JPS61278171A - Thin film photoelectric conversion device - Google Patents

Thin film photoelectric conversion device

Info

Publication number
JPS61278171A
JPS61278171A JP60119854A JP11985485A JPS61278171A JP S61278171 A JPS61278171 A JP S61278171A JP 60119854 A JP60119854 A JP 60119854A JP 11985485 A JP11985485 A JP 11985485A JP S61278171 A JPS61278171 A JP S61278171A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
thin film
electrode layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60119854A
Other languages
Japanese (ja)
Other versions
JPH0750793B2 (en
Inventor
Nobuhiko Fujita
藤田 順彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60119854A priority Critical patent/JPH0750793B2/en
Publication of JPS61278171A publication Critical patent/JPS61278171A/en
Publication of JPH0750793B2 publication Critical patent/JPH0750793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To form a thin film photoelectric conversion device which is excellent in various characteristics such as conversion efficiency, by providing regular projections and recesses on the substrate surface, and forming thereon electrode layers or semiconductor layers of a fixed film thickness, thereby constructing a photoelectric conversion device. CONSTITUTION:By passing through a roll for adjusting the surface condition when a glass substrate 1 is manufactured, projected and recessed portions having a pitch of 0.5mm, height of 0.22mm, opening angle of 90 deg., and radius of curvature of 35mum for the recessed and projected portions are formed on the surface of the glass substrate 1. Then, a transparent SnO2 electrode layer 2 is deposited with a thickness of 1mum on the recessed and projected surface of the glass substrate 1 by means of the CVD method. Further, a P-type a-Si layer, an I-type a-Si layer and an N-type a-Si layer are sequentially formed on the transparent electrode layer 2, and this is determined as an a-Si layer 3. Then, an Al electrode layer 4 is formed on the a-Si layer 3 with a thickness of 0.5mum by means of the vapor deposition method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は薄膜光電変換素子に関する。さらに詳しく言え
ば、薄膜光電変換素子の変換効率等の緒特性の改善に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thin film photoelectric conversion element. More specifically, the present invention relates to improving the conversion efficiency and other characteristics of thin film photoelectric conversion elements.

従来の技術 光電変換素子はその用途から、光エネルギーを電気エネ
ルギーに変換するエネルギー変換素子と光情報を電気情
報に変換する情報変換素子に大別することができる。
BACKGROUND OF THE INVENTION Photoelectric conversion elements can be broadly classified into energy conversion elements that convert optical energy into electrical energy and information conversion elements that convert optical information into electrical information based on their uses.

前者のエネルギー変換素子の代表として、光起電力効果
を利用した太陽電池がある。太陽電池は最近のエネルギ
ー事情に照して、今後の新エネルギー源として期待され
、広範な研究、開発が行なわれており、すでに一部では
実用化されている。
A typical example of the former type of energy conversion element is a solar cell that utilizes the photovoltaic effect. In light of the recent energy situation, solar cells are expected to be a new energy source in the future, and extensive research and development are being carried out, and some have already been put into practical use.

この太陽電池を始めとするエネルギー変換素子の開発、
研究に係る今後の課題は、低価格化とエネルギー変換効
率の大幅な改善にあるものと思われる。
Development of energy conversion elements including solar cells,
The future challenges for research will likely be to lower costs and significantly improve energy conversion efficiency.

一方、情報変換素子としては光起電力効果を利用したフ
ォトダイオードおよびフォトトランジスタや光導電効果
を利用した光導電セルなどがある。
On the other hand, information conversion elements include photodiodes and phototransistors that utilize the photovoltaic effect, and photoconductive cells that utilize the photoconductive effect.

これらの情報変換素子は近年の光通信技術の発展に伴弓
て各種のものが開発され実用化されているが、今後の情
報変換素子の研究動向の1つとして集積化がある。すな
わち、同一基板上に情報変換素子と電気素子あるいは他
の光素子とを形成して情報の高速処理を可能とするもの
である。
Various types of these information conversion elements have been developed and put into practical use with the recent development of optical communication technology, and one of the future research trends in information conversion elements is integration. That is, information conversion elements and electrical elements or other optical elements are formed on the same substrate to enable high-speed processing of information.

このような情況の下で、最近エネルギー変換素子の低価
格化あるいは情報変換素子の集積化を目的としてこれら
光電変換素子の薄膜化が注目されている。光電変換素子
を薄膜で構成すれば、素子の集積化が可能になるばかり
でなく、高価な半導体材料が節約され、また量産に適し
た薄膜形成法を用いることができるので製造コストの低
減が実現される。
Under these circumstances, attention has recently been focused on thinning photoelectric conversion elements for the purpose of lowering the cost of energy conversion elements or integrating information conversion elements. Constructing photoelectric conversion elements with thin films not only makes it possible to integrate the elements, but also saves expensive semiconductor materials and allows the use of thin film formation methods suitable for mass production, reducing manufacturing costs. be done.

