JP4568531B2 - Integrated solar cell and method of manufacturing integrated solar cell - Google Patents

Integrated solar cell and method of manufacturing integrated solar cell Download PDF

Info

Publication number
JP4568531B2
JP4568531B2 JP2004138121A JP2004138121A JP4568531B2 JP 4568531 B2 JP4568531 B2 JP 4568531B2 JP 2004138121 A JP2004138121 A JP 2004138121A JP 2004138121 A JP2004138121 A JP 2004138121A JP 4568531 B2 JP4568531 B2 JP 4568531B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
lower electrode
solar cell
power generation
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004138121A
Other languages
Japanese (ja)
Other versions
JP2005322707A (en
Inventor
信樹 山下
和孝 宇田
雅博 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004138121A priority Critical patent/JP4568531B2/en
Publication of JP2005322707A publication Critical patent/JP2005322707A/en
Application granted granted Critical
Publication of JP4568531B2 publication Critical patent/JP4568531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、中間層を有する集積型太陽電池に関する。   The present invention relates to an integrated solar cell having an intermediate layer.

絶縁基板上に下部電極、半導体からなる単一層の光電変換セル及び上部電極を順次形成した発電ユニットを備えた太陽電池(シングルセル)が知られている。このシングルセルとして形成された太陽電池は、半導体のバンドギャップより低いエネルギーをもつ長波長の光が半導体に吸収されずに透過または反射してしまうという欠点を有する。またバンドギャップよりエネルギーの大きい短波長の光は吸収され発電に寄与するが、バンドギャップより過剰なエネルギーは熱となり利用されない。そこで太陽電池の高効率化のために、バンドギャップの異なる半導体を複数重ねて用いる方法がある。このように複数の半導体を重ねて用いた太陽電池には、吸収波長帯域が異なるセルを2段重ねたタンデム太陽電池、3段重ねたトリプル太陽電池がある。前記タンデム太陽電池としては、太陽光入射側であるトップセルにa−Si(アモルファスシリコン)、裏面側のボトムセルに結晶質Siまたはa−SiGeを用いた薄膜シリコンタンデム太陽電池、またトップセルにCuGaSe、ボトムセルにCuInGa1−xSeを用いた薄膜化合物タンデム太陽電池が知られている。またトリプル太陽電池としては、トップセルにa−SiC、トップセルとボトムセルの間に設けられたミドルセルにa−Si、ボトムセルにa−SiGeを用いた薄膜シリコントリプル太陽電池が知られている。トップセルとしてのa−Siとボトムセルとしての結晶質Si(例えば非晶質相が混在する微結晶シリコン)を用いたタンデム太陽電池を例にとると、太陽光入射側であるa−Siが短波長の光を吸収し、吸収されなかった長波長の光を結晶質Siが吸収する。トップセルとボトムセルは電気的に直列であるため同じ電流量が両セルに流れるが、発生電流が小さいa−Siによってタンデム太陽電池の電流が決まってしまう。a−Siの膜厚を大きくし光吸収量を増やすことで電流を大きくできるが、光劣化が大きくなってしまうという問題がある。そこで、a−Siで吸収しきれずに透過してしまう短波長の光を、透明中間層でa−Si膜側に反射させて光路を長くし吸収させることで、a−Siの膜厚を大きくしないで、発生電流を大きくすることができる。 A solar cell (single cell) including a power generation unit in which a lower electrode, a single-layer photoelectric conversion cell made of a semiconductor, and an upper electrode are sequentially formed on an insulating substrate is known. This solar cell formed as a single cell has a drawback that long wavelength light having energy lower than the band gap of the semiconductor is transmitted or reflected without being absorbed by the semiconductor. In addition, short-wavelength light having energy larger than the band gap is absorbed and contributes to power generation, but excess energy beyond the band gap becomes heat and is not used. Therefore, there is a method of using a plurality of semiconductors having different band gaps in order to increase the efficiency of the solar cell. As described above, solar cells using a plurality of stacked semiconductors include tandem solar cells in which cells having different absorption wavelength bands are stacked in two stages, and triple solar cells in which three stages are stacked. As the tandem solar cell, a thin-film silicon tandem solar cell using a-Si (amorphous silicon) for the top cell on the sunlight incident side, crystalline Si or a-SiGe for the bottom cell on the back side, and CuGaSe for the top cell. 2. A thin film compound tandem solar cell using CuIn x Ga 1-x Se 2 for the bottom cell is known. As a triple solar cell, a thin-film silicon triple solar cell using a-SiC for the top cell, a-Si for the middle cell provided between the top cell and the bottom cell, and a-SiGe for the bottom cell is known. Taking a tandem solar cell using a-Si as a top cell and crystalline Si (for example, microcrystalline silicon in which an amorphous phase is mixed) as a bottom cell as an example, a-Si on the sunlight incident side is short. Crystalline Si absorbs light of a wavelength and absorbs light of a long wavelength that is not absorbed. Since the top cell and the bottom cell are electrically in series, the same amount of current flows through both cells, but the current of the tandem solar cell is determined by a-Si, which has a small generated current. Although the current can be increased by increasing the film thickness of a-Si and increasing the amount of light absorption, there is a problem that the light deterioration increases. Therefore, the light having a short wavelength that cannot be absorbed by a-Si is transmitted to the a-Si film side by the transparent intermediate layer, and the optical path is lengthened and absorbed, thereby increasing the film thickness of a-Si. The generated current can be increased.

この透明中間層は、太陽電池の光入射側にある下部電極または上部電極に用いられる透明電極と同じ、酸化亜鉛(ZnO)、酸化錫(SnO)、酸化インジウム錫(ITO)などの金属酸化物が主成分であり、一般に低抵抗膜である。透明金属酸化物の導電率は、酸素欠損量やドーピング元素含有量によって変化する性質がある。 This transparent intermediate layer is the same as the transparent electrode used for the lower electrode or the upper electrode on the light incident side of the solar cell, such as zinc oxide (ZnO), tin oxide (SnO 2 ), and indium tin oxide (ITO). An object is a main component and is generally a low resistance film. The conductivity of the transparent metal oxide has the property of changing depending on the oxygen deficiency and doping element content.

透明電極の比抵抗は低いもので約5×10−4Ω・cm程度であるが、裏面電極に用いられる金属膜の比抵抗より2桁程大きい。そのため、セルで発生した電流が透明電極を流れる間に電力損失が生じてしまう。それは基板面積が大きくなる程顕著となり、外部へ取り出せる電力を減少させるため、損失を小さくする集積構造が知られている。図1はこのような集積構造を有する集積型太陽電池の断面図を示したものである。この集積型太陽電池において、複数個の太陽電池(発電ユニット)が1枚の基板上に作成され、直列接続されている。 The specific resistance of the transparent electrode is low, about 5 × 10 −4 Ω · cm, but about two orders of magnitude higher than the specific resistance of the metal film used for the back electrode. Therefore, power loss occurs while the current generated in the cell flows through the transparent electrode. This is more noticeable as the substrate area becomes larger, and an integrated structure is known that reduces the loss in order to reduce the power that can be extracted to the outside. FIG. 1 shows a sectional view of an integrated solar cell having such an integrated structure. In this integrated solar cell, a plurality of solar cells (power generation units) are formed on one substrate and connected in series.

