JP2007266096A - Solar cell and its manufacturing method - Google Patents

Solar cell and its manufacturing method Download PDF

Info

Publication number
JP2007266096A
JP2007266096A JP2006085932A JP2006085932A JP2007266096A JP 2007266096 A JP2007266096 A JP 2007266096A JP 2006085932 A JP2006085932 A JP 2006085932A JP 2006085932 A JP2006085932 A JP 2006085932A JP 2007266096 A JP2007266096 A JP 2007266096A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
solar cell
conversion layers
region
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006085932A
Other languages
Japanese (ja)
Inventor
Toshiya Watanabe
俊哉 渡辺
Tomotsugu Sakai
智嗣 坂井
Yoji Nakano
要治 中野
Masayuki Kureya
真之 呉屋
Yasuyuki Kobayashi
靖之 小林
Nobuki Yamashita
信樹 山下
Koji Satake
宏次 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006085932A priority Critical patent/JP2007266096A/en
Publication of JP2007266096A publication Critical patent/JP2007266096A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell preventing a side leakage without forming an isolation trench increasing an ineffective area by a connecting section between photoelectric conversion layers and increasing a laser machining process. <P>SOLUTION: The solar cell has a power generation unit with at least two layers of the laminated photoelectric conversion layers 4 and 8 and intermediate regions 15 and 25 being interposed between the two layers of the photoelectric conversion layers 4 and 8 and electrically and optically connecting two layers of these photoelectric conversion layers. In the solar cell, the intermediate regions contain small regions 16 and 26 electrically dispersed discontinuously in the extension direction of two layers of the photoelectric conversion layers. Such a solar cell is provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数の光電変換層が積層された多接合型の太陽電池及びその製造方法並びに 複数の光電変換層が積層された多接合型の光電変換セルが複数接続された集積型太陽電池に関する。   The present invention relates to a multijunction solar cell in which a plurality of photoelectric conversion layers are stacked, a manufacturing method thereof, and an integrated solar cell in which a plurality of multijunction photoelectric conversion cells in which a plurality of photoelectric conversion layers are stacked are connected. .

絶縁基板上に下部電極、シリコン等の半導体からなる単一の光電変換層からなる光電変換セル及び上部電極を順次形成した発電ユニットを備えたいわゆるシングルセルの太陽電池が知られている。このシングルセルとして形成された太陽電池は、半導体のバンドギャップより低いエネルギーをもつ長波長の光が半導体に吸収されずに透過または反射してしまうという欠点を有する。またバンドギャップよりエネルギーの大きい短波長の光は吸収され発電に寄与するが、バンドギャップより過剰なエネルギーは熱となり利用されない。そこで太陽電池の高効率化のために、バンドギャップの異なる半導体からなる光電変換層を複数重ねて用いる方法がある。このように複数の光電変換層を重ねて用いた太陽電池には、吸収波長帯域が異なる光電変換層を2段重ねたタンデム太陽電池、3段重ねたトリプル太陽電池がある。前記タンデム太陽電池としては、太陽光入射側であるトップセルにa−Si(アモルファスシリコン)、裏面側のボトムセルに結晶質Siまたはa−SiGe(アモルファスシリコンゲルマニウム)を用いた薄膜シリコンタンデム太陽電池、またトップセルにCuGaSe、ボトムセルにCuInGa1−xSeを用いた薄膜化合物タンデム太陽電池等が知られている。またトリプル太陽電池としては、トップセルにa−SiC(アモルファスシリコンカーバイド)、トップセルとボトムセルの間に設けられたミドルセルにa−Si、ボトムセルにa−SiGeを用いた薄膜シリコントリプル太陽電池等が知られている。トップセルとしてのa−Siとボトムセルとしての結晶質Si(例えば非晶質相が混在する微結晶シリコン)を用いたタンデム太陽電池を例にとると、太陽光入射側であるa−Siが短波長の光を吸収し、吸収されなかった長波長の光を結晶質Siが吸収する。トップセルとボトムセルは電気的に直列であるため同じ電流量が両セルに流れるが、発生電流が小さいa−Siによってタンデム太陽電池の電流が決まってしまう。a−Siの膜厚を大きくし光吸収量を増やすことで電流を大きくできるが、光劣化が大きくなってしまうという問題がある。そこで、a−Siで吸収しきれずに透過してしまう短波長の光を、透明中間層でa−Si膜側に反射させて光路を長くし吸収させることで、a−Siの膜厚を大きくしないで、発生電流を大きくすることができる。 A so-called single cell solar cell is known that includes a power generation unit in which a lower electrode, a photoelectric conversion cell made of a single photoelectric conversion layer made of a semiconductor such as silicon, and an upper electrode are sequentially formed on an insulating substrate. This solar cell formed as a single cell has a drawback that long wavelength light having energy lower than the band gap of the semiconductor is transmitted or reflected without being absorbed by the semiconductor. In addition, short-wavelength light having energy larger than the band gap is absorbed and contributes to power generation, but excess energy beyond the band gap becomes heat and is not used. Therefore, there is a method of using a plurality of photoelectric conversion layers made of semiconductors having different band gaps in order to increase the efficiency of the solar cell. As described above, solar cells using a plurality of stacked photoelectric conversion layers include a tandem solar cell in which two photoelectric conversion layers having different absorption wavelength bands are stacked, and a triple solar cell in which three layers are stacked. As the tandem solar cell, a thin-film silicon tandem solar cell using a-Si (amorphous silicon) for the top cell on the sunlight incident side and crystalline Si or a-SiGe (amorphous silicon germanium) for the bottom cell on the back surface side, A thin film compound tandem solar cell using CuGaSe 2 for the top cell and CuIn x Ga 1-x Se 2 for the bottom cell is also known. As the triple solar cell, a thin-film silicon triple solar cell using a-SiC (amorphous silicon carbide) for the top cell, a-Si for the middle cell provided between the top cell and the bottom cell, and a-SiGe for the bottom cell, etc. Are known. Taking a tandem solar cell using a-Si as a top cell and crystalline Si (for example, microcrystalline silicon in which an amorphous phase is mixed) as a bottom cell as an example, a-Si on the sunlight incident side is short. Crystalline Si absorbs light of a wavelength and absorbs light of a long wavelength that is not absorbed. Since the top cell and the bottom cell are electrically in series, the same amount of current flows through both cells, but the current of the tandem solar cell is determined by a-Si, which has a small generated current. Although the current can be increased by increasing the film thickness of a-Si and increasing the amount of light absorption, there is a problem that the light deterioration increases. Therefore, the light having a short wavelength that cannot be absorbed by a-Si is transmitted and reflected by the transparent intermediate layer to the a-Si film side to make the optical path longer and absorbed, thereby increasing the film thickness of a-Si. The generated current can be increased.

この透明中間層は、太陽電池の光入射側にある下部電極または上部電極に用いられる透明電極と同じ、酸化亜鉛(ZnO)、酸化錫(SnO)、酸化インジウム錫(ITO)などの金属酸化物が主成分であり、一般に低抵抗膜である。透明金属酸化物の導電率は、酸素欠損量やドーピング元素含有量によって変化する性質がある。 This transparent intermediate layer is the same as the transparent electrode used for the lower electrode or the upper electrode on the light incident side of the solar cell, such as zinc oxide (ZnO), tin oxide (SnO 2 ), and indium tin oxide (ITO). An object is a main component and is generally a low resistance film. The conductivity of the transparent metal oxide has the property of changing depending on the oxygen deficiency and doping element content.

透明電極の比抵抗は低いもので約5×10−4Ω・cm程度であるが、裏面電極に用いられる金属膜の比抵抗より2桁程大きい。そのため、セルで発生した電流が透明電極を流れる間に電力損失が生じてしまう。それは基板面積が大きくなる程顕著となり、外部へ取り出せる電力を減少させるため、損失を小さくする集積構造が知られている。図3はこのような集積構造を有する集積型太陽電池の概略部分断面図を示したものである。この集積型太陽電池において、複数個の太陽電池(発電ユニット)が1枚の基板上に作成され、直列接続されている。 The specific resistance of the transparent electrode is low, about 5 × 10 −4 Ω · cm, but about two orders of magnitude higher than the specific resistance of the metal film used for the back electrode. Therefore, power loss occurs while the current generated in the cell flows through the transparent electrode. This is more noticeable as the substrate area becomes larger, and an integrated structure is known that reduces the loss in order to reduce the power that can be extracted to the outside. FIG. 3 is a schematic partial cross-sectional view of an integrated solar cell having such an integrated structure. In this integrated solar cell, a plurality of solar cells (power generation units) are formed on one substrate and connected in series.