しかしながら、薄膜化により光電変換素子の低価格化お
よび集積化の問題は解決されるものの、光電変換効率等
の特性の点ではまだ不十分であり、さらに改善すべき余
地が多分に残されている。
However, although thinning the film solves the problems of lowering the price and integration of photoelectric conversion elements, it is still insufficient in terms of characteristics such as photoelectric conversion efficiency, and there is still much room for further improvement. .

光起電力効果による、光エネルギーの電気エネルギーへ
の変換は、ます光電変換素子に入射した光が半導体活性
領域に吸収され、そこで電子と正孔とを形成し、かくし
て発生した電子と正孔とが素子の内部電界によって分離
されることに基づく。
The conversion of light energy into electrical energy by the photovoltaic effect occurs when light incident on a photoelectric conversion element is absorbed by the semiconductor active region, where it forms electrons and holes. is separated by the internal electric field of the device.

これを光電流あるいは光電位として外部に取出し、動力
源等として利用することができる。この内部電界は各種
手段によって実現することができ、例えばpin型接合
、ショットキー障壁などがよく知られている。
This can be taken out as a photocurrent or photopotential and used as a power source, etc. This internal electric field can be realized by various means, for example, a pin type junction, a Schottky barrier, etc. are well known.

一方、光導電効果においては、光電変換素子に入射した
光が半導体に吸収され、この光エネルギーにより形成さ
れた電子と正孔とがキャリヤとなって半導体の電気伝導
度が増加することに基づく。
On the other hand, the photoconductive effect is based on the fact that light incident on a photoelectric conversion element is absorbed by a semiconductor, and electrons and holes formed by this light energy become carriers, increasing the electrical conductivity of the semiconductor.

この半導体に外部からバイアス電圧を加えることによっ
て、電気的出力を得ることができる。
Electrical output can be obtained by applying a bias voltage to this semiconductor from the outside.

従って、光起電力効果あるいは光導電効果を利用する光
電変換素子において、半導体領域に吸収される光景が大
きいほど、すなわち光の強さを一定とすれば半導体領域
内への光の浸透深さく光路長)が長いほど、形成される
電子および正孔の濃度が増して変換効率が向上すること
がわかる。
Therefore, in a photoelectric conversion element that utilizes the photovoltaic effect or the photoconductive effect, the larger the scene absorbed by the semiconductor region, that is, if the intensity of the light is constant, the depth of light penetration into the semiconductor region becomes greater. It can be seen that the longer the length), the higher the concentration of formed electrons and holes, and the higher the conversion efficiency.

薄膜光電変換素子の従来例1としてアモルファスシリコ
ン(以下、a−3iとする)薄膜太陽電池の構成を第5
図に示す。すなわち、平坦なガラス基板11と、その上
面に設けられたSn○2透明電極層12と、透明電極層
12の上に設けられたa −3i層13と、a−3i層
13の上に設けられたAI電極層14から構成されてい
る。ここで、a−3i層13はpln型接合構造を有し
ており、透明電極層12の上に順次p型a−3i層、i
型a−3i層およびn型a −3i層が積層されている
As a conventional example 1 of a thin film photoelectric conversion element, the structure of an amorphous silicon (hereinafter referred to as a-3i) thin film solar cell is shown in the fifth example.
As shown in the figure. That is, a flat glass substrate 11, a Sn○2 transparent electrode layer 12 provided on the upper surface thereof, an a-3i layer 13 provided on the transparent electrode layer 12, and an a-3i layer 13 provided on the a-3i layer 13. The electrode layer 14 is composed of an AI electrode layer 14. Here, the a-3i layer 13 has a pln type junction structure, and the p-type a-3i layer, i
A type a-3i layer and an n-type a-3i layer are stacked.

このような構成にして、ガラス基板11側から入射した
光をa−3i層13に導き、ここで光電変換させて、5
n02透明電極層12とAI電極層14との間に起電力
を生じさせるものである。
With this configuration, light incident from the glass substrate 11 side is guided to the a-3i layer 13, where it is photoelectrically converted, and the 5
This is to generate an electromotive force between the n02 transparent electrode layer 12 and the AI electrode layer 14.

しかしながら、ガラス基板11の表面、ガラス基板11
と透明電極12との界面および透明電極12とa−3i
層13との界面における入射光の反射が原因となって、
a−3i層13に入射される光量が小さくなってしまう
。さらに、各層の界面が平坦かつ平行であるので、例え
ば光がガラス基板11に垂直に入射したときには、a−
5i層13にも同様に垂直に入射することになり、光は
a −3i層13内を最短距離を通って通過しようとす
る。
However, the surface of the glass substrate 11,
and the interface between the transparent electrode 12 and the transparent electrode 12 and a-3i
Due to the reflection of the incident light at the interface with the layer 13,
The amount of light incident on the a-3i layer 13 becomes small. Furthermore, since the interfaces of each layer are flat and parallel, for example, when light enters the glass substrate 11 perpendicularly, a-
Similarly, the light is perpendicularly incident on the 5i layer 13, and the light tries to pass through the a-3i layer 13 through the shortest distance.

その結果、素子の変換効率が低下してしまい、所望の特
性を得ることができなかった。
As a result, the conversion efficiency of the element decreased, making it impossible to obtain desired characteristics.

そこで、光電変換効率の向上を目的として考案された従
来例2の構成を第6図に示す。この従来例2は第5図の
従来例1において、SnO□透明電極層12の表面に微
細な凹凸を形成し、その上にa−3i層13を設けるも
のである。SnO□透明電極層12は例えばCVD法に
より形成することができるが、表面の微細な凹凸は、C
VD反応時の温度あるいは圧力等の設定条件の変更によ
って形成される。この微細な凹凸が設けられたことによ
り、ガラス基板11から透明電極層12に入射した光は
、透明電極層12とa −3i層13との界面で不規則
な方向に屈折あるいは回折してa−3i層13内に浸透
する。従って、ガラス基板11に垂直に入射した光の大
部分がa−3i層13内では斜めに進行するので、a 
−3i層13内における光路長が長くなり、この結果光
電変換効率が向上する。
FIG. 6 shows a configuration of a second conventional example devised for the purpose of improving photoelectric conversion efficiency. This conventional example 2 differs from the conventional example 1 shown in FIG. 5 in that fine irregularities are formed on the surface of the SnO□ transparent electrode layer 12, and an a-3i layer 13 is provided thereon. The SnO□ transparent electrode layer 12 can be formed, for example, by the CVD method, but fine irregularities on the surface are
It is formed by changing the set conditions such as temperature or pressure during the VD reaction. By providing these fine irregularities, light incident on the transparent electrode layer 12 from the glass substrate 11 is refracted or diffracted in irregular directions at the interface between the transparent electrode layer 12 and the a-3i layer 13. - Penetrates into the 3i layer 13. Therefore, most of the light incident perpendicularly on the glass substrate 11 travels obliquely within the a-3i layer 13;
The optical path length within the −3i layer 13 becomes longer, resulting in improved photoelectric conversion efficiency.

しかしながら、一般に透過性をよくするために透明電極
層12の厚さは数μm以下に設定され非常に薄いので、
この透明電極層12に規則性のある所望の凹凸を形成す
ることは現在の技術では困難である。従って、形成され
た凹凸状態が不均一となり、a −5i層13内におけ
る光路長の長大化が十分にはなされないとともに、この
凹凸のある透明電極層12の上に形成されるa −3i
層13の膜厚が不均一となるので透明電極層12とAI
電極層14との間のシャント抵抗が小さくなるなど、素
子の特性劣化の原因が生じてしまう。
However, in general, the thickness of the transparent electrode layer 12 is set to several micrometers or less in order to improve transparency, so it is very thin.
It is difficult with current technology to form desired regular irregularities on the transparent electrode layer 12. Therefore, the formed unevenness becomes non-uniform, the optical path length within the a-5i layer 13 is not sufficiently increased, and the a-3i formed on the uneven transparent electrode layer 12
Since the thickness of layer 13 is non-uniform, transparent electrode layer 12 and AI
This may cause deterioration of the characteristics of the element, such as a decrease in shunt resistance with the electrode layer 14.

このようにして作製された第5図および第6図のような
構成の従来例1.2に係る太陽電池の諸特性を以下の第
1表に示す。ただし、従来例2は厚さ1μmの透明電極
層12の表面に約0.1μmの凹凸を設けたものである
Table 1 below shows various characteristics of the solar cell according to Conventional Example 1.2 having the configuration shown in FIGS. 5 and 6, which was manufactured in this manner. However, in Conventional Example 2, irregularities of approximately 0.1 μm are provided on the surface of the transparent electrode layer 12 having a thickness of 1 μm.

第1表 第1表に示されるように、透明電極層120表面に微細
な凹凸を形成した従来例2の諸特性は従来例1よりもわ
ずかに変換効率が大きいものの、まだ不十分なものであ
った。
Table 1 As shown in Table 1, although the conversion efficiency of Conventional Example 2 in which fine irregularities were formed on the surface of the transparent electrode layer 120 is slightly higher than that of Conventional Example 1, it is still insufficient. there were.

また、これら従来例の他、反射損失を減少させるために
反射防止膜などを設ける方法もあるが、反射防止膜では
特定の波長域の光にしか有効でないので、十分な特性を
得ることはできなかった。
In addition to these conventional methods, there is also a method of installing an anti-reflection film to reduce reflection loss, but since anti-reflection films are only effective for light in a specific wavelength range, sufficient characteristics cannot be obtained. There wasn't.

発明が解決しようとする問題点 以上述べたように、太陽電池その他の光電変換素子にお
いて、薄膜化することにより低価格化および集積化の問
題は解決されつつある。しかしながら、変換効率等の諸
特性は依然として不十分であり、さらに一層の改善が望
まれている。
Problems to be Solved by the Invention As described above, the problems of cost reduction and integration of solar cells and other photoelectric conversion elements are being solved by thinning the films. However, various properties such as conversion efficiency are still insufficient, and further improvement is desired.

そこで、本発明の目的は、変換効率など諸特性の優れた
薄膜光電変換素子を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a thin film photoelectric conversion element having excellent properties such as conversion efficiency.

問題点を解決するための手段 本発明者は、変換効率等各種特性の優れた薄膜光電変換
素子を開発すべく種々検討、研究した結果、基板表面に
規則的な凹凸を設け、その上に一定膜厚の電極層や半導
体層を形成して光電変換素子を構成することが゛有効で
あることを見出した。
Means for Solving the Problems As a result of various studies and studies aimed at developing a thin film photoelectric conversion element with excellent conversion efficiency and various other properties, the inventor of the present invention created regular irregularities on the surface of the substrate, We have found that it is effective to form a photoelectric conversion element by forming a thick electrode layer or semiconductor layer.

すなわち、本発明の薄膜光電変換素子は、表面が凹凸形
状をなしている基板と、該基板表面上に形成され、半導
体層と該半導体層をはさむ透明電極層および電極層から
なる多層薄膜とを有することを特徴とする。
That is, the thin film photoelectric conversion element of the present invention includes a substrate having an uneven surface, and a multilayer thin film formed on the surface of the substrate and consisting of a semiconductor layer, a transparent electrode layer sandwiching the semiconductor layer, and an electrode layer. It is characterized by having.

また、本発明の好ましい態様においては、基板がガラス
からなっており、第1図にこの態様における本発明の薄
膜光電変換素子の断面図を示す。
Further, in a preferred embodiment of the present invention, the substrate is made of glass, and FIG. 1 shows a cross-sectional view of the thin film photoelectric conversion element of the present invention in this embodiment.

以下、この断面図に沿って説明する。Hereinafter, explanation will be given along this cross-sectional view.

まず、ガラス基板1の表面に所望の大きさの凹凸を形成
する。形成方法としては、 (1)表面状態調節用のロールとして円筒面上に凹凸が
設けられたロールを用意し、ガラス基板製造時にガラス
軟化温度域のガラス基板の表面をこのロールで押付ける
ことにより表面加工を施す。
First, irregularities of a desired size are formed on the surface of the glass substrate 1. The forming method is as follows: (1) Prepare a roll with unevenness on the cylindrical surface as a roll for adjusting the surface condition, and press this roll against the surface of the glass substrate in the glass softening temperature range during glass substrate production. Apply surface treatment.

(2)平坦な表面を有するガラス基板を製造した後、該
表面をエツチングすることにより粗面化する。
(2) After manufacturing a glass substrate with a flat surface, the surface is roughened by etching.

なお、エツチングの方式としては、HF5HF+ N 
H4F 、 HF + HN 03等をエツチング液と
したウェットエツチング法やHF、CHF3等をエツチ
ングガスとしたプラズマエツチング法の他、スパッタエ
ツチング法あるいはイオンビームエツチング法を用いる
ことができる。
The etching method is HF5HF+N
In addition to the wet etching method using H4F, HF+HN03, etc. as an etching liquid, the plasma etching method using HF, CHF3, etc. as an etching gas, a sputter etching method or an ion beam etching method can be used.

(3)平坦な表面を有するガラス基板を製造した後、該
表面に切削および研摩などの機械加工を施す。
(3) After manufacturing a glass substrate with a flat surface, the surface is subjected to mechanical processing such as cutting and polishing.

などがあり、さらに以上のようにして凹凸を形成した後
、ガラス基板1の表面形状の安定化およびガラス表面の
結晶性の回復を目的として熱処理を施してもよい。
After forming the unevenness as described above, heat treatment may be performed for the purpose of stabilizing the surface shape of the glass substrate 1 and recovering the crystallinity of the glass surface.