絶縁基板1上に下部電極2、下部光電変換セル3、透明中間層4、上部光電変換セル5、上部電極6が積層膜として形成されており、これら積層膜が発電膜を構成する。光入射側にある下部電極2または上部電極6には、透明電極が用いられる。この発電膜は下部電極分離溝7及び上部電極分離溝9によって複数の発電ユニットに分割されている。さらに隣り合う発電ユニットの間で、一方の発電ユニットの下部電極2と他方の発電ユニットの上部電極6がそれぞれ延在して、接続溝8で電気的に接触することでそれぞれの発電ユニットが直列接続されている。これは、発電膜を分割し1つの発電ユニットの面積を小さくすることで、透明電極に流れる電流量を減らし、直列化で電圧を高めることで、損失を抑えるものである。なお上記分離溝や接続溝は、直列接続方向に垂直方向(紙面に垂直方向)に延在するように、レーザスクライブによって形成される。   A lower electrode 2, a lower photoelectric conversion cell 3, a transparent intermediate layer 4, an upper photoelectric conversion cell 5, and an upper electrode 6 are formed as a laminated film on the insulating substrate 1, and these laminated films constitute a power generation film. A transparent electrode is used for the lower electrode 2 or the upper electrode 6 on the light incident side. The power generation film is divided into a plurality of power generation units by the lower electrode separation groove 7 and the upper electrode separation groove 9. Further, between the adjacent power generation units, the lower electrode 2 of one power generation unit and the upper electrode 6 of the other power generation unit are extended, and are electrically connected at the connection groove 8 so that the respective power generation units are connected in series. It is connected. This is to reduce the amount of current flowing through the transparent electrode by dividing the power generation film and reducing the area of one power generation unit, and by increasing the voltage by serialization, the loss is suppressed. The separation grooves and connection grooves are formed by laser scribing so as to extend in a direction perpendicular to the series connection direction (a direction perpendicular to the paper surface).

太陽電池には、図1の下側から太陽光が入射するスーパーストレート型と、図の上側から太陽光が入射するサブストレート型がある。スーパーストレート型太陽電池は、ガラス等の透明な基板1と、下部電極2として用いられる透明電極と、下部光電変換セル3として用いられる短波長域を吸収するトップセルと、上部光電変換セル5として用いられる長波長域を吸収するボトムセルと、上部電極6として用いられる金属膜からなる裏面電極とで構成される。またサブストレート型太陽電池では、基板1が透明である必要はないのでガラス以外に金属や高分子フィルムも使用される。サブストレート型太陽電池は、基板1と、下部電極2として用いられる金属膜からなる裏面電極と、下部光電変換セル3として用いられる長波長域を吸収するボトムセルと、上部光電変換セル5として用いられる短波長域を吸収するトップセルと、上部電極6として用いられる透明電極とで構成される。   Solar cells include a super straight type in which sunlight enters from the lower side of FIG. 1 and a substrate type in which sunlight enters from the upper side of the figure. The super straight type solar cell includes a transparent substrate 1 such as glass, a transparent electrode used as the lower electrode 2, a top cell that absorbs a short wavelength region used as the lower photoelectric conversion cell 3, and an upper photoelectric conversion cell 5. It comprises a bottom cell that absorbs the long wavelength region used and a back electrode made of a metal film used as the upper electrode 6. In the substrate type solar cell, since the substrate 1 does not need to be transparent, a metal or a polymer film is also used in addition to glass. The substrate type solar cell is used as a substrate 1, a back electrode made of a metal film used as the lower electrode 2, a bottom cell that absorbs a long wavelength region used as the lower photoelectric conversion cell 3, and an upper photoelectric conversion cell 5. A top cell that absorbs a short wavelength region and a transparent electrode used as the upper electrode 6 are configured.

スーパーストレート型で透明中間層を挿入した集積型の薄膜シリコンタンデム太陽電池は、特許文献1、特許文献2などに開示されている。これらには、中間層の比抵抗値が規定されており、1×10−1Ω・cm以下がよいとされている。中間層の比抵抗が低い場合、図1の矢印10に示すように、上部光電変換セルから下部光電変換セルに流れるべき電流の一部が、中間層を通って接続溝8を覆う上部電極6に漏れてしまう問題がある。この電流漏れは、膜に沿って横方向へ流れるため、サイドリークと呼ばれる。 An integrated thin-film silicon tandem solar cell in which a transparent intermediate layer is inserted is disclosed in Patent Document 1, Patent Document 2, and the like. In these, the specific resistance value of the intermediate layer is defined, and 1 × 10 −1 Ω · cm or less is considered good. When the specific resistance of the intermediate layer is low, as indicated by an arrow 10 in FIG. 1, a part of the current that should flow from the upper photoelectric conversion cell to the lower photoelectric conversion cell passes through the intermediate layer and covers the connection groove 8. There is a problem that leaks. This current leakage is called side leakage because it flows laterally along the film.

サイドリークを防止する集積構造の一例が、特許文献3に開示されている。この集積構造では、図1の下部電極分離溝7と接続溝8の間に、下部光電変換セル及び透明中間層を除去する分離溝を設けることで、発電ユニットから接続溝8へ中間層を通って流れる電流経路が遮断されている。しかしこの集積構造では、分離溝が増えることで、発電に寄与しない接続部の面積が増加すること及び、レーザ加工装置が余計に必要になるという問題が生じる。   An example of an integrated structure for preventing side leakage is disclosed in Patent Document 3. In this integrated structure, a separation groove for removing the lower photoelectric conversion cell and the transparent intermediate layer is provided between the lower electrode separation groove 7 and the connection groove 8 in FIG. 1 so that the intermediate layer passes from the power generation unit to the connection groove 8. Current path is interrupted. However, in this integrated structure, there are problems that the number of separation grooves increases, the area of the connection portion that does not contribute to power generation increases, and an additional laser processing apparatus is required.

特開2001−274430号公報JP 2001-274430 A

特開2002−118273号公報JP 2002-118273 A

特開2002−261308号公報JP 2002-261308 A

本発明はこのような事情に鑑みてなされたものであり、接続部による無効面積の増大やレーザ加工工程の増加を招く分離溝の増加をすることなくサイドリークを防止した集積型太陽電池を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an integrated solar cell that prevents side leakage without increasing the number of separation grooves that increase the ineffective area due to the connecting portion and increase the laser processing step. The purpose is to do.

上記課題を解決するために、本発明の集積型太陽電池は、絶縁基板と、複数の発電ユニットとを有し、少なくとも1つの発電ユニットが、前記絶縁基板上に設けられた下部電極と、該下部電極上に積層された複数の光電変換セルと、前記複数の光電変換セルのうちの2つの光電変換セルの間に設けられた透明中間層と、前記複数の光電変換セルの上に設けられた上部電極とを有し、前記上部電極が隣接する他の発電ユニットの下部電極と電気的に接触し、前記透明中間層は、酸化物とされ、前記透明中間層の比抵抗が20Ω・cm以上100Ω・cm以下であり、前記透明中間層は分割されることなく前記上部電極と接触する。 In order to solve the above problems, an integrated solar cell of the present invention has an insulating substrate and a plurality of power generation units, and at least one power generation unit is provided on the insulating substrate, Provided on a plurality of photoelectric conversion cells stacked on the lower electrode, a transparent intermediate layer provided between two of the plurality of photoelectric conversion cells, and the plurality of photoelectric conversion cells. And the upper electrode is in electrical contact with the lower electrode of another adjacent power generation unit, the transparent intermediate layer is an oxide, and the specific resistance of the transparent intermediate layer is 20 Ω · cm. Ri der inclusive 100 [Omega · cm, the transparent intermediate layer you contact with the upper electrode without being divided.