絶縁基板51上に下部電極52、下部光電変換層53、透明中間層54、上部光電変換層55、上部電極56が積層膜として形成されており、これら積層膜が発電膜を構成する。光入射側にある下部電極52または上部電極56には、透明電極が用いられる。この発電膜は下部電極分離溝57及び上部電極分離溝59によって複数の発電ユニットに分割されている。さらに隣り合う発電ユニットの間で、一方の発電ユニットの下部電極52と他方の発電ユニットの上部電極56がそれぞれ延在して、接続溝58で電気的に接触することでそれぞれの発電ユニットが直列接続されている。これは、発電膜を分割し1つの発電ユニットの面積を小さくすることで、透明電極に流れる電流量を減らし、直列化で電圧を高めることで、損失を抑えるものである。なお上記分離溝や接続溝は、直列接続方向に垂直方向(紙面に垂直方向)に延在するように、レーザスクライブによって形成される。   A lower electrode 52, a lower photoelectric conversion layer 53, a transparent intermediate layer 54, an upper photoelectric conversion layer 55, and an upper electrode 56 are formed as a laminated film on the insulating substrate 51, and these laminated films constitute a power generation film. A transparent electrode is used for the lower electrode 52 or the upper electrode 56 on the light incident side. The power generation film is divided into a plurality of power generation units by a lower electrode separation groove 57 and an upper electrode separation groove 59. Further, between the power generation units adjacent to each other, the lower electrode 52 of one power generation unit and the upper electrode 56 of the other power generation unit respectively extend and come into electrical contact with each other through the connection groove 58 so that the respective power generation units are connected in series. It is connected. This is to reduce the amount of current flowing through the transparent electrode by dividing the power generation film and reducing the area of one power generation unit, and by increasing the voltage by serialization, the loss is suppressed. The separation grooves and connection grooves are formed by laser scribing so as to extend in a direction perpendicular to the series connection direction (a direction perpendicular to the paper surface).

太陽電池には、図3の下側から太陽光が入射するスーパーストレート型と、図の上側から太陽光が入射するサブストレート型がある。スーパーストレート型太陽電池は、ガラス等の透明な基板51と、下部電極52として用いられる透明電極と、下部光電変換層53として用いられる短波長域を吸収するトップセルと、上部光電変換層55として用いられる長波長域を吸収するボトムセルと、上部電極56として用いられる金属膜からなる裏面電極とで構成される。またサブストレート型太陽電池では、基板1が透明である必要はないのでガラス以外に金属や高分子フィルムも使用される。サブストレート型太陽電池は、基板51と、下部電極52として用いられる金属膜からなる裏面電極と、下部光電変換層53として用いられる長波長域を吸収するボトムセルと、上部光電変換層55として用いられる短波長域を吸収するトップセルと、上部電極56として用いられる透明電極とで構成される。   The solar cell includes a super straight type in which sunlight enters from the lower side of FIG. 3 and a substrate type in which sunlight enters from the upper side of the figure. The super straight type solar cell includes a transparent substrate 51 such as glass, a transparent electrode used as the lower electrode 52, a top cell that absorbs a short wavelength region used as the lower photoelectric conversion layer 53, and an upper photoelectric conversion layer 55. A bottom cell that absorbs the long wavelength region used and a back electrode made of a metal film used as the upper electrode 56 are configured. In the substrate type solar cell, since the substrate 1 does not need to be transparent, a metal or a polymer film is also used in addition to glass. The substrate type solar cell is used as a substrate 51, a back electrode made of a metal film used as the lower electrode 52, a bottom cell that absorbs a long wavelength region used as the lower photoelectric conversion layer 53, and an upper photoelectric conversion layer 55. A top cell that absorbs a short wavelength region and a transparent electrode used as the upper electrode 56 are configured.

スーパーストレート型で透明中間層を挿入した集積型の薄膜シリコンタンデム太陽電池は、特許文献1、特許文献2などに開示されている。これらには、中間層の比抵抗値が規定されており、1×10−1Ω・cm以下がよいとされている。図3において、中間層58の比抵抗が低い場合、接続溝58を覆う上部電極56の延在部分が中間層54と接続していると、上部光電変換層55から下部光電変換層53に流れるべき電流の一部が図3の矢印60に示す方向に流れ、中間層を通って接続溝58を覆う上部電極56に漏れてしまう問題がある。この電流漏れは、膜に沿って横方向へ流れるため、サイドリークと呼ばれる。 An integrated thin-film silicon tandem solar cell in which a transparent intermediate layer is inserted is disclosed in Patent Document 1, Patent Document 2, and the like. In these, the specific resistance value of the intermediate layer is defined, and 1 × 10 −1 Ω · cm or less is considered good. In FIG. 3, when the specific resistance of the intermediate layer 58 is low, if the extended portion of the upper electrode 56 covering the connection groove 58 is connected to the intermediate layer 54, it flows from the upper photoelectric conversion layer 55 to the lower photoelectric conversion layer 53. There is a problem that a part of the current should flow in the direction indicated by the arrow 60 in FIG. 3 and leak to the upper electrode 56 covering the connection groove 58 through the intermediate layer. This current leakage is called side leakage because it flows laterally along the film.

サイドリークを防止する集積構造の一例が、特許文献3に開示されている。この集積構造では、図3の下部電極分離溝57と接続溝58の間に、下部光電変換層及び透明中間層を除去する分離溝61を設けることで、発電ユニットから接続溝58へ中間層58を通って流れる電流経路が遮断されている。しかしこの集積構造では、分離溝61が増えることで、上部光電変換層55及び下部光電変換層53の間において発電に寄与しない接続部の面積が増加すること及び、レーザ加工装置が余計に必要になるという問題が生じる。   An example of an integrated structure for preventing side leakage is disclosed in Patent Document 3. In this integrated structure, a separation groove 61 for removing the lower photoelectric conversion layer and the transparent intermediate layer is provided between the lower electrode separation groove 57 and the connection groove 58 in FIG. The current path flowing through is interrupted. However, in this integrated structure, an increase in the number of separation grooves 61 increases the area of the connection portion that does not contribute to power generation between the upper photoelectric conversion layer 55 and the lower photoelectric conversion layer 53, and an unnecessary laser processing apparatus is required. Problem arises.

特開2001−274430号公報JP 2001-274430 A 特開2002−118273号公報JP 2002-118273 A 特開2002−261308号公報JP 2002-261308 A

本発明はこのような事情に鑑みてなされたものであり、光電変換層間の接続部による無効面積の増大やレーザ加工工程の増加を招く分離溝を設けることなくサイドリークを防止した太陽電池を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a solar cell that prevents side leakage without providing a separation groove that causes an increase in ineffective area due to a connection portion between photoelectric conversion layers and an increase in laser processing steps. The purpose is to do.

上記課題を解決するために、本発明は、以下の手段を採用する。
すなわち、本発明にかかる太陽電池は、積層された少なくとも2層の光電変換層と、前記2層の光電変換層の間に介在し、これら2層の光電変換層を電気的及び光学的に接続する中間領域とを備えた発電ユニットを有し、前記中間領域が、前記2層の光電変換層の延在方向に電気的に不連続に分散した小領域を含んでいる。
この太陽電池は、中間領域において、2層の光電変換層の厚さ方向に電流が流れるが、層の延在方向には電流が流れないので、レーザ加工等により中間領域に分離溝を設けることなくサイドリークを防止することができる。
In order to solve the above problems, the present invention employs the following means.
That is, the solar cell according to the present invention is interposed between at least two stacked photoelectric conversion layers and the two photoelectric conversion layers, and the two photoelectric conversion layers are electrically and optically connected. The intermediate region includes small regions that are electrically discontinuously dispersed in the extending direction of the two photoelectric conversion layers.
In this solar cell, current flows in the thickness direction of the two photoelectric conversion layers in the intermediate region, but current does not flow in the extending direction of the layers. Therefore, a separation groove is provided in the intermediate region by laser processing or the like. Side leakage can be prevented.

前記本発明の太陽電池において、前記小領域は、前記2層の光電変換層の導電率より低い導電率を有する絶縁体としてもよい。あるいは、前記小領域は、前記2層の光電変換層の導電率より高い導電率を有する導電体としてもよい。なお、本発明の説明において、「絶縁体」及び「導電体」は、特定の導電率の範囲を有する材料を指す物ではなく、これら材料と電気的に接触している光電変換層の導電率と比べて、低い導電率を有する材料を「絶縁体」と呼び、高い導電率を有する材料を「導電体」と呼ぶ。   In the solar cell of the present invention, the small region may be an insulator having a conductivity lower than that of the two photoelectric conversion layers. Alternatively, the small region may be a conductor having a conductivity higher than that of the two photoelectric conversion layers. In the description of the present invention, “insulator” and “conductor” do not refer to materials having a specific conductivity range, but the conductivity of a photoelectric conversion layer in electrical contact with these materials. A material having a low conductivity is called an “insulator”, and a material having a high conductivity is called a “conductor”.

また、前記本発明の太陽電池において、前記中間領域は、導電体からなる小領域の周囲に、絶縁体を含む領域を有するものとしてもよい。
このように、前記小領域とその周囲の領域を別の材料で構成することにより、高い光散乱効果を得ることができる。
In the solar cell of the present invention, the intermediate region may have a region including an insulator around a small region made of a conductor.
Thus, a high light scattering effect can be obtained by configuring the small region and the surrounding region with different materials.

本発明の太陽電池は、絶縁基板と、この絶縁基板上に形成された前記発電ユニットとを備え、前記発電ユニットが、前記絶縁基板側に下部電極を有し、前記絶縁基板と反対側に上部電極を有する構成とすることができる。
また本発明の太陽電池は絶縁基板と、この該絶縁基板上に形成された複数の前記発電ユニットとを備え、前記複数の発電ユニットがそれぞれ、前記絶縁基板側に設けられた下部電極と、前記絶縁基板と反対側に設けられた上部電極とを有し、前記複数の発電ユニットのうちの少なくとも1つは、その上部電極が隣接する他の発電ユニットの下部電極と電気的に接続された構成とすることができる。
本発明の太陽電池は、中間領域において光電変換層の延在方向に電流が流れにくいので、発電ユニットの上部電極又は下部電極を他のユニットと電気的に接続するために発電ユニット側部に延在させても、中間領域の端部から上部電極又は下部電極にサイドリークが起きない。
The solar cell of the present invention includes an insulating substrate and the power generation unit formed on the insulating substrate, and the power generation unit has a lower electrode on the insulating substrate side and an upper portion on the opposite side to the insulating substrate. It can be set as the structure which has an electrode.
The solar cell of the present invention includes an insulating substrate and a plurality of the power generation units formed on the insulating substrate, and each of the plurality of power generation units is provided on the insulating substrate side, and An upper electrode provided on the opposite side of the insulating substrate, and at least one of the plurality of power generation units is configured such that the upper electrode is electrically connected to a lower electrode of another adjacent power generation unit It can be.
In the solar cell of the present invention, since current does not easily flow in the extending direction of the photoelectric conversion layer in the intermediate region, it extends to the side of the power generation unit in order to electrically connect the upper electrode or lower electrode of the power generation unit to other units. Even if it exists, side leak does not occur in the upper electrode or the lower electrode from the end of the intermediate region.

本発明に係る太陽電池の製造方法は、積層された少なくとも2層の光電変換層と、前記2層の光電変換層の間に介在し、これら2層の光電変換層を電気的及び光学的に接続する中間領域とを備えた発電ユニットを有する太陽電池の製造方法であって、前記2層の光電変換層のうちの第1の光電変換層を形成した後に、この第1の光電変換層上に、前記2層の光電変換層の導電率より低い導電率を有する絶縁体からなる小領域を分散的に形成する工程と、前記小領域が形成された面上に、前記2層の光電変換層のうちの第2の光電変換層を形成する工程とを有し、前記中間領域を、前記2層の光電変換層の延在方向に電気的に不連続に分散した小領域が形成された領域とする方法である。   The method for producing a solar cell according to the present invention includes at least two photoelectric conversion layers stacked and the two photoelectric conversion layers interposed between the two photoelectric conversion layers electrically and optically. A method for manufacturing a solar cell having a power generation unit including an intermediate region to be connected, and after forming a first photoelectric conversion layer of the two photoelectric conversion layers, on the first photoelectric conversion layer A step of dispersively forming small regions made of an insulator having a conductivity lower than that of the two photoelectric conversion layers, and the photoelectric conversion of the two layers on the surface where the small regions are formed. Forming a second photoelectric conversion layer among the layers, and forming a small region in which the intermediate region is electrically discontinuously dispersed in the extending direction of the two photoelectric conversion layers. It is a method to make an area.

あるいは、本発明に係る太陽電池の製造方法は、積層された少なくとも2層の光電変換層と、前記2層の光電変換層の間に介在し、これら2層の光電変換層を電気的及び光学的に接続する中間領域とを備えた発電ユニットを有する太陽電池の製造方法であって、前記2層の光電変換層のうちの第1の光電変換層を形成した後に、この第1の光電変換層上に、前記2層の光電変換層の導電率より高い導電率を有する導電体からなる小領域を分散的に形成する工程と、前記小領域が形成された面上に、前記2層の光電変換層のうちの第2の光電変換層を形成する工程とを有し、前記中間領域を、前記2層の光電変換層の延在方向に電気的に不連続に分散した小領域が形成された領域とする方法である。
上記いずれかの本発明の太陽電池の製造方法によれば、前記中間領域を、2層の光電変換層の延在方向に電気的に不連続に分散した小領域が形成された領域とすることにより、レーザ加工等により中間領域に分離溝を形成してサイドリークを防止する工程が不要なので、簡易にかつ低コストで太陽電池を製造することができる。
Alternatively, the method for manufacturing a solar cell according to the present invention is interposed between at least two stacked photoelectric conversion layers and the two photoelectric conversion layers, and the two photoelectric conversion layers are electrically and optically connected. A solar cell manufacturing method having a power generation unit with an intermediate region to be connected to the first photoelectric conversion layer after forming the first photoelectric conversion layer of the two photoelectric conversion layers. A step of dispersively forming a small region made of a conductor having a conductivity higher than that of the two photoelectric conversion layers on the layer; and a step of forming the two layers on the surface on which the small region is formed. Forming a second photoelectric conversion layer of the photoelectric conversion layer, and forming a small region in which the intermediate region is electrically discontinuously dispersed in the extending direction of the two photoelectric conversion layers It is a method to make it the area | region made.
According to any one of the solar cell manufacturing methods of the present invention, the intermediate region is a region in which small regions are formed that are electrically discontinuously dispersed in the extending direction of the two photoelectric conversion layers. Thus, a step of forming a separation groove in the intermediate region by laser processing or the like to prevent side leakage is unnecessary, and thus a solar cell can be manufactured easily and at low cost.

前記小領域を形成する工程が、前記絶縁体又は前記導電体からなる微粒子を分散媒中に分散してなる分散液を塗布する工程を含んでいてもよい。
また、前記小領域を形成する工程は、前記絶縁体又は前記導電体からなる層を前記第1の光電変換層上に形成し、次いで前記絶縁体又は前記導電体を溶解する溶剤により前記絶縁体又は前記導電体からなる前記層の一部を除去する工程を含んでいてもよい。
あるいは、前記小領域を形成する工程が、複数の不連続な開口パターンを有するマスクを介して前記第1の光電変換層上に前記小領域を形成する工程を含んでいてもよい。
これら小領域を形成する工程により、2層の光電変換層の延在方向に電気的に不連続に分散した小領域を、簡易な方法で形成することができる。
The step of forming the small region may include a step of applying a dispersion liquid in which fine particles made of the insulator or the conductor are dispersed in a dispersion medium.
In the step of forming the small region, the insulator or the conductor is formed on the first photoelectric conversion layer, and then the insulator or the conductor is dissolved with a solvent that dissolves the insulator. Alternatively, a step of removing a part of the layer made of the conductor may be included.
Alternatively, the step of forming the small region may include a step of forming the small region on the first photoelectric conversion layer through a mask having a plurality of discontinuous opening patterns.
By the process of forming these small regions, small regions that are electrically discontinuously dispersed in the extending direction of the two photoelectric conversion layers can be formed by a simple method.

本発明の太陽電池の製造方法において、前記小領域を前記導電体とする場合には、前記中間領域において、この小領域の周囲に、絶縁体を含む領域を形成する工程を設けてもよい。
この製造方法によれば、前記小領域及び前記絶縁体を含む領域がそれぞれ異なる材料から形成されるので、増強された光散乱効果を得ることができる。
In the solar cell manufacturing method of the present invention, when the small region is the conductor, a step of forming a region including an insulator around the small region in the intermediate region may be provided.
According to this manufacturing method, since the small region and the region including the insulator are formed from different materials, an enhanced light scattering effect can be obtained.

本発明によれば、光電変換層間の接続部による無効面積の増大やレーザ加工工程の増加を招く分離溝を設けることなくサイドリークを防止した太陽電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the solar cell which prevented the side leak without providing the isolation groove which causes the increase in an ineffective area by the connection part between photoelectric conversion layers, and the increase in a laser processing process can be provided.

以下に、本発明の太陽電池及びその製造方法にかかる実施形態について、図面を参照して説明する。
[第1の実施形態]
図1は、第1の実施形態に係る太陽電池を示す概略部分断面図である。この太陽電池は、透明絶縁性基板1上に、下部電極2、第1の光電変換層4、第2の光電変換層8、及び上部電極10が順次積層されて形成されている。この太陽電池は、前記透明絶縁性基板1側から入射した光のうちの短波長の光を前記第1の光電変換層4が吸収し、長波長の光を前記第2の光電変換層8が吸収して、それぞれ電流を発生するスーパーストレート型タンデム太陽電池である。この太陽電池はさらに、前記第1の光電変換層4及び第2の光電変換層8の間に、これら2層の光電変換層4,8を電気的及び光学的に接続する中間領域15を有している。
DESCRIPTION OF EMBODIMENTS Embodiments according to a solar cell and a manufacturing method thereof according to the present invention will be described below with reference to the drawings.
[First Embodiment]
FIG. 1 is a schematic partial cross-sectional view showing the solar cell according to the first embodiment. In this solar cell, a lower electrode 2, a first photoelectric conversion layer 4, a second photoelectric conversion layer 8, and an upper electrode 10 are sequentially stacked on a transparent insulating substrate 1. In this solar cell, the first photoelectric conversion layer 4 absorbs short-wavelength light out of light incident from the transparent insulating substrate 1 side, and the second photoelectric conversion layer 8 absorbs long-wavelength light. It is a super straight tandem solar cell that absorbs and generates current. This solar cell further has an intermediate region 15 between the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8 for electrically and optically connecting the two photoelectric conversion layers 4 and 8. is doing.

本実施形態の太陽電池の各構成要素は、中間領域15を除いて、通常のスーパーストレート型タンデム太陽電池の構成要素と同様に形成することができるが、本実施形態においては例えば以下のように構成される。
透明絶縁性基板1としては、光透過性を有する板状の絶縁材料が用いられ、例えば、白板ガラスが採用される。
下部電極2としては、光透過性を有する導電性の金属酸化物の薄膜からなる透明電極が用いられ、前記金属酸化物として、例えば、SnOが採用される。
第1の光電変換層4及び第2の光電変換層8は、いずれもpin接合又はnip接合を有するシリコン等の半導体層であり、例えば、第1の光電変換層4をアモルファスルシリコン(a−Si)、第2の光電変換層8を微結晶シリコン(μc−Si)とすることができる。
The constituent elements of the solar cell of the present embodiment can be formed in the same manner as the constituent elements of a normal super straight tandem solar cell except for the intermediate region 15, but in the present embodiment, for example, as follows: Composed.
As the transparent insulating substrate 1, a plate-like insulating material having light transmittance is used, and for example, white plate glass is adopted.
As the lower electrode 2, a transparent electrode made of a conductive metal oxide thin film having optical transparency is used. For example, SnO 2 is used as the metal oxide.
The first photoelectric conversion layer 4 and the second photoelectric conversion layer 8 are both semiconductor layers such as silicon having a pin junction or a nip junction. For example, the first photoelectric conversion layer 4 is made of amorphous silicon (a- Si) and the second photoelectric conversion layer 8 can be microcrystalline silicon (μc-Si).

上部電極10は、前記第2の光電変換層8上に形成された透明電極11と、この透明電極11に形成された裏面電極12とで構成される。透明電極11は、光透過性を有する導電性の金属酸化物の薄膜が用いられ、前記金属酸化物として、例えば、SnOが採用される。また、前記裏面電極12としては、Ag膜やAl膜等が採用される。 The upper electrode 10 includes a transparent electrode 11 formed on the second photoelectric conversion layer 8 and a back electrode 12 formed on the transparent electrode 11. The transparent electrode 11 is made of a conductive metal oxide thin film having optical transparency, and SnO 2 is used as the metal oxide, for example. Further, as the back electrode 12, an Ag film, an Al film, or the like is employed.

本実施形態において、中間領域15は、前記第1の光電変換層4及び第2の光電変換層8の間に不連続に分散した小領域16と、これら光電変換層4,8同士の界面とを有している。前記小領域16は、前記第1の光電変換層4及び第2の光電変換層8より低導電率の絶縁体微粒子より形成されている。
前記絶縁体微粒子としては、光透過性を有するものが好ましく、例えば、SiO、TiO、ZnOなどの金属酸化物微粒子や、MgF等の他の透明絶縁材料からなる微粒子を採用することができる。前記小領域16の1つは、1つの絶縁体微粒子で構成されていてもよく、あるいは前記絶縁体微粒子の集合体で構成されていてもよい。小領域16の大きさは特に限定されないが、小領域16で反射して第1の光電変換層4での発電に寄与する光と、小領域16及び光電変換層4,8同士の界面を通過して第2の光電変換層8での発電に寄与する光のバランスや、層の厚さ方向において電流の流れを阻害しないこと等を考慮して選択される。例えば、小領域16の厚さを0.01μm以上2μm以下とし、小領域16による第1の光電変換層4の被覆率を10%以上70%以下とすることができる。
In the present embodiment, the intermediate region 15 includes a small region 16 discontinuously dispersed between the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8, and an interface between the photoelectric conversion layers 4 and 8. have. The small region 16 is formed of insulating fine particles having a lower conductivity than the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8.
As the insulating fine particles, those having optical transparency are preferable. For example, metal oxide fine particles such as SiO 2 , TiO 2 and ZnO, and fine particles made of other transparent insulating materials such as MgF 2 may be adopted. it can. One of the small regions 16 may be composed of one insulating fine particle, or may be composed of an aggregate of the insulating fine particles. The size of the small region 16 is not particularly limited, but passes through the light reflected by the small region 16 and contributing to power generation in the first photoelectric conversion layer 4 and the interface between the small region 16 and the photoelectric conversion layers 4 and 8. Then, it is selected in consideration of the balance of light that contributes to power generation in the second photoelectric conversion layer 8, and the fact that current flow is not hindered in the layer thickness direction. For example, the thickness of the small region 16 can be 0.01 μm or more and 2 μm or less, and the coverage of the first photoelectric conversion layer 4 by the small region 16 can be 10% or more and 70% or less.

本実施形態の太陽電池は、前記下部電極2、第1の光電変換層4、中間領域15、第2の光電変換層8、及び上部電極10を1つの発電ユニットとし、複数の同様の発電ユニットを透明絶縁性基板1上に形成し、隣接する発電ユニット同士の上部電極10と下部電極2とを電気的に接続することにより前記複数の発電ユニットを直列に接続して、集積型太陽電池(モジュール)とすることもできる。   The solar cell of this embodiment uses the lower electrode 2, the first photoelectric conversion layer 4, the intermediate region 15, the second photoelectric conversion layer 8, and the upper electrode 10 as one power generation unit, and a plurality of similar power generation units. Is formed on the transparent insulating substrate 1, and the plurality of power generation units are connected in series by electrically connecting the upper electrode 10 and the lower electrode 2 of the adjacent power generation units, thereby obtaining an integrated solar cell ( Module).

本実施形態の太陽電池は、例えば以下のように製造される。
まず、透明絶縁性基板上に、常圧熱CVD法によりSnO膜等の透明導電膜を成膜し、下部電極2を形成する。次に下部電極2上に、プラズマCVD法により、アモルファスシリコン等からなるp層、i層、及びn層を、この順番又は逆順で成膜し、第1の光電変換層4を形成する。
次に、粒径0.01μm以上2μm以下の前記絶縁体微粒子を適当な分散媒中に分散した分散液を、スピンコート法により前記第1の光電変換層4上に塗布する。分散媒を乾燥除去することにより、第1の光電変換層4上に絶縁体微粒子からなる不連続に分散した小領域16が形成される。
The solar cell of this embodiment is manufactured as follows, for example.
First, a transparent conductive film such as a SnO 2 film is formed on a transparent insulating substrate by atmospheric pressure CVD to form the lower electrode 2. Next, a p-layer, an i-layer, and an n-layer made of amorphous silicon or the like are formed on the lower electrode 2 in this order or in reverse order by the plasma CVD method, thereby forming the first photoelectric conversion layer 4.
Next, a dispersion liquid in which the insulating fine particles having a particle size of 0.01 μm or more and 2 μm or less are dispersed in an appropriate dispersion medium is applied onto the first photoelectric conversion layer 4 by a spin coating method. By drying and removing the dispersion medium, discontinuously dispersed small regions 16 made of insulating fine particles are formed on the first photoelectric conversion layer 4.

次に、前記小領域16が形成された第1の光電変換層上に、プラズマCVD法により、微結晶シリコン等からなるp層、i層、及びn層を、この順番又は逆順で成膜し、第2の光電変換層8を形成する。この第2の光電変換層8上に、常圧熱CVD法によりSnO膜等の透明導電膜を成膜し、上部電極10の透明電極11を形成する。さらに透明電極11上にスパッタ法、真空蒸着法等によりAg膜等の金属薄膜を成膜し、裏面電極12を形成する。こうして、本実施形態の太陽電池が製造される。 Next, a p layer, an i layer, and an n layer made of microcrystalline silicon or the like are formed in this order or in reverse order on the first photoelectric conversion layer in which the small region 16 is formed by a plasma CVD method. Then, the second photoelectric conversion layer 8 is formed. A transparent conductive film such as a SnO 2 film is formed on the second photoelectric conversion layer 8 by atmospheric pressure CVD to form the transparent electrode 11 of the upper electrode 10. Further, a metal thin film such as an Ag film is formed on the transparent electrode 11 by a sputtering method, a vacuum deposition method, or the like, thereby forming the back electrode 12. Thus, the solar cell of this embodiment is manufactured.

本実施形態の太陽電池においては、従来の連続的な透明導電膜からなる中間層とは異なり、絶縁体からなる小領域16が不連続に分散した中間領域15を第1の光電変換層4及び第2の光電変換層8の間に形成したので、第1の光電変換層4及び第2の光電変換層8の厚さ方向に電流が流れるが、これらの層の延在方向には電流が流れにくい。従って、太陽電池を上記集積型太陽電池とし、上部電極10と下部電極2とを電気的に接続する部分が例えば発電ユニットの側部に形成される場合であっても、サイドリークが発生しない。また、光透過性の絶縁体からなる小領域16を第1の光電変換層4及び第2の光電変換層8の延在方向に分散させることにより、入射光の光散乱効果を増強し、光路長増大効果を得ることができる。従って、入射光を有効利用し、発電効率を高めることができる。また、サイドリークを防止するための分離溝を中間領域15に設ける必要がないので、第1の光電変換層4と第2の光電変換層8の接続部において発電に寄与しない部分の面積を抑えることにより、発電効率を高めることができる。   In the solar cell of this embodiment, unlike the conventional intermediate layer made of a transparent transparent conductive film, the intermediate region 15 in which the small regions 16 made of an insulator are discontinuously dispersed is formed in the first photoelectric conversion layer 4 and Since it was formed between the second photoelectric conversion layers 8, current flows in the thickness direction of the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8, but current flows in the extending direction of these layers. Difficult to flow. Therefore, even if the solar cell is the integrated solar cell and the portion that electrically connects the upper electrode 10 and the lower electrode 2 is formed, for example, on the side portion of the power generation unit, no side leak occurs. Further, by dispersing the small regions 16 made of a light-transmitting insulator in the extending direction of the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8, the light scattering effect of incident light is enhanced, and the optical path A long increase effect can be obtained. Therefore, it is possible to effectively use incident light and increase power generation efficiency. In addition, since it is not necessary to provide a separation groove for preventing side leakage in the intermediate region 15, the area of the connection portion between the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8 that does not contribute to power generation is suppressed. Thus, the power generation efficiency can be increased.

また、本実施形態の太陽電池の製造方法によれば、サイドリークを防止するために、レーザ加工等により中間領域15に分離溝を形成する工程が不要なので、より簡易にかつ低コストで太陽電池を製造することができる。   In addition, according to the method for manufacturing a solar cell of this embodiment, since a step of forming a separation groove in the intermediate region 15 by laser processing or the like is not required in order to prevent side leakage, the solar cell can be more easily performed at low cost. Can be manufactured.

[第1の実施形態の変形例]
第1の実施形態において、小領域16を前記第1の光電変換層4及び第2の光電変換層8より高導電率の導電体微粒子より形成してもよい。
前記導電体微粒子としては、光透過性を有するものが好ましく、例えば、ガリウム添加酸化亜鉛(GZO)や、酸化インジウムスズ(ITO)等の透明金属酸化物微粒子を採用することができる。本変形例において前記小領域16の1つは、1つの導電体微粒子で構成されていてもよく、あるいは前記導電体微粒子の集合体で構成されていてもよい。小領域16の大きさは特に限定されないが、小領域16で反射して第1の光電変換層4での発電に寄与する光と、小領域16及び光電変換層4,8同士の界面を通過して第2の光電変換層8での発電に寄与する光のバランスや、これら光電変換層4,8の延在方向において電流の流れを生じないこと等を考慮して選択される。例えば、小領域16の厚さを0.01μm以上2μm以下とし、小領域16による第1の光電変換層4の被覆率を10%以上70%以下とすることができる。
[Modification of First Embodiment]
In the first embodiment, the small region 16 may be formed of conductive fine particles having a higher conductivity than the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8.
As the conductive fine particles, those having optical transparency are preferable. For example, transparent metal oxide fine particles such as gallium-doped zinc oxide (GZO) and indium tin oxide (ITO) can be employed. In the present modification, one of the small regions 16 may be composed of one conductor fine particle, or may be composed of an aggregate of the conductor fine particles. The size of the small region 16 is not particularly limited, but passes through the light reflected by the small region 16 and contributing to power generation in the first photoelectric conversion layer 4 and the interface between the small region 16 and the photoelectric conversion layers 4 and 8. Thus, it is selected in consideration of the balance of light that contributes to power generation in the second photoelectric conversion layer 8 and the fact that no current flows in the extending direction of the photoelectric conversion layers 4 and 8. For example, the thickness of the small region 16 can be 0.01 μm or more and 2 μm or less, and the coverage of the first photoelectric conversion layer 4 by the small region 16 can be 10% or more and 70% or less.

本変形例の太陽電池の製造方法において、小領域16は、例えば次のように形成される。まず、粒径0.01μm以上2μm以下の前記導電体微粒子を適当な分散媒中に分散した分散液を、スピンコート法により前記第1の光電変換層4上に塗布する。分散媒を乾燥除去することにより、第1の光電変換層4上に導電体微粒子からなる不連続に分散した小領域16が形成される。   In the solar cell manufacturing method of the present modification, the small region 16 is formed as follows, for example. First, a dispersion liquid in which the conductive fine particles having a particle diameter of 0.01 μm to 2 μm are dispersed in a suitable dispersion medium is applied onto the first photoelectric conversion layer 4 by a spin coating method. By removing the dispersion medium by drying, small regions 16 that are discontinuously dispersed of the conductive fine particles are formed on the first photoelectric conversion layer 4.

本変形例の太陽電池においては、従来の連続的な透明導電膜からなる中間層とは異なり、導電体からなる小領域16が不連続に分散した中間領域15を第1の光電変換層4及び第2の光電変換層8の間に形成したので、第1の光電変換層4及び第2の光電変換層8の厚さ方向に電流が流れるが、これら光電変換層4,8の延在方向には電流が流れにくい。従って、太陽電池を上記集積型太陽電池とし、上部電極10と下部電極2とを電気的に接続する部分が例えば発電ユニットの側部に形成される場合であっても、サイドリークが発生しない。また、光透過性の導電体からなる小領域16を第1の光電変換層4及び第2の光電変換層8の延在方向に分散させることにより、入射光の光散乱効果を増強し、光路長増大効果を得ることができる。従って、入射光を有効利用し、発電効率を高めることができる。また、サイドリークを防止するための分離溝を中間領域15に設ける必要がないので、第1の光電変換層4と第2の光電変換層8の接続部において発電に寄与しない部分の面積を抑えることにより、発電効率を高めることができる。   In the solar cell of this modification, unlike the conventional intermediate layer made of a continuous transparent conductive film, the intermediate region 15 in which the small regions 16 made of a conductor are discontinuously dispersed is formed in the first photoelectric conversion layer 4 and Since it formed between the 2nd photoelectric converting layers 8, although an electric current flows through the thickness direction of the 1st photoelectric converting layer 4 and the 2nd photoelectric converting layer 8, the extension direction of these photoelectric converting layers 4 and 8 Current is difficult to flow through. Therefore, even if the solar cell is the integrated solar cell and the portion that electrically connects the upper electrode 10 and the lower electrode 2 is formed, for example, on the side portion of the power generation unit, no side leak occurs. Further, by dispersing the small regions 16 made of a light-transmitting conductor in the extending direction of the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8, the light scattering effect of incident light is enhanced, and the optical path A long increase effect can be obtained. Therefore, it is possible to effectively use incident light and increase power generation efficiency. In addition, since it is not necessary to provide a separation groove for preventing side leakage in the intermediate region 15, the area of the connection portion between the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8 that does not contribute to power generation is suppressed. Thus, the power generation efficiency can be increased.

また、本変形例の太陽電池の製造方法によれば、サイドリークを防止するために、レーザ加工等により中間領域15に分離溝を形成する工程が不要なので、より簡易にかつ低コストで太陽電池を製造することができる。   In addition, according to the method for manufacturing a solar cell of the present modification, a step of forming a separation groove in the intermediate region 15 by laser processing or the like is unnecessary in order to prevent side leakage, so that the solar cell can be more easily performed at low cost. Can be manufactured.

[第2の実施形態]
図2は、第2の実施形態に係る太陽電池を示す概略部分断面図である。本実施形態にかかる太陽電池において、中間領域25を除く他の構成は前記第1の実施形態と同様であるので、これらの説明は省略する。また、第1の実施形態と同様の構成については、同一の参照符号を用いて説明する。
本実施形態において、中間領域25は、前記第1の光電変換層4及び第2の光電変換層8の間に不連続に分散した小領域26と、これら小領域26の周囲を埋めるように形成された充填領域27とを有している。前記小領域16は、前記第1の光電変換層4及び第2の光電変換層8より高導電率の導電体材料より形成されている。また、前記充填領域27は、前記第1の光電変換層4及び第2の光電変換層8より低導電率の絶縁体材料より形成されている。
[Second Embodiment]
FIG. 2 is a schematic partial cross-sectional view showing a solar cell according to the second embodiment. In the solar cell according to the present embodiment, the configuration other than the intermediate region 25 is the same as that of the first embodiment, and thus description thereof is omitted. The same configuration as that of the first embodiment will be described using the same reference numerals.
In the present embodiment, the intermediate region 25 is formed to discontinuously disperse between the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8 and to fill the periphery of these small regions 26. Filled region 27. The small region 16 is made of a conductive material having a higher conductivity than the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8. The filling region 27 is formed of an insulator material having a lower conductivity than the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8.

前記導電体材料としては、光透過性を有するものが好ましく、例えば、ガリウム添加酸化亜鉛(GZO)や、酸化インジウムスズ(ITO)等の透明金属酸化物を採用することができる。前記絶縁体材料としては、光透過性を有するものが好ましく、例えば、SiO、TiO、ZnOなどの金属酸化物や、MgF等の他の透明絶縁材料を採用することができる。前記小領域26の1つは、1つの絶縁体微粒子で構成されていてもよく、あるいは前記絶縁体微粒子の集合体で構成されていてもよい。前記充填領域27は、前記絶縁体材料により一様に形成されていてもよく、あるいは絶縁体微粒子の集合体として形成されていてもよい。 As the conductor material, a material having optical transparency is preferable. For example, a transparent metal oxide such as gallium-doped zinc oxide (GZO) or indium tin oxide (ITO) can be employed. As the insulator material, a material having optical transparency is preferable. For example, a metal oxide such as SiO 2 , TiO 2 , or ZnO, or another transparent insulating material such as MgF 2 can be employed. One of the small regions 26 may be composed of one insulating fine particle, or may be composed of an aggregate of the insulating fine particles. The filling region 27 may be uniformly formed of the insulator material or may be formed as an aggregate of insulator fine particles.

小領域26及び充填領域27の大きさは特に限定されないが、これら領域で反射して第1の光電変換層4での発電に寄与する光と、これら領域を通過して第2の光電変換層8での発電に寄与する光のバランスや、層の厚さ方向において電流の流れを阻害しないこと等を考慮して選択される。例えば、小領域26及び充填領域27の厚さをいずれも0.01μm以上2μm以下とし、小領域26による第1の光電変換層4の被覆率を10%以上70%以下とすることができる。但し、本実施形態において、小領域26及び充填領域27のいずれも光透過性材料とした場合には、双方により光散乱効果が得られるので、小領域26及び充填領域27の厚さは、第1の実施形態の小領域16より薄くすることができる。   The sizes of the small region 26 and the filling region 27 are not particularly limited, but the light reflected by these regions and contributing to power generation in the first photoelectric conversion layer 4 and the second photoelectric conversion layer passing through these regions. 8 is selected in consideration of the balance of light that contributes to power generation at 8 and that the current flow is not hindered in the thickness direction of the layer. For example, the thickness of each of the small region 26 and the filling region 27 can be 0.01 μm or more and 2 μm or less, and the coverage of the first photoelectric conversion layer 4 by the small region 26 can be 10% or more and 70% or less. However, in this embodiment, when both the small region 26 and the filling region 27 are made of a light transmissive material, a light scattering effect can be obtained by both of them. It can be made thinner than the small region 16 of one embodiment.

本実施形態の太陽電池の製造方法において、中間領域25は次のように形成される。
まず、GZOやITO等の透明導電性金属酸化物材料をターゲット又は蒸着材料としてスパッタ法又はCVD法を行い、第1の光電変換層4上に導電体からなる小領域26を形成する。この際、小領域26に対応した不連続な開口パターンを有するマスクにより前記第1の光電変換層の表面を覆っておくことにより、導電体からなる不連続に分散した小領域26が形成される。
In the solar cell manufacturing method of the present embodiment, the intermediate region 25 is formed as follows.
First, a small region 26 made of a conductor is formed on the first photoelectric conversion layer 4 by performing a sputtering method or a CVD method using a transparent conductive metal oxide material such as GZO or ITO as a target or a vapor deposition material. At this time, the surface of the first photoelectric conversion layer is covered with a mask having a discontinuous opening pattern corresponding to the small region 26, thereby forming the discontinuously dispersed small regions 26 made of a conductor. .

次に、粒径0.01μm以上2μm以下の前記絶縁体の微粒子を適当な分散媒中に分散した分散液を、スピンコート法により、前記小領域26を形成した前記第1の光電変換層4上に塗布する。分散媒を乾燥除去することにより、小領域26の周囲に前記絶縁体微粒子からなる充填領域27が形成される。こうして、小領域26及び充填領域27を有する本実施形態の中間領域25が形成される。   Next, the first photoelectric conversion layer 4 in which the small regions 26 are formed by using a dispersion obtained by dispersing fine particles of the insulator having a particle diameter of 0.01 μm or more and 2 μm or less in an appropriate dispersion medium by spin coating. Apply on top. By drying and removing the dispersion medium, a filling region 27 made of the insulating fine particles is formed around the small region 26. Thus, the intermediate region 25 of the present embodiment having the small region 26 and the filling region 27 is formed.

本実施形態の太陽電池においては、従来の連続的な透明導電膜からなる中間層とは異なり、導電体からなる不連続に分散した小領域26と、これら小領域26の周囲に形成された絶縁体からなる充填領域27とを有する中間領域25を、第1の光電変換層4及び第2の光電変換層8の間に形成したので、第1の光電変換層4及び第2の光電変換層8の厚さ方向に電流が流れるが、これらの延在方向には電流が流れにくい。従って、太陽電池を上記集積型太陽電池とし、上部電極10と下部電極2とを電気的に接続する部分が例えば発電ユニットの側部に形成される場合であっても、サイドリークが発生しない。また、光透過性の導電体からなる小領域26を第1の光電変換層4及び第2の光電変換層8の延在方向に分散させ、その周囲を光透過性の絶縁体からなる充填領域27によって埋めることにより、入射光の光散乱効果を増強し、光路長増大効果を得ることができる。特に本実施形態においては、小領域26及び充填領域27がそれぞれ異なる材料から形成されるので、これらを光透過性材料とした場合にはそれぞれの光屈折率は異なったものとなり、第1の実施形態よりさらに増強された光散乱効果を得ることができる。従って、入射光を有効利用し、発電効率を高めることができる。また、サイドリークを防止するための分離溝を中間領域25に設ける必要がないので、第1の光電変換層4と第2の光電変換層8の接続部において発電に寄与しない部分の面積を抑えることにより、発電効率を高めることができる。   In the solar cell of this embodiment, unlike the conventional intermediate layer made of a transparent transparent conductive film, the discontinuously dispersed small regions 26 made of a conductor and the insulation formed around these small regions 26 Since the intermediate region 25 having the filling region 27 made of a body is formed between the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8, the first photoelectric conversion layer 4 and the second photoelectric conversion layer Although the current flows in the thickness direction of 8, the current hardly flows in the extending direction. Therefore, even if the solar cell is the integrated solar cell and the portion that electrically connects the upper electrode 10 and the lower electrode 2 is formed, for example, on the side portion of the power generation unit, no side leak occurs. Further, the small regions 26 made of a light-transmitting conductor are dispersed in the extending direction of the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8, and the surroundings are filled regions made of a light-transmitting insulator. By filling with 27, the light scattering effect of incident light can be enhanced, and the optical path length increasing effect can be obtained. In particular, in the present embodiment, since the small region 26 and the filling region 27 are formed of different materials, when they are made of a light-transmitting material, the respective light refractive indexes are different. A light scattering effect further enhanced than that of the form can be obtained. Therefore, it is possible to effectively use incident light and increase power generation efficiency. In addition, since it is not necessary to provide a separation groove for preventing side leakage in the intermediate region 25, the area of the connection portion between the first photoelectric conversion layer 4 and the second photoelectric conversion layer 8 that does not contribute to power generation is suppressed. Thus, the power generation efficiency can be increased.

また、本実施形態の太陽電池の製造方法によれば、サイドリークを防止するために、レーザ加工等により中間領域25に分離溝を形成する工程が不要なので、より簡易にかつ低コストで太陽電池を製造することができる。   In addition, according to the method for manufacturing a solar cell of this embodiment, since a step of forming a separation groove in the intermediate region 25 by laser processing or the like is not necessary in order to prevent side leakage, the solar cell can be more easily performed at low cost. Can be manufactured.

以上、本発明について第1の実施形態及び第2の実施形態により説明したが、本発明はこれらに限定されるものではない。
小領域16,26および充填領域27の形成方法は、上記実施形態で採用した方法に限定されず、スピンコート法、スプレー法、ディップ法、スパッタ法、CVD法等の各種成膜方法を採用することができる。また、第1の光電変換層4上に最初から小領域16,26を形成する必要はなく、例えばスパッタ法又はCVD法等により第1の光電変換層4上に導電膜又は絶縁膜を一様に成膜した後に、適当なエッチング剤を用いて、前記導電膜又は絶縁膜中の結晶粒等の溶解しにくい部分を残して他の部分を溶解除去してもよい。この場合は、エッチング剤に溶解されずに残った導電膜又は絶縁膜の部分が小領域16,26となる。この方法においては、液体のエッチング剤を用いるウエットエッチングに限らず、反応性イオンエッチング(RIE)等のドライエッチングを採用してもよい。
As mentioned above, although this invention was demonstrated by 1st Embodiment and 2nd Embodiment, this invention is not limited to these.
The formation method of the small regions 16 and 26 and the filling region 27 is not limited to the method adopted in the above embodiment, and various film forming methods such as a spin coating method, a spray method, a dipping method, a sputtering method, and a CVD method are adopted. be able to. Further, it is not necessary to form the small regions 16 and 26 on the first photoelectric conversion layer 4 from the beginning. For example, a conductive film or an insulating film is uniformly formed on the first photoelectric conversion layer 4 by sputtering or CVD. After forming the film, the other part may be dissolved and removed by using an appropriate etching agent while leaving the part of the conductive film or the insulating film that is difficult to dissolve, such as crystal grains. In this case, the portions of the conductive film or insulating film that remain without being dissolved in the etching agent become the small regions 16 and 26. In this method, not only wet etching using a liquid etching agent but dry etching such as reactive ion etching (RIE) may be employed.

また、上記実施形態においては、基板側から光が入射するスーパーストレート型太陽電池に本発明を適用した例について説明したが、本発明はこれに限定されず、基板と反対側から光が入射するサブストレート型太陽電池にも本発明を適用してもよい。この場合も、上記実施形態と同様の方法で、2層の光電変換層の間に中間領域を形成することができる。   Moreover, in the said embodiment, although the example which applied this invention to the super straight type solar cell in which light injects from a board | substrate side was demonstrated, this invention is not limited to this, Light injects from the opposite side to a board | substrate. The present invention may also be applied to a substrate type solar cell. Also in this case, an intermediate region can be formed between the two photoelectric conversion layers by the same method as in the above embodiment.

また、上記実施形態においては、第1の光電変換層4及び第2の光電変換層からなる2層の光電変換層を有するタンデム型の太陽電池に本発明を適用した例について説明したが、本発明はこれに限定されず、3層の光電変換層を有するトリプル型太陽電池等、多接合型太陽電池に適用することができる。この場合、少なくとも1組の隣接する2層の光電変換層の間に上記実施形態と同様の方法で中間領域を形成してもよく、あるいは全ての光電変換層間に上記実施形態と同様の方法で中間領域を形成してもよい。   Moreover, in the said embodiment, although the example which applied this invention to the tandem-type solar cell which has the two photoelectric converting layer which consists of the 1st photoelectric converting layer 4 and the 2nd photoelectric converting layer was demonstrated, this book The invention is not limited to this, and can be applied to a multi-junction solar cell such as a triple solar cell having three photoelectric conversion layers. In this case, an intermediate region may be formed between at least one pair of adjacent two photoelectric conversion layers by the same method as in the above embodiment, or between all the photoelectric conversion layers in the same manner as in the above embodiment. An intermediate region may be formed.

第1の実施形態に係る太陽電池を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the solar cell which concerns on 1st Embodiment. 第2の実施形態に係る太陽電池を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the solar cell which concerns on 2nd Embodiment. 従来の集積型太陽電池の例を示す概略部分断面図である。It is a general | schematic fragmentary sectional view which shows the example of the conventional integrated solar cell.

符号の説明Explanation of symbols

1 透明絶縁性基板
2 下部電極
4 第1の光電変換層
8 第2の光電変換層
10 上部電極
11 透明電極
12 裏面電極
15,25 中間領域
16,26 小領域
27 充填領域
DESCRIPTION OF SYMBOLS 1 Transparent insulating board | substrate 2 Lower electrode 4 1st photoelectric converting layer 8 2nd photoelectric converting layer 10 Upper electrode 11 Transparent electrode 12 Back surface electrodes 15, 25 Middle area | region 16, 26 Small area 27 Filling area | region

Claims (15)

積層された少なくとも2層の光電変換層と、
前記2層の光電変換層の間に介在し、該2層の光電変換層を電気的及び光学的に接続する中間領域とを備えた発電ユニットを有する太陽電池であって、
前記中間領域が、前記2層の光電変換層の延在方向に電気的に不連続に分散した小領域を含む太陽電池。
At least two photoelectric conversion layers stacked;
A solar cell having a power generation unit that is interposed between the two photoelectric conversion layers and includes an intermediate region that electrically and optically connects the two photoelectric conversion layers;
The solar cell, wherein the intermediate region includes small regions that are electrically discontinuously dispersed in the extending direction of the two photoelectric conversion layers.
前記小領域が、前記2層の光電変換層の導電率より低い導電率を有する絶縁体である、請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the small region is an insulator having a conductivity lower than that of the two photoelectric conversion layers. 前記小領域が、前記2層の光電変換層の導電率より高い導電率を有する導電体である、請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the small region is a conductor having a conductivity higher than that of the two photoelectric conversion layers. 前記中間領域が、前記2層の光電変換層の導電率より高い導電率を有する導電体からなる小領域の周囲に、前記2層の光電変換層の導電率より低い導電率を有する絶縁体を含む領域を有する、請求項3に記載の太陽電池。   An insulator having a conductivity lower than the conductivity of the two photoelectric conversion layers is disposed around a small region made of a conductor having a conductivity higher than that of the two photoelectric conversion layers. The solar cell of Claim 3 which has the area | region to include. 絶縁基板と、
該絶縁基板上に形成された前記発電ユニットとを備えた請求項1から請求項4のいずれかに記載の太陽電池であって、
前記発電ユニットは、前記絶縁基板側に下部電極を有し、前記絶縁基板と反対側に上部電極を有する太陽電池。
An insulating substrate;
The solar cell according to any one of claims 1 to 4, further comprising the power generation unit formed on the insulating substrate.
The power generation unit is a solar cell having a lower electrode on the insulating substrate side and an upper electrode on the opposite side of the insulating substrate.
絶縁基板と、
該絶縁基板上に形成された複数の前記発電ユニットとを備えた請求項1から請求項4のいずれかに記載の太陽電池であって、
前記複数の発電ユニットはそれぞれ、前記絶縁基板側に設けられた下部電極と、前記絶縁基板と反対側に設けられた上部電極とを有し、
前記複数の発電ユニットのうちの少なくとも1つは、その上部電極が隣接する他の発電ユニットの下部電極と電気的に接続された太陽電池。
An insulating substrate;
A solar cell according to any one of claims 1 to 4, comprising a plurality of the power generation units formed on the insulating substrate.
Each of the plurality of power generation units has a lower electrode provided on the insulating substrate side and an upper electrode provided on the opposite side of the insulating substrate,
At least one of the plurality of power generation units is a solar cell in which an upper electrode is electrically connected to a lower electrode of another power generation unit adjacent thereto.
積層された少なくとも2層の光電変換層と、
前記2層の光電変換層の間に介在し、該2層の光電変換層を電気的及び光学的に接続する中間領域とを備えた発電ユニットを有する太陽電池の製造方法であって、
前記2層の光電変換層のうちの第1の光電変換層を形成した後に、該第1の光電変換層上に、前記2層の光電変換層の導電率より低い導電率を有する絶縁体からなる小領域を分散的に形成する工程と、
前記小領域が形成された面上に、前記2層の光電変換層のうちの第2の光電変換層を形成する工程とを有し、
前記中間領域を、前記2層の光電変換層の延在方向に電気的に不連続に分散した小領域が形成された領域とする、太陽電池の製造方法。
At least two photoelectric conversion layers stacked;
A method for producing a solar cell having a power generation unit that is interposed between the two photoelectric conversion layers and includes an intermediate region that electrically and optically connects the two photoelectric conversion layers,
After forming the first photoelectric conversion layer of the two photoelectric conversion layers, an insulator having a conductivity lower than that of the two photoelectric conversion layers is formed on the first photoelectric conversion layer. Forming a small region to be distributed,
Forming a second photoelectric conversion layer of the two photoelectric conversion layers on the surface on which the small region is formed, and
A method for manufacturing a solar cell, wherein the intermediate region is a region in which small regions are formed that are electrically discontinuously dispersed in the extending direction of the two photoelectric conversion layers.
前記小領域を形成する工程が、前記絶縁体からなる微粒子を分散媒中に分散してなる分散液を塗布する工程を含む、請求項7に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 7, wherein the step of forming the small region includes a step of applying a dispersion liquid in which fine particles made of the insulator are dispersed in a dispersion medium. 前記小領域を形成する工程が、前記絶縁体からなる層を前記第1の光電変換層上に形成し、次いで前記絶縁体を溶解する溶剤により前記絶縁体からなる前記層の一部を除去する工程を含む、請求項7に記載の太陽電池の製造方法。   The step of forming the small region forms a layer made of the insulator on the first photoelectric conversion layer, and then removes a part of the layer made of the insulator with a solvent that dissolves the insulator. The manufacturing method of the solar cell of Claim 7 including a process. 前記小領域を形成する工程が、複数の不連続な開口パターンを有するマスクを介して前記第1の光電変換層上に前記小領域を形成する工程を含む、請求項7に記載の太陽電池の製造方法。   The step of forming the small region includes the step of forming the small region on the first photoelectric conversion layer through a mask having a plurality of discontinuous opening patterns. Production method. 積層された少なくとも2層の光電変換層と、
前記2層の光電変換層の間に介在し、該2層の光電変換層を電気的及び光学的に接続する中間領域とを備えた発電ユニットを有する太陽電池の製造方法であって、
前記2層の光電変換層のうちの第1の光電変換層を形成した後に、該第1の光電変換層上に、前記2層の光電変換層の導電率より高い導電率を有する導電体からなる小領域を分散的に形成する工程と、
前記小領域が形成された面上に、前記2層の光電変換層のうちの第2の光電変換層を形成する工程とを有し、
前記中間領域を、前記2層の光電変換層の延在方向に電気的に不連続に分散した小領域が形成された領域とする、太陽電池の製造方法。
At least two photoelectric conversion layers stacked;
A method for producing a solar cell having a power generation unit that is interposed between the two photoelectric conversion layers and includes an intermediate region that electrically and optically connects the two photoelectric conversion layers,
After forming the first photoelectric conversion layer of the two photoelectric conversion layers, a conductor having a conductivity higher than the conductivity of the two photoelectric conversion layers is formed on the first photoelectric conversion layer. Forming a small region to be distributed,
Forming a second photoelectric conversion layer of the two photoelectric conversion layers on the surface on which the small region is formed, and
A method for manufacturing a solar cell, wherein the intermediate region is a region in which small regions are formed that are electrically discontinuously dispersed in the extending direction of the two photoelectric conversion layers.
前記小領域を形成する工程が、前記導電体からなる微粒子を分散媒中に分散してなる分散液を塗布する工程を含む、請求項11に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 11, wherein the step of forming the small region includes a step of applying a dispersion liquid in which fine particles made of the conductor are dispersed in a dispersion medium. 前記小領域を形成する工程が、前記導電体からなる層を前記第1の光電変換層上に形成し、次いで前記絶縁体を溶解する溶剤により前記絶縁体からなる前記層の一部を除去する工程を含む、請求項11に記載の太陽電池の製造方法。   The step of forming the small region forms a layer made of the conductor on the first photoelectric conversion layer, and then removes a part of the layer made of the insulator with a solvent that dissolves the insulator. The manufacturing method of the solar cell of Claim 11 including a process. 前記小領域を形成する工程が、複数の不連続な開口パターンを有するマスクを介して前記第1の光電変換層上に前記小領域を形成する工程を含む、請求項11に記載の太陽電池の製造方法。   The step of forming the small region includes the step of forming the small region on the first photoelectric conversion layer through a mask having a plurality of discontinuous opening patterns. Production method. 前記中間領域において、前記小領域の周囲に、前記2層の光電変換層の導電率より低い導電率を有する絶縁体を含む領域を形成する、請求項11から請求項14のいずれかに記載の太陽電池。   15. The region according to claim 11, wherein a region including an insulator having a conductivity lower than that of the two photoelectric conversion layers is formed around the small region in the intermediate region. Solar cell.
JP2006085932A 2006-03-27 2006-03-27 Solar cell and its manufacturing method Pending JP2007266096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085932A JP2007266096A (en) 2006-03-27 2006-03-27 Solar cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085932A JP2007266096A (en) 2006-03-27 2006-03-27 Solar cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007266096A true JP2007266096A (en) 2007-10-11

Family

ID=38638829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085932A Pending JP2007266096A (en) 2006-03-27 2006-03-27 Solar cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007266096A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270562A (en) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd Multi-junction type solar cell
JP2009141331A (en) * 2007-11-16 2009-06-25 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and its manufacturing method
WO2010087312A1 (en) * 2009-01-28 2010-08-05 三菱電機株式会社 Thin film photoelectric conversion device and method for manufacturing same
JP2011124474A (en) * 2009-12-14 2011-06-23 Fuji Electric Co Ltd Multi-junction solar cell, solar cell module equipped with multi-junction solar cell, and method of manufacturing multi-junction solar cell
KR20110070539A (en) * 2009-12-18 2011-06-24 엘지디스플레이 주식회사 Thin film solar cell and method for fabricaitng the same
JP2013055216A (en) * 2011-09-05 2013-03-21 Dainippon Printing Co Ltd Solar cell and solar cell module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124481A (en) * 2001-10-11 2003-04-25 Mitsubishi Heavy Ind Ltd Solar battery
JP2005197597A (en) * 2004-01-09 2005-07-21 Sharp Corp Multijunction solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003124481A (en) * 2001-10-11 2003-04-25 Mitsubishi Heavy Ind Ltd Solar battery
JP2005197597A (en) * 2004-01-09 2005-07-21 Sharp Corp Multijunction solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270562A (en) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd Multi-junction type solar cell
JP2009141331A (en) * 2007-11-16 2009-06-25 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and its manufacturing method
WO2010087312A1 (en) * 2009-01-28 2010-08-05 三菱電機株式会社 Thin film photoelectric conversion device and method for manufacturing same
JPWO2010087312A1 (en) * 2009-01-28 2012-08-02 三菱電機株式会社 Thin film photoelectric conversion device and manufacturing method thereof
JP2011124474A (en) * 2009-12-14 2011-06-23 Fuji Electric Co Ltd Multi-junction solar cell, solar cell module equipped with multi-junction solar cell, and method of manufacturing multi-junction solar cell
KR20110070539A (en) * 2009-12-18 2011-06-24 엘지디스플레이 주식회사 Thin film solar cell and method for fabricaitng the same
KR101626364B1 (en) * 2009-12-18 2016-06-02 엘지디스플레이 주식회사 Thin film solar cell and method for fabricaitng the same
JP2013055216A (en) * 2011-09-05 2013-03-21 Dainippon Printing Co Ltd Solar cell and solar cell module

Similar Documents

Publication Publication Date Title
JP5147818B2 (en) Substrate for photoelectric conversion device
TWI438904B (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
US9893221B2 (en) Solar cell and method of fabricating the same
CN103107228B (en) Photoelectric conversion device
US20120000506A1 (en) Photovoltaic module and method of manufacturing the same
GB2339963A (en) Photovoltaic module
KR20110070541A (en) Thin film solar cell and method for fabricaitng the same
WO2020024425A1 (en) Solar cell chip and preparation method therefor
JP2007266096A (en) Solar cell and its manufacturing method
WO2010004811A1 (en) Thin film solar cell and manufacturing method thereof
JP2009117463A (en) Thin-film photoelectric conversion device
US9087953B2 (en) Solar cell module and method for manufacturing the same
JP4568531B2 (en) Integrated solar cell and method of manufacturing integrated solar cell
JP2009141059A (en) Thin-film photoelectric converter
JP2008283075A (en) Manufacturing method of photoelectric conversion device
AU2018253508A1 (en) Solar cell and preparation method thereof
US20110259398A1 (en) Thin film solar cell and method for manufacturing the same
US20110247692A1 (en) Thin Film Type Solar Cell and Method for Manufacturing the Same
JP2013168605A (en) Manufacturing method of solar cell
US9040812B2 (en) Photovoltaic device including flexible substrate or inflexible substrate and method for manufacturing the same
WO2017203751A1 (en) Solar cell and method for manufacturing same, and solar cell panel
WO2012077401A1 (en) Method for manufacturing solar cell
JP2004153028A (en) Thin-film photoelectric converting device
JP2004260013A (en) Photoelectric converter and its manufacturing method
TWI816357B (en) Solar cell module and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515