 2015-01-09 2016-08-17 位元奈米科技股份有限公司 Laser etching method of transparent conductive plate and transparent conductive plate manufactured by same

Similar Documents

Publication Publication Date Title
US20060266409A1 (en) Method of fabricating a thin-film solar cell, and thin-film solar cell
JP4485506B2 (en) Thin film solar cell and method for manufacturing thin film solar cell
US20060112987A1 (en) Transparent thin-film solar cell module and its manufacturing method
JP6360340B2 (en) Manufacturing method of solar cell module
WO2014054600A1 (en) Method for manufacturing crystalline silicon solar cell, method for manufacturing solar cell module, crystalline silicon solar cell, and solar cell module
JP2007035695A (en) Integrated thin-film solar cell module
CN102239571B (en) Method for manufacturing thin-film photoelectric conversion device
US9040815B2 (en) Thin-film solar cell and method of fabricating thin-film solar cell
JP6013200B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
US20110030769A1 (en) Solar cell and method for manufacturing the same
WO2013125143A1 (en) Method for producing photoelectric conversion device
TW201131791A (en) Solar cell and method for fabricating the same
JP2009094272A (en) Photoelectric conversion module and manufacturing method thereof
JP2008053303A (en) Solar cell panel
JP4061317B2 (en) Solar cell and method for manufacturing solar cell
JP5084868B2 (en) Method for manufacturing thin film solar cell
WO2014103513A1 (en) Solar cell module and solar cell module manufacturing method
JP2011181826A (en) Method of manufacturing photoelectric conversion device
JP5800947B2 (en) Method for manufacturing thin film solar cell
JP2014132604A (en) Photoelectric conversion element, and method of manufacturing the same
JP5829200B2 (en) Method for manufacturing thin film solar cell
JP2013219143A (en) Thin-film solar cell module and thin-film solar cell module manufacturing method
JP4773544B2 (en) Method for manufacturing solar cell module with edge space
KR20110078963A (en) Thin film silicon solar cell module and method for manufacturing thereof, method for connecting the module
JP2013258176A (en) Method of manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP