JP2003124481A - Solar battery - Google Patents

Solar battery

Info

Publication number
JP2003124481A
JP2003124481A JP2001314040A JP2001314040A JP2003124481A JP 2003124481 A JP2003124481 A JP 2003124481A JP 2001314040 A JP2001314040 A JP 2001314040A JP 2001314040 A JP2001314040 A JP 2001314040A JP 2003124481 A JP2003124481 A JP 2003124481A
Authority
JP
Japan
Prior art keywords
film
solar cell
cells
thickness
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001314040A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kondo
勝彦 近藤
Tatsuyuki Nishinomiya
立亨 西宮
Kengo Yamaguchi
賢剛 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001314040A priority Critical patent/JP2003124481A/en
Publication of JP2003124481A publication Critical patent/JP2003124481A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a solar battery which exhibits a high conversion efficiency. SOLUTION: The solar battery comprises a plurality of cells 13, 16 of a pin type or an nip type structure made of an amorphous Si or a crystalline Si on a glass board 11 via a transparent electrode layer 12 and laminated in multiple-stages. In this battery, at least one set of adjacent cells 13, 16 are brought into part contact with each other via the opening hole 15 of an insulating film 14 formed between the cells 13 and 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、pin型又はni
p型構造の複数のセルを多段に積層した太陽電池に関す
る。
TECHNICAL FIELD The present invention relates to a pin type or ni type
The present invention relates to a solar cell in which a plurality of cells having a p-type structure are stacked in multiple stages.

【0002】[0002]

【従来の技術】従来、薄膜型シリコン太陽電池として
は、例えば図3に示すものが知られている。図中の付番
1は、厚みが約1mmのガラス基板を示す。この基板1
上には、ITO,SnO等からなる膜厚0.6〜1.
0μmの透明導電膜2を介して第1のセル3、第2のセ
ル4、ITOからなる膜厚0.01〜1.0μmの酸化
物膜5及び膜厚0.3〜0.6μmの金属電極膜6が順
次形成されている。ここで、第1のセル3は、p型の非
晶質Si発電膜3aと、i型の非晶質Si発電膜3b
と、n型の非晶質Si発電膜3cとから構成されてい
る。また、第2のセル4は、p型の非晶質Si発電膜4
aと、i型の非晶質Si発電膜4bと、n型の非晶質S
i発電膜4cとから構成されている。ここで、前記各発
電膜の膜厚は0.005〜0.5μmである。
2. Description of the Related Art Conventionally, as a thin film type silicon solar cell, for example, one shown in FIG. 3 is known. Number 1 in the figure indicates a glass substrate having a thickness of about 1 mm. This board 1
On the upper side, a film thickness of 0.6 to 1. made of ITO, SnO 2 or the like.
First cell 3, second cell 4, oxide film 5 having a film thickness of 0.01 to 1.0 μm, and a metal having a film thickness of 0.3 to 0.6 μm made of ITO through a transparent conductive film 2 having a thickness of 0 μm The electrode film 6 is sequentially formed. Here, the first cell 3 includes a p-type amorphous Si power generation film 3a and an i-type amorphous Si power generation film 3b.
And an n-type amorphous Si power generation film 3c. In addition, the second cell 4 is a p-type amorphous Si power generation film 4
a, i-type amorphous Si power generation film 4b, and n-type amorphous S
i power generation film 4c. Here, the film thickness of each of the power generation films is 0.005 to 0.5 μm.

【0003】なお、発電膜として微結晶シリコンを用い
た場合の膜厚は、0.005〜5.0mmである。ま
た、発電膜3a,4aはp型、発電膜3c,4cはn型
である場合について述べたが、発電膜3a,4aがn
型、発電膜3c,4cがp型である場合でもよい。
The film thickness when microcrystalline silicon is used as the power generation film is 0.005 to 5.0 mm. Although the power generation films 3a and 4a are p-type and the power generation films 3c and 4c are n-type, the power generation films 3a and 4a are n-type.
The mold and the power generation films 3c and 4c may be p-type.

【0004】こうした構成の太陽電池において、太陽光
はガラス基板1側から入射して透明電極膜2を透過して
各発電膜に入射する。太陽光は、発電膜3aに吸収され
て、透明導電膜2と金属電極膜6との間に起電力が発生
し、電力を外部に取り出すことができる。ところで、こ
うした太陽電池において、電池の発電効率を向上させる
ために、例えば前記発電膜3a〜3cをa−Si、前記
発電膜4a〜4cを結晶質Siで構成するように、前記
発電膜3a〜3c、4a〜4cを夫々光吸収帯域の異な
る材質とすることで入射光を有効に利用することが広く
行われており、タンデム型太陽電池と呼ばれている。
In the solar cell having such a structure, sunlight enters from the glass substrate 1 side, passes through the transparent electrode film 2 and enters each power generation film. The sunlight is absorbed by the power generation film 3a, an electromotive force is generated between the transparent conductive film 2 and the metal electrode film 6, and the power can be extracted to the outside. By the way, in such a solar cell, in order to improve the power generation efficiency of the cell, for example, the power generation films 3a to 3c are made of a-Si, and the power generation films 4a to 4c are made of crystalline Si. It is widely practiced to effectively use the incident light by making 3c and 4a to 4c materials having different light absorption bands, and it is called a tandem solar cell.

【0005】特開平10−294481は、非晶質シリ
コン系薄膜光電ユニットと結晶質系光電変換ユニットを
2段積層させたタンデム型光電変換装置を示す。同装置
は、図4に示す構成となっている。図中の符番21は基
板であり、この基板21上に裏面電極22を介して光電
変換ユニット23,24が2段に積層されている。一方
の光電変換ユニット23は、プラズマ法によって順次積
層された一導電型層25と、結晶質を含むシリコン系薄
膜の光電変換層26と、逆導電型半導体層27とから構
成されている。他方の光電変換ユニット24は、プラズ
マ法によって順次積層された一導電型層28と、結晶質
を含むシリコン系薄膜の光電変換層29と、逆導電型半
導体層30とから構成されている。前記光電変換ユニッ
ト24上には、前面透明電極31、櫛型電極32が順次
形成されている。
Japanese Unexamined Patent Publication No. 10-294481 discloses a tandem type photoelectric conversion device in which an amorphous silicon type thin film photoelectric unit and a crystalline type photoelectric conversion unit are laminated in two stages. The device has the configuration shown in FIG. Reference numeral 21 in the drawing is a substrate, and photoelectric conversion units 23 and 24 are stacked in two layers on the substrate 21 with a back electrode 22 interposed therebetween. One photoelectric conversion unit 23 is composed of one conductivity type layer 25 sequentially laminated by a plasma method, a photoelectric conversion layer 26 of a silicon-based thin film containing a crystalline material, and an opposite conductivity type semiconductor layer 27. The other photoelectric conversion unit 24 is composed of one conductivity type layer 28 sequentially laminated by a plasma method, a photoelectric conversion layer 29 of a silicon-based thin film containing a crystalline material, and an opposite conductivity type semiconductor layer 30. A front transparent electrode 31 and a comb-shaped electrode 32 are sequentially formed on the photoelectric conversion unit 24.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来のタンデ
ム型太陽電池では、材質が異なる層界面には界面未結合
手が存在し、これにより光発生キャリアの拡散長が低下
して、発電電圧の低下や電流損失が生じると考えられて
おり、改善の余地があった。
However, in the conventional tandem solar cell, interfacial dangling bonds are present at the interface between layers of different materials, which reduces the diffusion length of photogenerated carriers and reduces the generated voltage. There is room for improvement because it is thought that a decrease and current loss will occur.

【0007】本発明は上記事情を考慮してなされたもの
で、支持体上に透明電極層を介してpin型又はnip
型構造の複数のセルを多段に積層した太陽電池におい
て、少なくとも1組の隣り合うセル同士が、セル間に形
成された絶縁膜の開口穴を介して部分的に接触している
構成にすることにより、隣り合うセル同士を点接触さ
せ、もって高い変換効率を示す太陽電池を提供すること
を目的とする。
The present invention has been made in consideration of the above circumstances, and it is a pin type or nip type via a transparent electrode layer on a support.
In a solar cell in which a plurality of cells having a die structure are stacked in multiple stages, at least one set of adjacent cells is partially in contact with each other through an opening hole in an insulating film formed between the cells. Thus, it is an object of the present invention to provide a solar cell which brings adjacent cells into point contact with each other and thereby exhibits high conversion efficiency.

【0008】[0008]

【課題を解決するための手段】本発明は、支持体上に透
明電極層を介してアモルファスSi又は結晶質Siより
なるpin型又はnip型構造の複数のセルを多段に積
層した太陽電池において、少なくとも1組の隣り合うセ
ル同士が、セル間に形成された絶縁膜の開口穴を介して
部分的に接触していることを特徴とする太陽電池であ
る。
The present invention provides a solar cell in which a plurality of cells of pin type or nip type structure made of amorphous Si or crystalline Si are laminated in multiple stages on a support through a transparent electrode layer, The solar cell is characterized in that at least one pair of adjacent cells are in partial contact with each other through an opening hole in an insulating film formed between the cells.