ガラス基板1の上に形成される透明電極層2の材料とし
ては、透明度および導電性に優れた5nOzやITOが
適しており、CVD法あるいは蒸着法等により膜厚0.
01〜5μm程度で形成する。
Suitable materials for the transparent electrode layer 2 formed on the glass substrate 1 are 5nOz and ITO, which have excellent transparency and conductivity, and are formed to a film thickness of 0.5nm by CVD or vapor deposition.
It is formed with a thickness of about 0.01 to 5 μm.

また、光電変換が行なわれる半導体層3としては、光吸
収係数の大きいa −3i、 GaAsを始めとする■
−■族化合物半導体およびII−VI族化合物半導体を
用いることができ、例えばa −3iの場合には膜厚0
.5〜1μm程度、GaAsの場合には膜厚l〜2μm
程度、プラズマCVD法、スパッタ法あるいは蒸着法等
により形成する。なお、太陽電池等の光起電力素子を構
成する場合には、この半導体層3内にpn接合、pin
接合あるいはへテロ接合を形成する必要がある。
In addition, as the semiconductor layer 3 in which photoelectric conversion is performed, materials such as a-3i and GaAs, which have a large light absorption coefficient, can be used.
- ■ Group compound semiconductors and II-VI group compound semiconductors can be used, for example, in the case of a -3i, the film thickness is 0.
.. Approximately 5 to 1 μm, in the case of GaAs, the film thickness is 1 to 2 μm
It is formed by a plasma CVD method, a sputtering method, a vapor deposition method, or the like. Note that when configuring a photovoltaic element such as a solar cell, a pn junction, a pin
It is necessary to form a junction or a heterojunction.

最上層となる電極層4には、反射率が大きく、かつ良導
性の金属材料が適しており、特にAIやAg等を例示で
き、これらは蒸着法、スパッタ法、イオンブレーティン
グ法あるいはCVD法などにより形成される。
For the electrode layer 4, which is the uppermost layer, a metal material with high reflectance and good conductivity is suitable, and examples include AI and Ag in particular. Formed by law etc.

なお、第1図に示される構成の他、凹凸形状を有する基
板上にショットキー障壁型あるいはMIS型太陽電池を
構成した光起電力素子も本発明の範囲に当然含まれる。
In addition to the configuration shown in FIG. 1, the scope of the present invention also naturally includes a photovoltaic element in which a Schottky barrier type or MIS type solar cell is configured on a substrate having an uneven shape.

作用 以上のような構成とすることによって、基板上に一定厚
の薄膜を形成するだけで、薄膜の表面は基板表面と同様
の凹凸形状となる。さらに、前述の従来例2において表
面上に凹凸を設けようとした厚さ数μm以下の透明電極
層に比べて、基板ははるかに厚いものであるので、この
基板表面に適度な大きさの凹凸を高精度で形成すること
は容易である。従って、基板上に形成された薄膜の表面
を均一性の優れた凹凸形状とすることができる。
Effect By using the above-described configuration, simply by forming a thin film of a constant thickness on a substrate, the surface of the thin film has an uneven shape similar to that of the substrate surface. Furthermore, since the substrate is much thicker than the transparent electrode layer with a thickness of several μm or less, in which unevenness was attempted to be provided on the surface in Conventional Example 2, the unevenness of an appropriate size is formed on the surface of the substrate. It is easy to form with high precision. Therefore, the surface of the thin film formed on the substrate can have an uneven shape with excellent uniformity.

例えば、第1図に示す構成とした場合、ガラス基板1の
上に透明電極層2、半導体層3′J6よび電極層4を順
次それぞれ一定の厚さで積層すれば、各界面は同様の凹
凸形状となる。
For example, in the case of the structure shown in FIG. 1, if the transparent electrode layer 2, the semiconductor layer 3'J6, and the electrode layer 4 are sequentially laminated on the glass substrate 1 with a constant thickness, each interface will have similar unevenness. It becomes a shape.

その結果、ガラス基板1を透過し、さらに透明電極層2
から半導体層3に入射する光は、第2図に示されるよう
に、まずA点で屈折光と反射光に分波し、さらにこの反
射光はB点で再び半導体層3に入射して屈折光を生じる
。このように、透明電極層2と半導体層3との界面にお
いて、入射光の多重反射屈折が行なわれるので、この界
面での反射光量が減少する。
As a result, it passes through the glass substrate 1 and further transmits the transparent electrode layer 2.
As shown in FIG. 2, the light that enters the semiconductor layer 3 from above is first split into refracted light and reflected light at point A, and then this reflected light enters the semiconductor layer 3 again at point B and is refracted. Produce light. In this way, multiple reflection and refraction of the incident light is performed at the interface between the transparent electrode layer 2 and the semiconductor layer 3, so the amount of reflected light at this interface is reduced.

同様にして、反射光量の減少はガラス基板1と透明電極
層2との界面においても生じることになる。
Similarly, the amount of reflected light also decreases at the interface between the glass substrate 1 and the transparent electrode layer 2.

さらに、第2図かられかるように、半導体層3内に浸透
していく屈折光の進行方向は入射光の方向と異なるので
半導体層3内の光路長が長くなる。
Furthermore, as can be seen from FIG. 2, the traveling direction of the refracted light penetrating into the semiconductor layer 3 is different from the direction of the incident light, so that the optical path length within the semiconductor layer 3 becomes longer.

また電極層4に反射率の大きい材料を用いているので、
半導体層3内で吸収されなかった光は電極層4との界面
で反射されて再び半導体層3内を通過することになり、
一層光路長が長くなる。
In addition, since a material with high reflectance is used for the electrode layer 4,
The light that is not absorbed within the semiconductor layer 3 is reflected at the interface with the electrode layer 4 and passes through the semiconductor layer 3 again.
The optical path length becomes even longer.

また、均一性の良い凹凸形状のガラス基板1上に各層が
順次形成されるので、半導体層3の膜厚は均一なものと
なる。ここで、ガラス基板1上に形成された凹凸の局部
が鋭い形状になっていても、この上に透明電極層2を堆
積するので透明電極層2の上面は連続的な面となり、こ
の面上に形成される半導体層3は適度な凹凸状態となる
。従って、従来例2のように透明電極層2と電極層3と
の間のシャント抵抗が小さくなることはない。
Moreover, since each layer is sequentially formed on the glass substrate 1 having an uneven shape with good uniformity, the thickness of the semiconductor layer 3 becomes uniform. Here, even if the unevenness formed on the glass substrate 1 has a sharp local part, since the transparent electrode layer 2 is deposited on top of this, the upper surface of the transparent electrode layer 2 becomes a continuous surface. The semiconductor layer 3 formed in this manner has an appropriate unevenness. Therefore, unlike the conventional example 2, the shunt resistance between the transparent electrode layer 2 and the electrode layer 3 does not become small.

かくして、本発明の薄膜光電変換素子は変換効率が非常
に高いものとなる。すなわち、光導電素子においては明
時の抵抗値と暗時の抵抗値との差が大きく、また光起電
力素子においては生じる電力が大きくなる。さらに、反
射防止膜による反射光量の減少と異なり、本発明では広
範囲にわたる波長域の光に対して反射損失の減少化が達
成される。
Thus, the thin film photoelectric conversion element of the present invention has extremely high conversion efficiency. That is, in a photoconductive element, there is a large difference between the resistance value in the bright state and the resistance value in the dark state, and in the photovoltaic element, the generated electric power becomes large. Furthermore, unlike the reduction in the amount of reflected light caused by an antireflection film, the present invention achieves a reduction in reflection loss for light in a wide wavelength range.

実施例 以下、本発明の実施例について添付図面を参照して説明
する。ただし、本発明は以下の実施例により同等制限さ
れない。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the same extent by the following examples.

記載した。これらの結果の比較から、本発明による太陽
電池は非常に優れた特性を有することがわかる。
Described. A comparison of these results shows that the solar cell according to the present invention has very excellent characteristics.

なお、上記の実施例1.2では太陽電池を構成したが、
その他の光起電力素子あるいは光導電素子を構成しても
同様に優れた特性を示すことは言うまでもない。
In addition, in the above Example 1.2, a solar cell was constructed, but
It goes without saying that other photovoltaic elements or photoconductive elements can exhibit similarly excellent characteristics.

発明の効果 以上詳しく述べたように、本発明によれば、基板表面上
に設けられた凹凸が光電変換の反射損失を減少させると
ともに、半導体層等の薄膜中での光路長を長大化する。
Effects of the Invention As described in detail above, according to the present invention, the unevenness provided on the substrate surface reduces reflection loss in photoelectric conversion and increases the optical path length in a thin film such as a semiconductor layer.

従って、幅広い波長域において変換効率が著しく向上す
る等、光電変換の各種特性が優れたものとなる。
Therefore, various characteristics of photoelectric conversion, such as significantly improved conversion efficiency in a wide wavelength range, are achieved.

かくして、本発明による薄膜光電変換素子は太陽電池、
光センサ、光導電セル等として用いるのに極めて適した
ものとなる。
Thus, the thin film photoelectric conversion element according to the present invention can be used as a solar cell,
This makes it extremely suitable for use as optical sensors, photoconductive cells, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明薄膜光電変換素子の一構成例を示す断面
図、 第2図は凹凸面による多重反射屈折を示す説明(主な参
照番号) 1.11・・ガラス基板、 2.12・・透明電極層、
3・・半導体層、     4・・電極層、13・・a
−81層、    14・・Δl電極層特許出願人 工
業技術院長 等々力 達第1図 第2図 1・・・Tつス墓n     3−+1愕12・aBM
taA  4−t&4 第3図 第4図 使ド 第5 第6 11・・・Tラス蔦1墓        13・・・a
」 −Si層
Fig. 1 is a cross-sectional view showing an example of the structure of the thin film photoelectric conversion element of the present invention, Fig. 2 is an explanation showing multiple reflection/refraction due to an uneven surface (main reference numbers) 1.11...Glass substrate, 2.12...・Transparent electrode layer,
3...Semiconductor layer, 4...Electrode layer, 13...a
-81 layer, 14...Δl electrode layer Patent applicant Director of the Agency of Industrial Science and Technology Tatsu Todoroki Figure 1 Figure 2 1...Tsu grave n 3-+1 shock 12・aBM
taA 4-t&4 Figure 3 Figure 4 Envoy No. 5 6 11...T Ras Ivy 1 Tomb 13...a
” -Si layer

Claims (6)

【特許請求の範囲】[Claims] (1)表面が凹凸形状をなしている基板と、該基板表面
上に形成され、半導体層と該半導体層をはさむ透明電極
層および電極層からなる多層薄膜と を有することを特徴とする薄膜光電変換素子。
(1) A thin film photovoltaic device characterized by having a substrate having an uneven surface, and a multilayer thin film formed on the surface of the substrate and consisting of a semiconductor layer, a transparent electrode layer sandwiching the semiconductor layer, and an electrode layer. conversion element.
(2)前記半導体層がpn接合、pin接合およびヘテ
ロ接合のうちいずれかを有していることを特徴とする特
許請求の範囲第1項記載の薄膜光電変換素子。
(2) The thin film photoelectric conversion element according to claim 1, wherein the semiconductor layer has any one of a pn junction, a pin junction, and a heterojunction.
(3)前記基板がガラスからなることを特徴とする特許
請求の範囲第1項又は第2項に記載の薄膜光電変換素子
(3) The thin film photoelectric conversion element according to claim 1 or 2, wherein the substrate is made of glass.
(4)前記基板の凹凸形状がロール成形により形成され
ることを特徴とする特許請求の範囲第3項に記載の薄膜
光電変換素子。
(4) The thin film photoelectric conversion element according to claim 3, wherein the uneven shape of the substrate is formed by roll forming.
(5)前記基板の凹凸形状がエッチングにより形成され
ることを特徴とする特許請求の範囲第3項に記載の薄膜
光電変換素子。
(5) The thin film photoelectric conversion element according to claim 3, wherein the uneven shape of the substrate is formed by etching.
(6)前記基板の凹凸形状が機械加工により形成される
ことを特徴とする特許請求の範囲第3項に記載の薄膜光
電変換素子。
(6) The thin film photoelectric conversion element according to claim 3, wherein the uneven shape of the substrate is formed by machining.
JP60119854A 1985-06-04 1985-06-04 Thin film photoelectric conversion element Expired - Lifetime JPH0750793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60119854A JPH0750793B2 (en) 1985-06-04 1985-06-04 Thin film photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60119854A JPH0750793B2 (en) 1985-06-04 1985-06-04 Thin film photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPS61278171A true JPS61278171A (en) 1986-12-09
JPH0750793B2 JPH0750793B2 (en) 1995-05-31

Family

ID=14771913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60119854A Expired - Lifetime JPH0750793B2 (en) 1985-06-04 1985-06-04 Thin film photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH0750793B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296382A (en) * 1988-09-30 1990-04-09 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPH02164077A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell
JPH03225876A (en) * 1990-01-31 1991-10-04 Hitachi Ltd Structure of board for corrugated solar battery
DE4201126A1 (en) * 1992-01-17 1992-06-11 Gerhard Dr Ing Schumm Semiconductor thin film component for photoelectric energy conversion - has sawtooth formation of active layer on rear face for multiple internal reflection of unabsorbed light
JP2002261302A (en) * 2001-02-28 2002-09-13 Kyocera Corp THIN-FILM CRYSTALLINE Si SOLAR CELL
WO2008133770A1 (en) 2007-04-26 2008-11-06 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
JPWO2007058118A1 (en) * 2005-11-17 2009-04-30 旭硝子株式会社 Transparent conductive substrate for solar cell and method for producing the same
WO2010044269A1 (en) * 2008-10-17 2010-04-22 株式会社アルバック Manufacturing method for solar cell
ITMI20100614A1 (en) * 2010-04-12 2011-10-13 Ind E Innovazione S P A PHOTOVOLTAIC CELL, IN PARTICULAR FOR INTEGRATED ARCHITECTURAL APPLICATIONS, AND METHOD OF MANUFACTURE OF THIS CELL
US8936842B2 (en) 2007-01-08 2015-01-20 Guardian Industris Corp. Low-E coating having zinc aluminum oxide based layer doped with yttrium
CN111446372A (en) * 2020-03-20 2020-07-24 杭州电子科技大学 Wavy ITO transparent electrode and organic solar cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59127880A (en) * 1983-11-10 1984-07-23 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and manufacture thereof
JPS59152676A (en) * 1983-02-21 1984-08-31 Sumitomo Electric Ind Ltd Amorphous silicon photovoltaic element
JPS59152672A (en) * 1983-02-19 1984-08-31 Semiconductor Energy Lab Co Ltd Photoelectric converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152672A (en) * 1983-02-19 1984-08-31 Semiconductor Energy Lab Co Ltd Photoelectric converter
JPS59152676A (en) * 1983-02-21 1984-08-31 Sumitomo Electric Ind Ltd Amorphous silicon photovoltaic element
JPS59127880A (en) * 1983-11-10 1984-07-23 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and manufacture thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296382A (en) * 1988-09-30 1990-04-09 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPH02164077A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell
JPH0583199B2 (en) * 1988-12-19 1993-11-25 Hitachi Ltd
JPH03225876A (en) * 1990-01-31 1991-10-04 Hitachi Ltd Structure of board for corrugated solar battery
DE4201126A1 (en) * 1992-01-17 1992-06-11 Gerhard Dr Ing Schumm Semiconductor thin film component for photoelectric energy conversion - has sawtooth formation of active layer on rear face for multiple internal reflection of unabsorbed light
JP2002261302A (en) * 2001-02-28 2002-09-13 Kyocera Corp THIN-FILM CRYSTALLINE Si SOLAR CELL
JPWO2007058118A1 (en) * 2005-11-17 2009-04-30 旭硝子株式会社 Transparent conductive substrate for solar cell and method for producing the same
US8936842B2 (en) 2007-01-08 2015-01-20 Guardian Industris Corp. Low-E coating having zinc aluminum oxide based layer doped with yttrium
EP2372777A3 (en) * 2007-04-26 2012-05-30 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
WO2008133770A1 (en) 2007-04-26 2008-11-06 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
WO2010044269A1 (en) * 2008-10-17 2010-04-22 株式会社アルバック Manufacturing method for solar cell
KR101238285B1 (en) * 2008-10-17 2013-02-28 가부시키가이샤 아루박 Manufacturing method for solar cell
JP5165765B2 (en) * 2008-10-17 2013-03-21 株式会社アルバック Manufacturing method of solar cell
US8460965B2 (en) 2008-10-17 2013-06-11 Ulvac, Inc. Manufacturing method for solar cell
ITMI20100614A1 (en) * 2010-04-12 2011-10-13 Ind E Innovazione S P A PHOTOVOLTAIC CELL, IN PARTICULAR FOR INTEGRATED ARCHITECTURAL APPLICATIONS, AND METHOD OF MANUFACTURE OF THIS CELL
CN111446372A (en) * 2020-03-20 2020-07-24 杭州电子科技大学 Wavy ITO transparent electrode and organic solar cell

Also Published As

Publication number Publication date
JPH0750793B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
JP5150473B2 (en) Stacked photoelectric conversion device
US4644091A (en) Photoelectric transducer
KR101247916B1 (en) Photovoltaic modules and methods for manufacturing photovoltaic modules having tandem semiconductor layer stacks
US8410353B2 (en) Asymmetric surface texturing for use in a photovoltaic cell and method of making
EP0112646A2 (en) Photovoltaic device
JP2002057359A (en) Laminated solar battery
JP2008181965A (en) Laminated optoelectric converter and its fabrication process
JPWO2017057646A1 (en) Multi-junction photoelectric conversion device and photoelectric conversion module
US20120227805A1 (en) Solar cell
JPS61278171A (en) Thin film photoelectric conversion device
JP2003124481A (en) Solar battery
KR101658534B1 (en) Solar cell and method for fabricaitng the same
JPS62209872A (en) Photoelectric conversion element
US20150179843A1 (en) Photovoltaic device
TW201001731A (en) Photovoltaic device and method of manufacturing a photovoltaic device
JPS6276569A (en) Thin-film photoelectric conversion element
KR102093567B1 (en) Photovoltaic cell and method of fabricating the same
TWI453928B (en) Photovoltaic modules and methods for manufacturing photovoltaic modules having tandem semiconductor layer stacks
JPS61203665A (en) Production of amorphous silicon-type photo-diode
JP2869178B2 (en) Photovoltaic device
JP2009231499A (en) Photoelectric conversion device
US20120160315A1 (en) Thin film solar cell module and manufacturing method thereof
JPH04133362A (en) Photovoltaic device
US20180158968A1 (en) Solar cell and method of manufacturing the same
JPH0366177A (en) Photovoltaic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term