前記下部電極は透明酸化物膜を有し、前記上部電極は金属膜を有し、前記複数の光電変換セルはPINジャンクションを有する非晶質シリコン膜を有してなる光電変換セルと、該非晶質シリコン膜を有する光電変換セルより上方に位置しPINジャンクションを有する結晶質シリコン膜を有してなる光電変換セルとを含むことが好ましい。   The lower electrode has a transparent oxide film, the upper electrode has a metal film, and the plurality of photoelectric conversion cells have an amorphous silicon film having a PIN junction, and the amorphous It is preferable to include a photoelectric conversion cell including a crystalline silicon film having a PIN junction located above a photoelectric conversion cell having a crystalline silicon film.

前記少なくとも1つの発電ユニットは、前記下部電極と隣接する他の発電ユニットの下部電極とを分離する下部電極分離部と、前記上部電極と隣接する他の発電ユニットの下部電極とを電気的に接続する接続部と、前記上部電極と隣接する他の発電ユニットの上部電極とを分離する上部電極分離部とを有し、前記少なくとも1つの発電ユニットと前記隣接する他の発電ユニットとが直列接続される。   The at least one power generation unit electrically connects a lower electrode separation unit that separates the lower electrode from a lower electrode of another power generation unit adjacent to the lower electrode, and a lower electrode of another power generation unit adjacent to the upper electrode. And at least one power generation unit and the adjacent other power generation unit are connected in series with each other and an upper electrode separation portion that separates an upper electrode of the other power generation unit adjacent to the upper electrode. The

前記下部電極分離部は、前記複数の発電ユニットに共通に形成された下部電極用の層の一部を除去して形成された下部電極分離溝でよい。
前記接続部は、前記少なくとも1つの発電ユニットの複数の光電変換セルおよび透明中間層と前記隣接する他の発電ユニットの複数の光電変換セルおよび透明中間層とを分離するように、前記複数の発電ユニットに共通に形成された複数の光電変換セル用の層と透明中間層用の層とを有してなる積層膜の一部を除去して形成された接続溝と、該接続溝に延在する上部電極の一部と、前記接続溝に延在し前記上部電極の一部と電気的に接続する前記隣接する他の発電ユニットの下部電極の一部とによって構成することができる。
前記上部電極分離部は、前記複数の発電ユニットに共通に形成された上部電極用の層の一部を除去して形成された上部電極分離溝でよい。
The lower electrode separation part may be a lower electrode separation groove formed by removing a part of a lower electrode layer formed in common to the plurality of power generation units.
The connecting portion is configured to separate the plurality of photoelectric conversion cells and transparent intermediate layers of the at least one power generation unit from the plurality of photoelectric conversion cells and transparent intermediate layers of the other adjacent power generation units. A connection groove formed by removing a part of a laminated film having a plurality of layers for photoelectric conversion cells and a layer for a transparent intermediate layer formed in common in the unit, and extending to the connection groove And a part of the lower electrode of the other adjacent power generation unit that extends in the connection groove and is electrically connected to the part of the upper electrode.
The upper electrode separation part may be an upper electrode separation groove formed by removing a part of the upper electrode layer formed in common to the plurality of power generation units.

前記透明中間層は、酸化亜鉛(ZnO)、酸化錫(SnO)、酸化インジウム錫(ITO)、銅アルミニウム酸化物(CuAlO)、酸化チタン(TiO)、酸化珪素(SiO)、酸化ジルコニウム(ZrO)、酸化アルミニウム(Al)、および酸化ガリウム(Ga)からなる群より選ばれる少なくとも1つを含む材料で形成できる。 The transparent intermediate layer includes zinc oxide (ZnO), tin oxide (SnO 2 ), indium tin oxide (ITO), copper aluminum oxide (CuAlO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), oxide It can be formed of a material containing at least one selected from the group consisting of zirconium (ZrO 2 ), aluminum oxide (Al 2 O 3 ), and gallium oxide (Ga 2 O 3 ).

本発明の集積型太陽電池は、前記複数の光電変換セルが2つの光電変換セルである集積型タンデム太陽電池であってもよく、あるいは前記複数の光電変換セルが3つの光電変換セルである集積型トリプル太陽電池であってもよい。   The integrated solar cell of the present invention may be an integrated tandem solar cell in which the plurality of photoelectric conversion cells are two photoelectric conversion cells, or an integration in which the plurality of photoelectric conversion cells are three photoelectric conversion cells. A type triple solar cell may be used.

本発明の集積型太陽電池は、絶縁基板上に下部電極用の層を形成する工程と、前記下部電極用の層の一部を除去して下部電極分離溝を形成し、該下部電極分離溝によって分離された複数の下部電極を形成する工程と、前記複数の下部電極および下部電極分離溝の上に、光電変換セル用の複数の層および該複数の層のうちの2つの層の間に介在する透明中間層用の層を含む積層体を形成する工程と、前記下部電極分離溝の近傍において前記積層体の一部を除去して接続溝を形成し、該接続溝によって分離され、各々が複数の光電変換セルと、前記複数の光電変換セルのうちの2つの光電変換セルの間に設けられた透明中間層とを有する複数の積層膜を、前記複数の下部電極の上にそれぞれ形成する工程であって、前記接続溝の底部に、隣接する下部電極の一部を露出させる工程と、前記複数の積層膜、接続溝、および露出した下部電極の上に、上部電極用の層を形成する工程と、前記接続溝の近傍であって該接続溝に一部が露出している下部電極の上方において、前記上部電極用の層の一部を除去して上部電極分離溝を形成し、該上部電極分離溝により分離された複数の上部電極を前記複数の積層膜の上にそれぞれ形成する工程とを含む方法で製造され、前記透明中間層用の層は比抵抗が20Ω・cm以上100Ω・cm以下の透明酸化物材料で形成され、前記積層体を形成する工程は、前記透明中間層用の層を分割する処理を含まない。 The integrated solar cell of the present invention includes a step of forming a lower electrode layer on an insulating substrate, a part of the lower electrode layer is removed to form a lower electrode separation groove, and the lower electrode separation groove Forming a plurality of lower electrodes separated by a plurality of layers, and a plurality of layers for photoelectric conversion cells and two of the plurality of layers on the plurality of lower electrodes and the lower electrode separation grooves A step of forming a laminated body including a layer for an intermediate transparent intermediate layer, and removing a part of the laminated body in the vicinity of the lower electrode separation groove to form a connection groove, separated by the connection groove, Forming a plurality of laminated films each having a plurality of photoelectric conversion cells and a transparent intermediate layer provided between two of the plurality of photoelectric conversion cells on the plurality of lower electrodes Adjacent to the bottom of the connection groove A step of exposing a part of the partial electrode, a step of forming a layer for the upper electrode on the plurality of laminated films, the connection groove, and the exposed lower electrode, and the connection in the vicinity of the connection groove Above the lower electrode partially exposed in the groove, a part of the upper electrode layer is removed to form an upper electrode separation groove, and a plurality of upper electrodes separated by the upper electrode separation groove are formed. wherein the plurality of produced by the process comprising the steps of forming on each of the laminated films, a layer for the transparent intermediate layer has a specific resistance is formed below the transparent oxide material 20 [Omega · cm or more 100 [Omega · cm, the laminate The step of forming a body does not include a process of dividing the layer for the transparent intermediate layer.

前記下部電極用の層が透明酸化物を用いて形成することができる。
前記上部電極用の層は金属材料を用いて形成することができる。
前記光電変換セル用の複数の層はPINジャンクションを有する非晶質シリコンの層と、該非晶質シリコンの層より上方に位置しPINジャンクションを有する結晶質シリコンの層とを含んでもよい。
The lower electrode layer may be formed using a transparent oxide.
The upper electrode layer can be formed using a metal material.
The plurality of layers for the photoelectric conversion cell may include an amorphous silicon layer having a PIN junction and a crystalline silicon layer positioned above the amorphous silicon layer and having a PIN junction.

前記中間層用の層を形成する前記透明材料は、酸化亜鉛(ZnO)、酸化錫(SnO)、酸化インジウム錫(ITO)、銅アルミニウム酸化物(CuAlO)、酸化チタン(TiO)、酸化珪素(SiO)、酸化ジルコニウム(ZrO)、酸化アルミニウム(Al)、および酸化ガリウム(Ga)からなる群より選ばれる少なくとも1つを含む材料が好ましい。 The transparent material forming the layer for the intermediate layer includes zinc oxide (ZnO), tin oxide (SnO 2 ), indium tin oxide (ITO), copper aluminum oxide (CuAlO 2 ), titanium oxide (TiO 2 ), A material containing at least one selected from the group consisting of silicon oxide (SiO 2 ), zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), and gallium oxide (Ga 2 O 3 ) is preferable.

集積型タンデム太陽電池を製造する場合は、前記光電変換セル用の層を2層形成すればよい。   When an integrated tandem solar cell is manufactured, two layers for the photoelectric conversion cell may be formed.

集積型トリプル太陽電池を製造する場合は、前記光電変換セル用の層を3層形成すればよい。   When an integrated triple solar cell is manufactured, three layers for the photoelectric conversion cell may be formed.

本発明の集積型太陽電池は、透明中間層の単膜比抵抗が20Ω・cm以上100Ω・cm以下であるので、集積構造におけるサイドリークの影響が小さくなり、効率、FF、開放電圧が良好となる。   In the integrated solar cell of the present invention, the single film specific resistance of the transparent intermediate layer is 20 Ω · cm or more and 100 Ω · cm or less, so that the influence of side leakage in the integrated structure is reduced, and the efficiency, FF, and open circuit voltage are good. Become.

高抵抗の透明中間層を使用することで、サイドリークの影響が無視できるほど小さくなるので、透明中間層を分割することなく、下部電極分離溝と、接続溝と、上部電極分離溝とによって発電ユニットが直列接続される従来のモジュール構造を使用できる。そのため、本発明の集積型太陽電池は、分離溝を増やすことによる接続部の無効面積増加がなく、さらにレーザ加工工程の増加がないので低コストで製造できる。   By using a high-resistance transparent intermediate layer, the influence of side leakage is negligibly small, so power generation is achieved with the lower electrode separation groove, connection groove, and upper electrode separation groove without dividing the transparent intermediate layer. A conventional module structure in which the units are connected in series can be used. Therefore, the integrated solar cell of the present invention can be manufactured at a low cost because there is no increase in the invalid area of the connection portion due to the increase in the number of separation grooves, and there is no increase in the laser processing step.

以下に、本発明の集積型太陽電池にかかる実施形態について、図面を参照して説明する。   Embodiments of the integrated solar cell of the present invention will be described below with reference to the drawings.

図1は集積型タンデム太陽電池の一例を示す断面図である。この集積型タンデム太陽電池は、従来の集積型タンデム太陽電池の構造を示していると同時に、本発明の集積型太陽電池の実施形態の構造も示している。この集積型タンデム太陽電池は、スーパーストレート型構造を有し、ガラスからなる絶縁基板1上に、SnOなどの透明電極からなる下部電極2、PINジャンクションを有するa−Si(アモルファスシリコン)からなる下部光電変換セル3(この場合トップセル)、光透過性と光反射性を有する金属酸化物からなる透明中間層4、PINジャンクションを有する結晶質Siからなる上部光電変換セル5(この場合ボトムセル)を、Agなどの金属材料からなる上部電極6を順次積層した発電ユニットを複数有する薄膜シリコンタンデム太陽電池である。複数の下部電極2は下部電極分離溝7によって分離されている。この下部電極分離溝7の近傍には、隣接する発電ユニットから延在する下部電極2の一部を底面とする接続溝8が、上部光電変換セル5、透明中間層4および下部光電変換セル3の一部を除去して形成されている。上部電極6は接続溝8の内面に接するように延在し、接続溝8の底面に露出した下部電極2と電気的に接続している。上部電極6は接続溝8の近傍において、上部電極分離溝9によって隣接する発電ユニットの上部電極と分離されている。隣接する発電ユニットどうしは、下部電極分離溝7および上部電極分離溝9によって分離されているが、接続溝8において一方の発電ユニットの上部電極6と隣接する他方の発電ユニットの下部電極2が電気的に接続されており、直列接続を形成している。 FIG. 1 is a cross-sectional view showing an example of an integrated tandem solar cell. This integrated tandem solar cell shows the structure of a conventional integrated tandem solar cell, and also shows the structure of an embodiment of the integrated solar cell of the present invention. This integrated tandem solar cell has a super straight type structure, and is made of an insulating substrate 1 made of glass, a lower electrode 2 made of a transparent electrode such as SnO 2, and a-Si (amorphous silicon) having a PIN junction. Lower photoelectric conversion cell 3 (in this case, top cell), transparent intermediate layer 4 made of a light-transmitting and light-reflective metal oxide, and upper photoelectric conversion cell 5 made of crystalline Si having a PIN junction (in this case, a bottom cell) Is a thin film silicon tandem solar cell having a plurality of power generation units in which upper electrodes 6 made of a metal material such as Ag are sequentially laminated. The plurality of lower electrodes 2 are separated by a lower electrode separation groove 7. In the vicinity of the lower electrode separation groove 7, a connection groove 8 having a part of the lower electrode 2 extending from an adjacent power generation unit as a bottom surface is provided with the upper photoelectric conversion cell 5, the transparent intermediate layer 4, and the lower photoelectric conversion cell 3. It is formed by removing a part of. The upper electrode 6 extends so as to contact the inner surface of the connection groove 8 and is electrically connected to the lower electrode 2 exposed on the bottom surface of the connection groove 8. The upper electrode 6 is separated from the upper electrode of the adjacent power generation unit by the upper electrode separation groove 9 in the vicinity of the connection groove 8. Adjacent power generation units are separated by a lower electrode separation groove 7 and an upper electrode separation groove 9, but the lower electrode 2 of the other power generation unit adjacent to the upper electrode 6 of one power generation unit is electrically connected to the connection groove 8. Connected in series, forming a series connection.

(比較例1)
a−Si下部光電変換セル(トップセル)3の膜厚が約300nm、透明中間層4の膜厚が20nm、結晶質Si上部光電変換セル(ボトムセル)5の膜厚が約2μmであり、透明中間層4が単膜比抵抗(抵抗率)1×10−2Ω・cmのAlドープZnO膜である、図1に示した構造の集積型タンデム太陽電池を作成した。透明中間層4は、RFスパッタリング法でArガスのみを供給して形成した。スパッタターゲットのAl含有濃度は2wt%とした。単膜比抵抗とは絶縁性であるガラス基板上に透明中間層のみを形成して計測したときの比抵抗を言う。
(Comparative Example 1)
The film thickness of the a-Si lower photoelectric conversion cell (top cell) 3 is about 300 nm, the film thickness of the transparent intermediate layer 4 is 20 nm, the film thickness of the crystalline Si upper photoelectric conversion cell (bottom cell) 5 is about 2 μm, and is transparent. An integrated tandem solar cell having the structure shown in FIG. 1 was prepared in which the intermediate layer 4 was an Al-doped ZnO film having a single film specific resistance (resistivity) of 1 × 10 −2 Ω · cm. The transparent intermediate layer 4 was formed by supplying only Ar gas by RF sputtering. The Al 2 O 3 content concentration of the sputtering target was 2 wt%. Single film specific resistance refers to specific resistance measured when only a transparent intermediate layer is formed on an insulating glass substrate.

下部電極(透明電極)2を分離する下部電極分離溝7は、レーザスクライブにより形成した。本比較例では、波長1064nmのYAGレーザを使用した。また接続溝(Si分離溝)8及び上部電極(Ag電極)6を分離する上部電極分離溝9の形成には波長532nmのYVOレーザを使用した。 The lower electrode separation groove 7 for separating the lower electrode (transparent electrode) 2 was formed by laser scribing. In this comparative example, a YAG laser having a wavelength of 1064 nm was used. A YVO 4 laser with a wavelength of 532 nm was used to form the upper electrode separation groove 9 for separating the connection groove (Si separation groove) 8 and the upper electrode (Ag electrode) 6.

こうして得られた集積型タンデム太陽電池の発電特性は、AM1.5、光強度100mW/cmの照射下で、効率5.3%、FF(形状因子)0.58、1段当たりの開放電圧(Voc)0.85Vであった。 The power generation characteristics of the integrated tandem solar cell thus obtained are as follows: under irradiation of AM 1.5 and light intensity of 100 mW / cm 2 , efficiency 5.3%, FF (form factor) 0.58, open circuit voltage per stage (Voc) 0.85V.

(比較例2)
透明中間層4として、単膜比抵抗が約1×10−1Ω・cmのAlドープZnO膜を使用して図1に示した構造の集積型タンデム太陽電池を作成した。比較例1と同じスパッタターゲットを用いArガスに0.05vol%の酸素を加えて透明中間層(膜厚20nm)を形成した。その他の材料、製造条件、各層の厚さは比較例1と同様とした。こうして得られた集積型タンデム太陽電池の発電特性は、効率6.62%、FF0.55、1段当たりの開放電圧1.12Vであった。
(Comparative Example 2)
An integrated tandem solar cell having the structure shown in FIG. 1 was prepared using an Al-doped ZnO film having a single film specific resistance of about 1 × 10 −1 Ω · cm as the transparent intermediate layer 4. Using the same sputter target as in Comparative Example 1, 0.05 vol% oxygen was added to Ar gas to form a transparent intermediate layer (film thickness 20 nm). Other materials, manufacturing conditions, and thicknesses of the respective layers were the same as those in Comparative Example 1. The power generation characteristics of the integrated tandem solar cell thus obtained were an efficiency of 6.62%, FF 0.55, and an open circuit voltage of 1.12 V per stage.

以上のように透明中間層4の比抵抗が0.1Ω・cm以下の場合、すなわち従来の集積型タンデム太陽電池ではサイドリークの影響が大きいことがわかった。比抵抗が0.1Ω・cmであってもサイドリークが大きい原因として、透明酸化物からなる透明中間層4の酸素が、透明中間層4を挟むa−Si下部光電変換セル(トップセル)3のn型層や結晶質Si上部光電変換セル(ボトムセル)5のp型層へ拡散しキャリア濃度が増えるために、透明中間層4の積層状態での比抵抗が単膜状態での比抵抗より下がるためと考えられた。そこで積層状態での比抵抗を評価したところ、単膜比抵抗の約1/20にまで減少することが判明した。   As described above, it has been found that when the specific resistance of the transparent intermediate layer 4 is 0.1 Ω · cm or less, that is, in the conventional integrated tandem solar cell, the influence of side leakage is large. Even if the specific resistance is 0.1 Ω · cm, the cause of the large side leak is that the oxygen in the transparent intermediate layer 4 made of a transparent oxide is a-Si lower photoelectric conversion cell (top cell) 3 sandwiching the transparent intermediate layer 4 The n-type layer and the p-type layer of the crystalline Si upper photoelectric conversion cell (bottom cell) 5 are diffused to increase the carrier concentration, so that the specific resistance in the laminated state of the transparent intermediate layer 4 is higher than the specific resistance in the single film state. It was thought to be lowered. Therefore, when the specific resistance in the laminated state was evaluated, it was found that the specific resistance decreased to about 1/20 of the single film specific resistance.

(比較例3)
透明中間層4として、単膜比抵抗が約1Ω・cmのAlドープZnO膜を使用して図1に示した構造の集積型タンデム太陽電池を作成した。比較例1と同じスパッタターゲットを用いArガスに0.67vol%の酸素を加えて透明中間層(膜厚20nm)を形成した。その他の材料、製造条件、各層の厚さは比較例1と同様とした。こうして得られた集積型タンデム太陽電池の発電特性は、効率8.62%、FF0.61、1段当たりの開放電圧1.32Vであった。
(Comparative Example 3)
An integrated tandem solar cell having the structure shown in FIG. 1 was prepared using an Al-doped ZnO film having a single film resistivity of about 1 Ω · cm as the transparent intermediate layer 4. Using the same sputter target as in Comparative Example 1, 0.67 vol% oxygen was added to Ar gas to form a transparent intermediate layer (film thickness 20 nm). Other materials, manufacturing conditions, and thicknesses of the respective layers were the same as those in Comparative Example 1. The power generation characteristics of the integrated tandem solar cell thus obtained were an efficiency of 8.62%, FF 0.61, and an open circuit voltage of 1.32 V per stage.

(比較例4)
透明中間層4として、単膜比抵抗が5Ω・cmのGaドープZnO膜を使用して図1に示した構造の集積型タンデム太陽電池を作成した。スパッタターゲットにGa含有濃度が0.5wt%を用いArガスに0.67vol%の酸素を加えて透明中間層(膜厚20nm)を形成した。その他の材料、製造条件、各層の厚さは比較例1と同様とした。こうして得られた集積型タンデム太陽電池の発電特性は、効率9.35%、FF0.65、1段当たりの開放電圧1.34Vであった。
(Comparative Example 4)
An integrated tandem solar cell having the structure shown in FIG. 1 was prepared using a Ga-doped ZnO film having a single film resistivity of 5 Ω · cm as the transparent intermediate layer 4. A transparent intermediate layer (film thickness 20 nm) was formed by adding 0.57 wt% Ga to the sputtering target and adding 0.67 vol% oxygen to Ar gas. Other materials, manufacturing conditions, and thicknesses of the respective layers were the same as those in Comparative Example 1. The power generation characteristics of the integrated tandem solar cell thus obtained were an efficiency of 9.35%, FF 0.65, and an open circuit voltage of 1.34 V per stage.

(実施例1)
透明中間層4として、単膜比抵抗が20Ω・cmのGaドープZnO膜を使用して図1に示した構造の集積型タンデム太陽電池を作成した。比較例4と同じスパッタターゲットを用いArガスに5vol%の酸素を加えて透明中間層(膜厚20nm)を形成した。その他の材料、製造条件、各層の厚さは比較例1と同様とした。こうして得られた集積型タンデム太陽電池の発電特性は、効率9.54%、FF0.66、1段当たりの開放電圧1.35Vであった。
Example 1
An integrated tandem solar cell having the structure shown in FIG. 1 was prepared using a Ga-doped ZnO film having a single film resistivity of 20 Ω · cm as the transparent intermediate layer 4. Using the same sputter target as in Comparative Example 4, 5 vol% oxygen was added to Ar gas to form a transparent intermediate layer (film thickness 20 nm). Other materials, manufacturing conditions, and thicknesses of the respective layers were the same as those in Comparative Example 1. The power generation characteristics of the integrated tandem solar cell thus obtained were an efficiency of 9.54%, FF 0.66, and an open circuit voltage of 1.35 V per stage.

(実施例2)
透明中間層4として、単膜比抵抗が100Ω・cmのGaドープZnO膜を使用して図1に示した構造の集積型タンデム太陽電池を作成した。比較例4と同じスパッタターゲットを用いArガスに10vol%の酸素を加えて透明中間層(膜厚20nm)を形成した。その他の材料、製造条件、各層の厚さは比較例1と同様とした。こうして得られた集積型タンデム太陽電池の発電特性は、効率9.59%、FF0.66、1段当たりの開放電圧1.35Vであった。
(Example 2)
An integrated tandem solar cell having the structure shown in FIG. 1 was prepared using a Ga-doped ZnO film having a single film resistivity of 100 Ω · cm as the transparent intermediate layer 4. Using the same sputter target as in Comparative Example 4, 10 vol% oxygen was added to Ar gas to form a transparent intermediate layer (film thickness 20 nm). Other materials, manufacturing conditions, and thicknesses of the respective layers were the same as those in Comparative Example 1. The power generation characteristics of the integrated tandem solar cell thus obtained were an efficiency of 9.59%, FF 0.66, and an open circuit voltage of 1.35 V per stage.

(比較例5)
透明中間層4として、単膜比抵抗が200Ω・cmのGaドープZnO膜を使用して図1に示した構造の集積型タンデム太陽電池を作成した。比較例4と同じスパッタターゲットを用いArガスに15vol%の酸素を加えて透明中間層(膜厚20nm)を形成した。その他の材料、製造条件、各層の厚さは比較例1と同様とした。こうして得られた集積型タンデム太陽電池の発電特性は、効率8.80%、FF0.615、1段当たりの開放電圧1.33Vであり、透明中間層4の単膜比抵抗100Ω・cmである実施例2の集積型タンデム太陽電池より効率が低下した。
(Comparative Example 5)
An integrated tandem solar cell having the structure shown in FIG. 1 was prepared using a Ga-doped ZnO film having a single film resistivity of 200 Ω · cm as the transparent intermediate layer 4. Using the same sputter target as in Comparative Example 4, 15 vol% oxygen was added to Ar gas to form a transparent intermediate layer (film thickness 20 nm). Other materials, manufacturing conditions, and thicknesses of the respective layers were the same as those in Comparative Example 1. The power generation characteristics of the integrated tandem solar cell thus obtained are an efficiency of 8.80%, an FF of 0.615, an open circuit voltage of 1.33 V per stage, and a single film specific resistance of the transparent intermediate layer 4 of 100 Ω · cm. The efficiency was lower than that of the integrated tandem solar cell of Example 2.

以上述べた比較例、実施例について、透明中間層の単膜比抵抗と発電効率、FF及び1段当たりの開放電圧の関係を図2に示す。   FIG. 2 shows the relationship between the single film specific resistance of the transparent intermediate layer, the power generation efficiency, the FF, and the open circuit voltage per stage for the comparative examples and examples described above.

なお、本実施形態では、スーパーストレート型構造について述べたが、サブストレート型構造でも本発明を適用可能である。また光電変換セルは薄膜シリコンに限らず、薄膜化合物を用いた太陽電池にも本発明は適用可能である。さらに、2種類の光電変換セルが接合された集積型タンデム太陽電池だけでなく、3種類の光電変換セルが接合された集積型トリプル太陽電池にも本発明は適用可能である。   In this embodiment, the super straight type structure has been described. However, the present invention can also be applied to a substrate type structure. The photoelectric conversion cell is not limited to thin film silicon, and the present invention can be applied to a solar battery using a thin film compound. Furthermore, the present invention can be applied not only to an integrated tandem solar cell in which two types of photoelectric conversion cells are bonded, but also to an integrated triple solar cell in which three types of photoelectric conversion cells are bonded.

集積型タンデム太陽電池を示す断面図である。It is sectional drawing which shows an integrated type tandem solar cell. 本発明の実施例および比較例による集積型タンデム太陽電池における透明中間層の単膜比抵抗と発電効率、FF及び1段当たりの開放電圧の関係を示す図である。It is a figure which shows the relationship of the single film specific resistance of a transparent intermediate | middle layer and power generation efficiency, FF, and the open circuit voltage per stage in the integrated tandem solar cell by the Example and comparative example of this invention.

1 絶縁基板
2 下部電極
3 下部光電変換セル
4 透明中間層
5 上部光電変換セル
6 上部電極
7 下部電極分離溝
8 接続溝
9 上部電極分離溝
1 Insulating substrate 2 Lower electrode 3 Lower photoelectric conversion cell 4 Transparent intermediate layer 5 Upper photoelectric conversion cell 6 Upper electrode 7 Lower electrode separation groove 8 Connection groove 9 Upper electrode separation groove

Claims (12)