【0009】本発明において、前記絶縁膜(パッシベー
ション膜)としては、膜厚10Å〜1μm、開口率1%
〜90%の酸化物膜又は窒化物膜又は炭化物膜が挙げら
れる。ここで、膜厚を10Å未満であるとカバレッジが
不十分であり、膜厚が1μmを超えると1段目及び2段
目のi層で発生した光キャリアが1段目のセルと2段目
のセルの間を通過するときの損失が大きくなる。
In the present invention, the insulating film (passivation film) has a film thickness of 10Å to 1 μm and an aperture ratio of 1%.
˜90% oxide film or nitride film or carbide film. Here, if the film thickness is less than 10 Å, the coverage is insufficient, and if the film thickness exceeds 1 μm, the photo carriers generated in the first and second i-layers are generated in the first and second cells. The loss increases when passing between cells.

【0010】また、開口率が1%未満であると電流が流
れにくく、開口率が90%を超えると隣り合うセル同士
の接触面積をつぼめた効果が小さくなる。更に、前記開
口穴の形状は特に限定されず、丸穴、角穴、楕円穴、ス
リット形状等いずれの形状でもよい。なお、上記「開口
率」とは、開口率(%)=(開口穴/セルの表面積)×
100で表す。
If the aperture ratio is less than 1%, it is difficult for the current to flow, and if the aperture ratio exceeds 90%, the effect of reducing the contact area between adjacent cells becomes small. Further, the shape of the opening hole is not particularly limited, and may be any shape such as a round hole, a square hole, an elliptical hole, and a slit shape. In addition, the above-mentioned "aperture ratio" means aperture ratio (%) = (open hole / surface area of cell) ×
Expressed as 100.

【0011】また、前記絶縁膜としては、膜厚10Å〜
1μm、開口率1%〜90%の酸化物膜又は窒化物膜又
は炭化物膜、及び厚さ100Å〜1μmのZnO又はI
TO薄膜を前記支持体側より順次積層されたものでもよ
い。
The insulating film has a film thickness of 10Å
1 μm, oxide film or nitride film or carbide film having an aperture ratio of 1% to 90%, and ZnO or I having a thickness of 100Å to 1 μm
The TO thin films may be sequentially laminated from the support side.

【0012】本発明において、前記酸化物膜又は窒化物
膜又は炭化物膜は、CVD法、イオンプレーティング
法、真空蒸着法のいずれかの方法で形成した後、イオン
ビーム照射又はレーザー照射によるエッチングにより前
記膜の一部に開口穴を形成することができる。また、前
記酸化物膜又は窒化物膜又は炭化物膜は、支持体側のセ
ル表面又は表面近傍に設置したマスクを介してCVD
法、イオンプレーティング法、真空蒸着法のいずれかの
方法で形成することにより得ることができる。
In the present invention, the oxide film, the nitride film, or the carbide film is formed by any one of a CVD method, an ion plating method, and a vacuum deposition method, and is then etched by ion beam irradiation or laser irradiation. Opening holes may be formed in a part of the film. The oxide film, the nitride film, or the carbide film is formed by CVD through a mask provided on the surface of the cell on the support side or in the vicinity of the cell.
Method, ion plating method, or vacuum vapor deposition method.

【0013】[0013]

【発明の実施の形態】図1は、本発明の各実施例に係る
太陽電池について説明する。 (実施例1)図1を参照する。図中の付番11は、厚み
が約1mmのガラス基板を示す。この基板11上には、
ITO,SnO等からなる膜厚0.6〜1.0μmの
透明導電膜12を介して第1のセル13が形成されてい
る。ここで、第1のセル13は、p型の非晶質Si発電
膜13aと、i型の非晶質Si発電膜13bと、n型の
非晶質Si発電膜13cとから構成されている。ここ
で、前記各発電膜の膜厚は0.005〜0.5μmであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 illustrates a solar cell according to each embodiment of the present invention. Example 1 Reference is made to FIG. Reference number 11 in the figure indicates a glass substrate having a thickness of about 1 mm. On this substrate 11,
The first cell 13 is formed via the transparent conductive film 12 made of ITO, SnO 2 or the like and having a film thickness of 0.6 to 1.0 μm. Here, the first cell 13 is composed of a p-type amorphous Si power generation film 13a, an i-type amorphous Si power generation film 13b, and an n-type amorphous Si power generation film 13c. . Here, the film thickness of each of the power generation films is 0.005 to 0.5 μm.

【0014】前記第1のセル13上には、絶縁膜として
のSiO膜14が形成されている。ここで、SiO
膜14の膜厚は例えば100μmであり、開口率は例え
ば10%である。前記SiO膜14は、イオンプレー
ティング法で形成した後、イオンビーム照射又はレーザ
ー照射によるエッチングにより前記SiO膜14膜の
一部に開口穴15を形成することができる。ここで、前
記開口穴15の形状は、平面的に見て多数の丸穴を格子
状に配置した形状となっている。
A SiO 2 film 14 as an insulating film is formed on the first cell 13. Where SiO 2
The film 14 has a film thickness of, for example, 100 μm, and the aperture ratio is, for example, 10%. After the SiO 2 film 14 is formed by an ion plating method, an opening 15 can be formed in a part of the SiO 2 film 14 by etching with ion beam irradiation or laser irradiation. Here, the shape of the opening holes 15 is a shape in which a large number of round holes are arranged in a grid pattern when seen in a plan view.

【0015】前記SiO膜14上には、第2のセル1
6、膜厚0.01〜1.0μmの酸化物膜(ITO膜)
17及び膜厚0.3〜0.6μmのAgからなる金属電
極膜18が順次形成されている。ここで、第2のセル1
6は、 p型のSi非晶質発電膜16aと、i型の非晶
質Si発電膜16bと、n型の非晶質Si発電膜16c
とから構成されている。ここで、前記各発電膜の膜厚は
0.005〜0.5μmである。
A second cell 1 is formed on the SiO 2 film 14.
6. Oxide film (ITO film) with a film thickness of 0.01 to 1.0 μm
17 and a metal electrode film 18 of Ag having a film thickness of 0.3 to 0.6 μm are sequentially formed. Where the second cell 1
6 is a p-type Si amorphous power generation film 16a, an i-type amorphous Si power generation film 16b, and an n-type amorphous Si power generation film 16c.
It consists of and. Here, the film thickness of each of the power generation films is 0.005 to 0.5 μm.

【0016】上記実施例1によれば、第1のセル13と
第2のセル16間に両セル13、16同士を点接触させ
る開口部15を有したSiO膜14を配置した構成
(点接触構造)となっているため、SiO膜が無いと
きと比較して一層高い変換効率を示した。
According to the first embodiment, the SiO 2 film 14 having the opening 15 for making point contact between the first and second cells 13 and 16 is arranged between the first cell 13 and the second cell 16. Because of the contact structure), the conversion efficiency was higher than that without the SiO 2 film.

【0017】事実、SiO膜14の開口率を1%〜9
0%と変えた場合及びSiO膜(絶縁膜)が無い場合
(従来)と規格変換効率との関係を調べたところ、図5
に示す結果が得られた。図5より、本発明による太陽電
池の変換効率が、従来の太陽電池と比べ、大きな値が得
られることが確認できた。
In fact, the aperture ratio of the SiO 2 film 14 is 1% to 9%.
When the relation between the standard conversion efficiency and the case where the SiO 2 film (insulating film) is not present (conventional) was examined when it was changed to 0%, the results shown in FIG.
The results shown in are obtained. From FIG. 5, it was confirmed that the conversion efficiency of the solar cell according to the present invention was larger than that of the conventional solar cell.

【0018】また、SiO膜の開口率を一定にしてS
iO膜の膜厚を0.001μm〜1μmと変えた場合
及びSiO膜が無い場合(従来)と規格変換効率との
関係を調べたところ、図6に示す結果が得られた。図6
より、本発明による太陽電池の変換効率が、従来の太陽
電池と比べ、大きな値が得られることが確認できた。
Further, the aperture ratio of the SiO 2 film is kept constant and S
When the relationship between the standard conversion efficiency and the case where the film thickness of the iO 2 film was changed to 0.001 μm to 1 μm and the case where there was no SiO 2 film (conventional) was examined, the results shown in FIG. 6 were obtained. Figure 6
From this, it was confirmed that the conversion efficiency of the solar cell according to the present invention was larger than that of the conventional solar cell.

【0019】(実施例2)図2を参照する。なお、図1
と同部材は同付番を付して説明を省略する。図中の符番
19は、SiO膜14を含む第1のセル13上に形成
されたZnO又はITOからなる中間層を示す。ここ
で、中間層19の膜厚は、例えば0.01μmとする。
(Embodiment 2) Referring to FIG. Note that FIG.
The same members as the above are numbered the same and their explanations are omitted. Reference numeral 19 in the drawing indicates an intermediate layer made of ZnO or ITO formed on the first cell 13 including the SiO 2 film 14. Here, the film thickness of the intermediate layer 19 is, eg, 0.01 μm.

【0020】実施例2によれば、実施例1と同様、高い
変換効率が得られた。事実、SiO 膜14の膜厚を1
00Å、SiO膜の開口率を10%として中間層の膜
厚を変えた場合及びSiO膜も中間層も無い場合(従
来)と規格変換効率との関係を調べたところ、図7に示
す結果が得られた。図7より、中間層19の膜厚を0.
001〜1μmとした場合の変換効率が、従来の場合と
それと比べ、大きな値が得られることが確認できた。
According to the second embodiment, as in the first embodiment, it is high.
Conversion efficiency was obtained. In fact, SiO TwoThe film thickness of the film 14 is 1
00Å, SiOTwoIntermediate layer film with an aperture ratio of 10%
When changing the thickness and SiOTwoWhen there is no film or intermediate layer (subordinate
When the relationship between the standard) and the standard conversion efficiency was investigated, the results are shown in Fig. 7.
The result was obtained. From FIG. 7, the thickness of the intermediate layer 19 is set to 0.
The conversion efficiency when 001 to 1 μm is the same as that of the conventional case.
It was confirmed that a large value was obtained in comparison with that.

【0021】(実施例3)本実施例3は、実施例1と比
べ、SiO膜を形成した後、レーザーエッチングによ
るパターニングを行ってSiO膜に開口穴を形成する
以外は、実施例1と同様な方法により太陽電池を形成し
た。実施例3によれば、SiO膜の膜厚0.001〜
1μm、開口率1〜90%の範囲で変換効率が向上し
た。
[0021] (Embodiment 3) Embodiment 3 is compared with Example 1, after forming the SiO 2 film, except for forming an opening hole in the SiO 2 film by patterning by laser etching, Example 1 A solar cell was formed by a method similar to. According to the third embodiment, the thickness of the SiO 2 film is 0.001 to 0.001.
The conversion efficiency was improved in the range of 1 μm and the aperture ratio of 1 to 90%.

【0022】なお、上記実施例では、絶縁膜としてSi
膜を用いた場合について述べたが、これに限らず、
SiC膜、あるいはSiN膜等を用いてもよい。また、
上記実施例では、pin型構造の2段のセルの場合につ
いて述べたが、これに限らず、nip型構造の2段のセ
ルの場合にも上記実施例と同様に適用できる。また、セ
ル数も2段に限らず、3段以上のセルにも適用できる。
In the above embodiment, Si is used as the insulating film.
The case of using the O 2 film has been described, but the present invention is not limited to this.
You may use a SiC film or a SiN film. Also,
In the above embodiment, the case of a two-stage cell having a pin structure has been described. However, the present invention is not limited to this, and can also be applied to the case of a two-stage cell having a nip structure, similarly to the above embodiment. Moreover, the number of cells is not limited to two, and the invention can be applied to cells having three or more stages.

【0023】[0023]

【発明の効果】以上詳述したように本発明によれば、支
持体上に透明電極層を介してpin型又はnip型構造
の複数のセルを多段に積層した太陽電池において、少な
くとも1組の隣り合うセル同士が、セル間に形成された
絶縁膜の開口穴を介して部分的に接触している構成にす
ることにより、隣り合うセル同士を点接触させ、もって
高い変換効率を示す太陽電池を提供できる。
As described in detail above, according to the present invention, in a solar cell in which a plurality of cells of pin type or nip type structure are laminated in multiple layers on a support through transparent electrode layers, at least one set of Solar cells exhibiting high conversion efficiency by allowing adjacent cells to come into point contact with each other by forming a configuration in which adjacent cells are partially in contact with each other through an opening hole in an insulating film formed between the cells. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に係る太陽電池の断面図。FIG. 1 is a sectional view of a solar cell according to a first embodiment of the present invention.

【図2】本発明の実施例2に係る太陽電池の断面図。FIG. 2 is a sectional view of a solar cell according to a second embodiment of the present invention.

【図3】従来の太陽電池の断面図。FIG. 3 is a cross-sectional view of a conventional solar cell.

【図4】従来の他の太陽電池の断面図。FIG. 4 is a cross-sectional view of another conventional solar cell.

【図5】実施例1による太陽電池に使用されるSiO
膜の開口率及びSiO膜が無い場合の太陽電池による
規格化変換効率を示す特性図。
FIG. 5 SiO 2 used in the solar cell according to Example 1
Characteristic diagram showing the normalized conversion efficiency by the solar cell when the aperture ratio and the SiO 2 film of the film is not.

【図6】実施例1による太陽電池に使用されるSiO
膜の膜厚及びSiO膜が無い場合の太陽電池による規
格化変換効率を示す特性図。
FIG. 6 SiO 2 used in the solar cell according to Example 1
Characteristic diagram showing the normalized conversion efficiency by the solar cell when the film thickness and the SiO 2 film of the film is not.

【図7】実施例2による太陽電池に使用されるSiO
膜の開口率及びSiO膜が無い場合の太陽電池による
規格化変換効率を示す特性図。
FIG. 7 SiO 2 used in the solar cell according to Example 2
Characteristic diagram showing the normalized conversion efficiency by the solar cell when the aperture ratio and the SiO 2 film of the film is not.

【符号の説明】[Explanation of symbols]

11…ガラス基板、 12…透明電極膜、 13…第1のセル、 13a,13b,13c,16a,16b,16c…非
晶質Si発電膜、 14…SiO膜(絶縁膜)、 15…開口穴、 16…第2のセル、 17…酸化物膜(ITO膜)、 18…金属電極膜、 19…中間層。
11 ... Glass substrate, 12 ... Transparent electrode film, 13 ... First cell, 13a, 13b, 13c, 16a, 16b, 16c ... Amorphous Si power generation film, 14 ... SiO 2 film (insulating film), 15 ... Opening Holes, 16 ... Second cell, 17 ... Oxide film (ITO film), 18 ... Metal electrode film, 19 ... Intermediate layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 賢剛 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 Fターム(参考) 5F051 AA03 AA05 CB12 CB14 CB22 DA15 DA18 DA20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kengo Yamaguchi             3-5-1, 717-1, Fukahori-cho, Nagasaki-shi, Nagasaki             Hishi Heavy Industries Ltd. Nagasaki Research Center F term (reference) 5F051 AA03 AA05 CB12 CB14 CB22                       DA15 DA18 DA20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 支持体上に透明電極層を介してアモルフ
ァスSi又は結晶質Siよりなるpin型又はnip型
構造の複数のセルを多段に積層した太陽電池において、 少なくとも1組の隣り合うセル同士が、セル間に形成さ
れた絶縁膜の開口穴を介して部分的に接触していること
を特徴とする太陽電池。
1. A solar cell in which a plurality of cells having a pin type or nip type structure made of amorphous Si or crystalline Si are multi-tiered on a support through a transparent electrode layer, and at least one pair of adjacent cells are adjacent to each other. Are partially in contact with each other through the openings of the insulating film formed between the cells.
【請求項2】 前記絶縁膜は、膜厚10Å〜1μm、開
口率1%〜90%の酸化物膜又は窒化物膜又は炭化物膜
であることを特徴とする請求項1記載の太陽電池。
2. The solar cell according to claim 1, wherein the insulating film is an oxide film, a nitride film, or a carbide film having a film thickness of 10Å to 1 μm and an aperture ratio of 1% to 90%.
【請求項3】 前記絶縁膜は、膜厚10Å〜1μm、開
口率1%〜90%の酸化物膜又は窒化物膜又は炭化物
膜、及び厚さ100Å〜1μmのZnO又はITO膜を
前記支持体側より順次積層されたものであることを特徴
とする請求項1記載の太陽電池。
3. The insulating film comprises an oxide film, a nitride film or a carbide film having a film thickness of 10Å to 1 μm and an aperture ratio of 1% to 90%, and a ZnO or ITO film having a thickness of 100Å to 1 μm on the support side. The solar cell according to claim 1, wherein the solar cells are more sequentially stacked.
【請求項4】 前記酸化物膜又は窒化物膜又は炭化物膜
は、CVD法、イオンプレーティング法、真空蒸着法の
いずれかにより前面に形成した後、イオンビーム照射又
はレーザー照射によるエッチングにより前記膜の一部に
開口穴を形成することにより得られることを特徴とする
請求項2又は請求項3記載の太陽電池。
4. The oxide film, the nitride film, or the carbide film is formed on the front surface by any one of a CVD method, an ion plating method, and a vacuum evaporation method, and is then etched by ion beam irradiation or laser irradiation. The solar cell according to claim 2 or 3, wherein the solar cell is obtained by forming an opening in a part of the solar cell.
【請求項5】 前記酸化物膜又は窒化物膜又は炭化物膜
は、支持体側のセル表面又は表面近傍に設置したマスク
を介してCVD法、イオンプレーティング法、真空蒸着
法のいずれかにより形成することにより得られることを
特徴とする請求項2又は請求項3記載の太陽電池。
5. The oxide film, the nitride film, or the carbide film is formed by any one of a CVD method, an ion plating method, and a vacuum evaporation method through a mask provided on the surface of the cell on the support side or near the surface. It is obtained by this, The solar cell of Claim 2 or Claim 3 characterized by the above-mentioned.
JP2001314040A 2001-10-11 2001-10-11 Solar battery Pending JP2003124481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001314040A JP2003124481A (en) 2001-10-11 2001-10-11 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001314040A JP2003124481A (en) 2001-10-11 2001-10-11 Solar battery

Publications (1)

Publication Number Publication Date
JP2003124481A true JP2003124481A (en) 2003-04-25

Family

ID=19132414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001314040A Pending JP2003124481A (en) 2001-10-11 2001-10-11 Solar battery

Country Status (1)

Country Link
JP (1) JP2003124481A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011001A1 (en) * 2003-07-24 2005-02-03 Kaneka Corporation Stacked photoelectric converter
JP2005135987A (en) * 2003-10-28 2005-05-26 Kaneka Corp Stacked photoelectric conversion device and its manufacturing method
WO2005081324A1 (en) * 2004-02-20 2005-09-01 Sharp Kabushiki Kaisha Substrate for photoelectric converter, photoelectric converter, and multilayer photoelectric converter
WO2005093856A1 (en) * 2004-03-26 2005-10-06 Kaneka Corporation Process for producing thin film photoelectric converter
JP2006310348A (en) * 2005-04-26 2006-11-09 Sanyo Electric Co Ltd Laminate type photovoltaic device
KR100741306B1 (en) * 2005-03-02 2007-07-20 주식회사 케이이씨 High efficiency solar cells and manufacturing method the same
JP2007266096A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Solar cell and its manufacturing method
WO2008090666A1 (en) 2007-01-23 2008-07-31 Sharp Kabushiki Kaisha Laminate type photoelectric converter and method for fabricating the same
CN100420039C (en) * 2003-07-24 2008-09-17 株式会社钟化 Stacked photoelectric converter
JP2008270562A (en) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd Multi-junction type solar cell
WO2010087312A1 (en) * 2009-01-28 2010-08-05 三菱電機株式会社 Thin film photoelectric conversion device and method for manufacturing same
JP2012500474A (en) * 2008-08-14 2012-01-05 グリーンフィールド・ソーラー・コーポレーション Photocells with processed surfaces and related applications
JP2013055215A (en) * 2011-09-05 2013-03-21 Dainippon Printing Co Ltd Solar cell and solar cell module
KR20180063866A (en) * 2016-12-02 2018-06-12 엘지전자 주식회사 Tandem solar cell and method of manufacturing thereof
JP2019195111A (en) * 2016-12-02 2019-11-07 エルジー エレクトロニクス インコーポレイティド Tandem solar cell and method for manufacturing the same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420039C (en) * 2003-07-24 2008-09-17 株式会社钟化 Stacked photoelectric converter
WO2005011001A1 (en) * 2003-07-24 2005-02-03 Kaneka Corporation Stacked photoelectric converter
US7550665B2 (en) 2003-07-24 2009-06-23 Kaneka Corporation Stacked photoelectric converter
JP2005135987A (en) * 2003-10-28 2005-05-26 Kaneka Corp Stacked photoelectric conversion device and its manufacturing method
WO2005081324A1 (en) * 2004-02-20 2005-09-01 Sharp Kabushiki Kaisha Substrate for photoelectric converter, photoelectric converter, and multilayer photoelectric converter
EP1724840A4 (en) * 2004-02-20 2009-12-23 Sharp Kk Substrate for photoelectric converter, photoelectric converter, and multilayer photoelectric converter
EP1724840A1 (en) * 2004-02-20 2006-11-22 Sharp Kabushiki Kaisha Substrate for photoelectric converter, photoelectric converter, and multilayer photoelectric converter
JP2009060149A (en) * 2004-02-20 2009-03-19 Sharp Corp Stacked photoelectric conversion device
US8957300B2 (en) 2004-02-20 2015-02-17 Sharp Kabushiki Kaisha Substrate for photoelectric conversion device, photoelectric conversion device, and stacked photoelectric conversion device
EP2469605A3 (en) * 2004-02-20 2014-03-05 Sharp Kabushiki Kaisha Substrate for photoelectric conversion device, photoelectric conversion device, and stacked photoelectric conversion device
WO2005093856A1 (en) * 2004-03-26 2005-10-06 Kaneka Corporation Process for producing thin film photoelectric converter
KR100741306B1 (en) * 2005-03-02 2007-07-20 주식회사 케이이씨 High efficiency solar cells and manufacturing method the same
US7952018B2 (en) 2005-04-26 2011-05-31 Sanyo Electric Co., Ltd. Stacked photovoltaic apparatus
JP2006310348A (en) * 2005-04-26 2006-11-09 Sanyo Electric Co Ltd Laminate type photovoltaic device
JP2007266096A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Solar cell and its manufacturing method
EP2110859A1 (en) * 2007-01-23 2009-10-21 Sharp Kabushiki Kaisha Laminate type photoelectric converter and method for fabricating the same
WO2008090666A1 (en) 2007-01-23 2008-07-31 Sharp Kabushiki Kaisha Laminate type photoelectric converter and method for fabricating the same
US8258596B2 (en) 2007-01-23 2012-09-04 Sharp Kabushiki Kaisha Stacked photoelectric conversion device and method for producing the same
EP2110859A4 (en) * 2007-01-23 2010-07-14 Sharp Kk Laminate type photoelectric converter and method for fabricating the same
JP2008181965A (en) * 2007-01-23 2008-08-07 Sharp Corp Laminated optoelectric converter and its fabrication process
JP2008270562A (en) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd Multi-junction type solar cell
JP2012500474A (en) * 2008-08-14 2012-01-05 グリーンフィールド・ソーラー・コーポレーション Photocells with processed surfaces and related applications
WO2010087312A1 (en) * 2009-01-28 2010-08-05 三菱電機株式会社 Thin film photoelectric conversion device and method for manufacturing same
JPWO2010087312A1 (en) * 2009-01-28 2012-08-02 三菱電機株式会社 Thin film photoelectric conversion device and manufacturing method thereof
JP2013055215A (en) * 2011-09-05 2013-03-21 Dainippon Printing Co Ltd Solar cell and solar cell module
KR20180063866A (en) * 2016-12-02 2018-06-12 엘지전자 주식회사 Tandem solar cell and method of manufacturing thereof
JP2019195111A (en) * 2016-12-02 2019-11-07 エルジー エレクトロニクス インコーポレイティド Tandem solar cell and method for manufacturing the same
JP7005565B2 (en) 2016-12-02 2022-01-21 エルジー エレクトロニクス インコーポレイティド Tandem solar cells and their manufacturing methods
US11462655B2 (en) 2016-12-02 2022-10-04 Lg Electronics Inc. Tandem solar cell and method of manufacturing the same
KR102457929B1 (en) * 2016-12-02 2022-10-25 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 Tandem solar cell and method of manufacturing thereof

Similar Documents

Publication Publication Date Title
EP1979951B1 (en) Solar cell
KR101031246B1 (en) Thin film type Solar Cell and method of manufacturing the smae, and Thin film type solar cell module and Power generation system using the same
US20180374976A1 (en) Solar cell having a plurality of absorbers connected to one another by means of charge-carrier-selective contacts
JP2008181965A (en) Laminated optoelectric converter and its fabrication process
JP2003124481A (en) Solar battery
US10651327B2 (en) Thin film photovoltaic cell with back contacts
KR101768907B1 (en) Method of fabricating Solar Cell
TW200924211A (en) Thin film type solar cell and method for manufacturing the same
CN114497290A (en) Manufacturing method of back contact heterojunction solar cell
KR101053790B1 (en) Solar cell and manufacturing method thereof
US20120037211A1 (en) Thin Film of Solar Battery Structure, Thin Film of Solar Array and Manufacturing Method Thereof
CN117855305A (en) Silicon-based thin film back contact solar cell, manufacturing method thereof and battery module
TW201327870A (en) Method for making solar battery
JPS61278171A (en) Thin film photoelectric conversion device
JP2000133828A (en) Thin-film solar cell and manufacture thereof
TW201131791A (en) Solar cell and method for fabricating the same
TW201001731A (en) Photovoltaic device and method of manufacturing a photovoltaic device
JP2002198551A (en) Optical-to-electrical transducer element and device thereof using it as well as method for manufacturing the same
JP2001217435A (en) Thin film solar cell and its manufacturing method
JP4358493B2 (en) Solar cell
TW200933908A (en) A silicon-based thin film solar-cell
WO2006049003A1 (en) Process for producing thin-film photoelectric converter
JPS6276569A (en) Thin-film photoelectric conversion element
KR100973676B1 (en) Thin film type Solar Cell and Method for manufacturing the same
JPH0548123A (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329