絶縁基板と、
複数の発電ユニットとを有し、
少なくとも1つの発電ユニットが、前記絶縁基板上に設けられた下部電極と、該下部電極上に積層された複数の光電変換セルと、前記複数の光電変換セルのうちの2つの光電変換セルの間に設けられた透明中間層と、前記複数の光電変換セルの上に設けられた上部電極とを有し、
前記上部電極が隣接する他の発電ユニットの下部電極と電気的に接触した集積型太陽電池であって、
前記透明中間層は、酸化物とされ、
前記透明中間層の比抵抗が20Ω・cm以上100Ω・cm以下であり、
前記透明中間層が分割されることなく前記上部電極と接触する集積型太陽電池。
An insulating substrate;
A plurality of power generation units,
At least one power generation unit is provided between a lower electrode provided on the insulating substrate, a plurality of photoelectric conversion cells stacked on the lower electrode, and two of the plurality of photoelectric conversion cells. A transparent intermediate layer provided on the upper electrode, and an upper electrode provided on the plurality of photoelectric conversion cells,
An integrated solar cell in which the upper electrode is in electrical contact with the lower electrode of another power generation unit adjacent thereto,
The transparent intermediate layer is an oxide,
Ri resistivity der less 20 [Omega · cm or more 100 [Omega · cm of the transparent intermediate layer,
An integrated solar cell in contact with the upper electrode without dividing the transparent intermediate layer .
前記下部電極が透明酸化物膜を有し、
前記上部電極が金属膜を有し、
前記複数の光電変換セルが、PINジャンクションを有する非晶質シリコン膜を有してなる光電変換セルと、該非晶質シリコン膜を有する光電変換セルより上方に位置しPINジャンクションを有する結晶質シリコン膜を有してなる光電変換セルとを含む、
請求項1に記載の集積型太陽電池。
The lower electrode has a transparent oxide film;
The upper electrode has a metal film;
The photoelectric conversion cell in which the plurality of photoelectric conversion cells have an amorphous silicon film having a PIN junction, and a crystalline silicon film having a PIN junction located above the photoelectric conversion cell having the amorphous silicon film A photoelectric conversion cell comprising
The integrated solar cell according to claim 1 .
前記少なくとも1つの発電ユニットが、前記下部電極と隣接する他の発電ユニットの下部電極とを分離する下部電極分離部と、前記上部電極と隣接する他の発電ユニットの下部電極とを電気的に接続する接続部と、前記上部電極と隣接する他の発電ユニットの上部電極とを分離する上部電極分離部とを有し、前記少なくとも1つの発電ユニットと前記隣接する他の発電ユニットとが直列接続された請求項1または2に記載の集積型太陽電池。 The at least one power generation unit electrically connects a lower electrode separation part that separates the lower electrode from a lower electrode of another power generation unit adjacent to the lower electrode, and a lower electrode of another power generation unit adjacent to the upper electrode. And at least one power generation unit and the adjacent other power generation unit are connected in series with each other and an upper electrode separation portion that separates an upper electrode of the other power generation unit adjacent to the upper electrode. The integrated solar cell according to claim 1 or 2 . 前記下部電極分離部が、前記複数の発電ユニットに共通に形成された下部電極用の層の一部を除去して形成された下部電極分離溝であり、
前記接続部が、前記少なくとも1つの発電ユニットの複数の光電変換セルおよび透明中間層と前記隣接する他の発電ユニットの複数の光電変換セルおよび透明中間層とを分離するように、前記複数の発電ユニットに共通に形成された複数の光電変換セル用の層と透明中間層用の層とを有してなる積層膜の一部を除去して形成された接続溝と、該接続溝に延在する上部電極の一部と、前記接続に延在し前記上部電極の一部と電気的に接続する前記隣接する他の発電ユニットの下部電極の一部とを含んでなり、
前記上部電極分離部が、前記複数の発電ユニットに共通に形成された上部電極用の層の一部を除去して形成された上部電極分離溝である、
請求項3に記載の集積型太陽電池。
The lower electrode separation part is a lower electrode separation groove formed by removing a part of a lower electrode layer formed in common to the plurality of power generation units;
The plurality of power generation units so that the connection part separates the plurality of photoelectric conversion cells and the transparent intermediate layer of the at least one power generation unit from the plurality of photoelectric conversion cells and the transparent intermediate layer of the other adjacent power generation unit. A connection groove formed by removing a part of a laminated film having a plurality of layers for photoelectric conversion cells and a layer for a transparent intermediate layer formed in common in the unit, and extending to the connection groove A part of the upper electrode, and a part of the lower electrode of the other adjacent power generation unit that extends in the connection groove and is electrically connected to the part of the upper electrode,
The upper electrode separation part is an upper electrode separation groove formed by removing a part of the upper electrode layer formed in common to the plurality of power generation units.
The integrated solar cell according to claim 3 .
前記透明中間層が、酸化亜鉛(ZnO)、酸化錫(SnO)、酸化インジウム錫(ITO)、銅アルミニウム酸化物(CuAlO)、酸化チタン(TiO)、酸化珪素(SiO)、酸化ジルコニウム(ZrO)、酸化アルミニウム(Al)、および酸化ガリウム(Ga)からなる群より選ばれる少なくとも1つを含む、請求項1ないしのいずれか一項記載の集積型太陽電池。 The transparent intermediate layer is made of zinc oxide (ZnO), tin oxide (SnO 2 ), indium tin oxide (ITO), copper aluminum oxide (CuAlO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), oxide The integration according to any one of claims 1 to 4 , comprising at least one selected from the group consisting of zirconium (ZrO 2 ), aluminum oxide (Al 2 O 3 ), and gallium oxide (Ga 2 O 3 ). Type solar cell. 前記複数の光電変換セルが2つの光電変換セルである、請求項1ないしのいずれか一項記載の集積型太陽電池。 The integrated solar cell according to any one of claims 1 to 5 , wherein the plurality of photoelectric conversion cells are two photoelectric conversion cells. 前記複数の光電変換セルが3つの光電変換セルである、請求項1ないしのいずれか一項記載の集積型太陽電池。 The integrated solar cell according to any one of claims 1 to 5 , wherein the plurality of photoelectric conversion cells are three photoelectric conversion cells. 絶縁基板上に下部電極用の層を形成する工程と、
前記下部電極用の層の一部を除去して下部電極分離溝を形成し、該下部電極分離溝によって分離された複数の下部電極を形成する工程と、
前記複数の下部電極および下部電極分離溝の上に、光電変換セル用の複数の層および該複数の層のうちの2つの層の間に介在する透明中間層用の層を含む積層体を形成する工程と、
前記下部電極分離溝の近傍において前記積層体の一部を除去して接続溝を形成し、該接続溝によって分離され、各々が複数の光電変換セルと、前記複数の光電変換セルのうちの2つの光電変換セルの間に設けられた透明中間層とを有する複数の積層膜を、前記複数の下部電極の上にそれぞれ形成する工程であって、前記接続溝の底部に、隣接する下部電極の一部を露出させる工程と、
前記複数の積層膜、接続溝、および露出した下部電極の上に、上部電極用の層を形成する工程と、
前記接続溝の近傍であって該接続溝に一部が露出している下部電極の上方において、前記上部電極用の層の一部を除去して上部電極分離溝を形成し、該上部電極分離溝により分離された複数の上部電極を前記複数の積層膜の上にそれぞれ形成する工程
とを含む集積型太陽電池の製造方法であって、
比抵抗が20Ω・cm以上100Ω・cm以下の透明酸化物材料で前記透明中間層用の層を形成し、
前記積層体を形成する工程において、前記透明中間層用の層を分割する処理を含まない集積型太陽電池の製造方法。
Forming a layer for the lower electrode on the insulating substrate;
Removing a part of the lower electrode layer to form a lower electrode separation groove, and forming a plurality of lower electrodes separated by the lower electrode separation groove;
A laminated body including a plurality of layers for photoelectric conversion cells and a layer for a transparent intermediate layer interposed between two of the plurality of layers is formed on the plurality of lower electrodes and the lower electrode separation grooves. And a process of
In the vicinity of the lower electrode separation groove, a part of the stacked body is removed to form a connection groove, which is separated by the connection groove, each of which is a plurality of photoelectric conversion cells and two of the plurality of photoelectric conversion cells Forming a plurality of laminated films each having a transparent intermediate layer provided between two photoelectric conversion cells on each of the plurality of lower electrodes, the bottom of the connection groove, A step of exposing a portion;
Forming a layer for an upper electrode on the plurality of laminated films, the connection groove, and the exposed lower electrode;
An upper electrode separation groove is formed by removing a part of the upper electrode layer in the vicinity of the connection groove and above the lower electrode partially exposed in the connection groove. Forming a plurality of upper electrodes separated by grooves on the plurality of stacked films, respectively, and a method of manufacturing an integrated solar cell,
Forming a layer for the transparent intermediate layer with a transparent oxide material having a specific resistance of 20 Ω · cm to 100 Ω · cm ,
The manufacturing method of the integrated solar cell which does not include the process which divides | segments the layer for said transparent intermediate | middle layers in the process of forming the said laminated body .
前記下部電極用の層が透明酸化物を用いて形成され、
前記上部電極用の層が金属材料を用いて形成され、
前記光電変換セル用の複数の層がPINジャンクションを有する非晶質シリコンの層と、該非晶質シリコンの層より上方に位置しPINジャンクションを有する結晶質シリコンの層とを含む
請求項8に記載の集積型太陽電池の製造方法。
The lower electrode layer is formed using a transparent oxide;
The upper electrode layer is formed using a metal material,
Claim 8 in which a plurality of layers for the photoelectric conversion cell includes a layer of amorphous silicon having a PIN junction, and a layer of crystalline silicon having a PIN junction positioned above the layer of amorphous silicon Manufacturing method of the integrated solar cell.
前記透明材料が酸化亜鉛(ZnO)、酸化錫(SnO)、酸化インジウム錫(ITO)、銅アルミニウム酸化物(CuAlO)、酸化チタン(TiO)、酸化珪素(SiO)、酸化ジルコニウム(ZrO)、酸化アルミニウム(Al)、および酸化ガリウム(Ga)からなる群より選ばれる少なくとも1つを含む、請求項8または9に記載の集積型太陽電池の製造方法。 The transparent material is zinc oxide (ZnO), tin oxide (SnO 2 ), indium tin oxide (ITO), copper aluminum oxide (CuAlO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), zirconium oxide ( The method for producing an integrated solar cell according to claim 8 or 9 , comprising at least one selected from the group consisting of ZrO 2 ), aluminum oxide (Al 2 O 3 ), and gallium oxide (Ga 2 O 3 ). 前記光電変換セル用の層を2層形成する請求項8ないし10のいずれか一項に記載の集積型太陽電池の製造方法。 The method for manufacturing an integrated solar cell according to any one of claims 8 to 10 , wherein two layers for the photoelectric conversion cell are formed. 前記光電変換セル用の層を3層形成する請求項8ないし10のいずれか一項に記載の集積型太陽電池の製造方法。 The method for manufacturing an integrated solar cell according to any one of claims 8 to 10 , wherein three layers for the photoelectric conversion cell are formed.
JP2004138121A 2004-05-07 2004-05-07 Integrated solar cell and method of manufacturing integrated solar cell Expired - Fee Related JP4568531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004138121A JP4568531B2 (en) 2004-05-07 2004-05-07 Integrated solar cell and method of manufacturing integrated solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004138121A JP4568531B2 (en) 2004-05-07 2004-05-07 Integrated solar cell and method of manufacturing integrated solar cell

Publications (2)

Publication Number Publication Date
JP2005322707A JP2005322707A (en) 2005-11-17
JP4568531B2 true JP4568531B2 (en) 2010-10-27

Family

ID=35469769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004138121A Expired - Fee Related JP4568531B2 (en) 2004-05-07 2004-05-07 Integrated solar cell and method of manufacturing integrated solar cell

Country Status (1)

Country Link
JP (1) JP4568531B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101176543B1 (en) * 2006-03-10 2012-08-28 삼성전자주식회사 Resistance Random Memory Device
JP2007258537A (en) * 2006-03-24 2007-10-04 Mitsubishi Heavy Ind Ltd Photoelectric conversion device and its manufacturing method
US20100200052A1 (en) * 2007-09-18 2010-08-12 Mitsubishi Heavy Industries, Ltd. Photovoltaic device and process for producing same
CN101790796A (en) * 2007-09-19 2010-07-28 株式会社爱发科 Solar battery manufacturing method
JP5030745B2 (en) * 2007-11-29 2012-09-19 三菱重工業株式会社 Method for manufacturing photoelectric conversion device
JP2009289817A (en) * 2008-05-27 2009-12-10 Mitsubishi Electric Corp Photoelectric conversion device and method of manufacturing the same
JP4671002B2 (en) * 2008-05-30 2011-04-13 三菱電機株式会社 Photoelectric conversion device
JP2010140935A (en) * 2008-12-09 2010-06-24 Sanyo Electric Co Ltd Photoelectromotive force device, and method of manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157483A (en) * 1986-12-22 1988-06-30 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPH11261087A (en) * 1998-03-13 1999-09-24 Canon Inc Photovoltaic element
JP2000228516A (en) * 1999-02-08 2000-08-15 Tdk Corp Semiconductor laminated thin film, electronic device and diode
JP2001007363A (en) * 1999-06-18 2001-01-12 Nippon Sheet Glass Co Ltd Glass fitted with transparent electrode for solar cell
JP2001274430A (en) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd Thin film photoelectric converter
JP4083396B2 (en) * 2000-07-10 2008-04-30 独立行政法人科学技術振興機構 Ultraviolet transparent conductive film and manufacturing method thereof
JP2002222972A (en) * 2001-01-29 2002-08-09 Sharp Corp Laminated solar battery
JP4241446B2 (en) * 2003-03-26 2009-03-18 キヤノン株式会社 Multilayer photovoltaic device

Also Published As

Publication number Publication date
JP2005322707A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
JP5147818B2 (en) Substrate for photoelectric conversion device
US20100065115A1 (en) Solar cell module and solar cell module manufacturing method
US8362354B2 (en) Photovoltaic apparatus and method of manufacturing the same
US20080236661A1 (en) Solar cell
US20120000506A1 (en) Photovoltaic module and method of manufacturing the same
WO2008026581A1 (en) Solar battery module
US8658883B2 (en) Solar cell module and method for manufacturing the same
JP4568531B2 (en) Integrated solar cell and method of manufacturing integrated solar cell
JP4975528B2 (en) Integrated solar cell
JP2007266096A (en) Solar cell and its manufacturing method
KR20120012325A (en) Solar cell apparatus and method of fabricating the same
JP2010067752A (en) Photovoltaic device, and method for manufacturing the same
JP2011124474A (en) Multi-junction solar cell, solar cell module equipped with multi-junction solar cell, and method of manufacturing multi-junction solar cell
KR101550927B1 (en) Solar cell and method of fabircating the same
WO2011030729A1 (en) Solar cell module
KR20120119807A (en) Solar cell
JP2013149697A (en) Integrated soar cell manufacturing method
KR101502208B1 (en) Solar cell array and thin-film solar module and production method therefor
KR101055019B1 (en) Photovoltaic device and its manufacturing method
KR20120096339A (en) Thin-film solar cell module and fabrication method thereof
KR101349429B1 (en) Photovoltaic apparatus
WO2010067702A1 (en) Thin-film solar cell and method for manufacturing same
US20110308569A1 (en) Multi-terminal solar panel
KR20190141447A (en) Thin-film solar module and method for manufacturing the same
TWI543383B (en) Buried electrode solar cells, production methods, and multi - face Solar module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees