JPH03225876A - Structure of board for corrugated solar battery - Google Patents

Structure of board for corrugated solar battery

Info

Publication number
JPH03225876A
JPH03225876A JP2019025A JP1902590A JPH03225876A JP H03225876 A JPH03225876 A JP H03225876A JP 2019025 A JP2019025 A JP 2019025A JP 1902590 A JP1902590 A JP 1902590A JP H03225876 A JPH03225876 A JP H03225876A
Authority
JP
Japan
Prior art keywords
grooves
axis
substrate
regions
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019025A
Other languages
Japanese (ja)
Other versions
JPH073879B2 (en
Inventor
Tsuyoshi Uematsu
上松 強志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019025A priority Critical patent/JPH073879B2/en
Publication of JPH03225876A publication Critical patent/JPH03225876A/en
Publication of JPH073879B2 publication Critical patent/JPH073879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To elevate strength while thinning a board by making a trench, not substantially parallel with a straight line, exist on the straight line optionally crossing the main surface of a board. CONSTITUTION:The main surface of a board is divided in two kinds, large and small, of squares. For the larger squares out of them, for example, regions 1 to 3 are made the regions which have V grooves parallel with the X axis, and the regions 11 and 12 are made the regions which have V grooves parallel with the Y axis. For this reason, a region, which has V grooves 20 parallel with the X axis, surely exists on any straight line which crosses, in parallel with the Y axis, for example the main surface of the board, and also a region, which has V grooves parallel with the Y axis, surely exists even on any straight line, which crosses it in parallel with the X axis. Hereby, even in case that the stress is added in the direction parallel with the X-axis or the Y-axis to the main surface of the board, the mechanical strength of the board can be maintained enough large.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コルゲート型基板を用いた太陽電池用基板の
構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the structure of a solar cell substrate using a corrugated substrate.

〔従来の技術〕[Conventional technology]

従来は、rThe Conference Recor
d of the20th IEEE Photovo
ltaic 5pecialistsconferen
ce 1988 pp、792−795Jに示す様に基
板の主表面に形成された■溝が同一方向を向いていたた
めそれと直角にクロスビームを設けて機械的強度を高め
ていた。
Conventionally, rThe Conference Record
d of the 20th IEEE Photovo
taic 5specialistsconferen
CE 1988 pp, 792-795J, since the grooves formed on the main surface of the substrate were oriented in the same direction, a cross beam was provided at right angles thereto to increase mechanical strength.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の様に、従来はクロスビームを付加することにより
該素子の強度を高めていたが、素子特性の向上のために
はクロスビームの面積を大きくすることが出来ないため
、十分な機械的強度を得ることが困難であった。
As mentioned above, conventionally, the strength of the element was increased by adding a cross beam, but since it is not possible to increase the area of the cross beam in order to improve the element characteristics, sufficient mechanical strength is required. was difficult to obtain.

本発明の目的は、素子特性を劣化させることなく、機械
的強度を高めることのできるコルゲート型太陽電池用基
板を提供することにある。
An object of the present invention is to provide a corrugated solar cell substrate that can increase mechanical strength without deteriorating device characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明では、該基板の主表面
に形成された複数のV溝の方向の少くとも一部が、他と
異なる方向を有する構造とした。
In order to achieve the above object, the present invention has a structure in which at least some of the directions of the plurality of V grooves formed on the main surface of the substrate are different from the others.

〔作用〕[Effect]

図面を用いて上記手段を説明する。 The above means will be explained using the drawings.

従来のコルゲート型太陽電池用の基板は、第2図に示す
ように、■溝20に直交したクロスビーム100を設け
ることにより同図A−A’方向にかかる応力に対する機
械的強度を保っていた。この構造を用いて強度を高める
ためにはクロスビーム100の面積を大きくする必要が
ある。しかし、B−B’断面図から判るようにクロスビ
ームの部分の基板厚は他の部分に比べて大きくなってい
るためこの面積が多くなると基板の平均の厚みを薄く保
つことが出来なくなる。
As shown in Fig. 2, conventional substrates for corrugated solar cells maintain mechanical strength against stress applied in the direction A-A' in the figure by providing a cross beam 100 orthogonal to the groove 20. . In order to increase the strength using this structure, it is necessary to increase the area of the cross beam 100. However, as can be seen from the BB' cross-sectional view, the substrate thickness at the cross beam portion is larger than other portions, so if this area increases, it becomes impossible to keep the average thickness of the substrate thin.

上記の問題点を解決するために、■溝を有する領域を細
分化し、例えば、該領域の配置が第1図に示す構造とし
た。この構造では該基板の主表面を大小二つの正方形に
分けている。このうち大きい方の正方形は例えば図中の
領域1,2.3をX軸に平行なV溝を持つ領域に、領域
11.12をY軸に平行な■溝を持つ領域とする。これ
により、例えば該基板の主表面をY軸に平行に横断する
いかなる直線上においても、必ずX軸に平行なV溝を持
つ領域が存在する。また、X軸に平行に横断する直線に
おいても必ずY軸に平行なV溝を持つ領域が存在する。
In order to solve the above-mentioned problem, the region having the grooves was divided into smaller parts, and the arrangement of the regions was made into a structure as shown in FIG. 1, for example. In this structure, the main surface of the substrate is divided into two squares, large and small. Among the larger squares, for example, regions 1 and 2.3 in the figure are regions having V-grooves parallel to the X-axis, and regions 11.12 are regions having ■-grooves parallel to the Y-axis. As a result, for example, on any straight line that crosses the main surface of the substrate parallel to the Y-axis, there is always a region having a V-groove parallel to the X-axis. Further, even in a straight line that crosses parallel to the X-axis, there is always a region having a V-groove parallel to the Y-axis.

これにより該基板の主表面に対してX軸、またはY軸に
平行な方向に応力が加わった場合にも該基板の機械的強
度は十分に大きく保つことが出来る。
As a result, even when stress is applied to the main surface of the substrate in a direction parallel to the X-axis or the Y-axis, the mechanical strength of the substrate can be maintained sufficiently high.

上記の説明では各々の領域の最少の繰り返しパターンに
ついて説明したが、このパターンで該基板の主な部分を
覆う必要があることは言うまでもない。また、同図の領
域2,11および3,12をそれぞれX軸およびY軸に
平行なV溝をもつ領域としても同様のことが言える。ま
た、小さい正方形の部分はいかなる規則によってX軸ま
たはY軸に平行なV溝をもつ領域に分けられていてもよ
い。更に、上記説明におけるX軸、Y軸に平行なV溝は
同図のY′軸の様な斜めに走る方向を向いていでもよい
Although the above description describes the minimally repeated pattern in each area, it goes without saying that this pattern must cover the main portion of the substrate. The same thing can be said if regions 2, 11 and 3, 12 in the same figure are regions having V grooves parallel to the X axis and the Y axis, respectively. Further, the small square portion may be divided into regions having V grooves parallel to the X or Y axis according to any rule. Furthermore, the V-grooves parallel to the X-axis and Y-axis in the above description may be oriented in an oblique direction like the Y'-axis in the figure.

ここで最も重要なことは、該基板の主表面を横断する任
意の直線上に少なくとも−ケ所の該直線に実質的に平行
でないV溝を持つ領域が存在する事である。
The most important thing here is that on any straight line that crosses the main surface of the substrate, there are at least two regions having V-grooves that are not substantially parallel to the straight line.

以下に本発明の応用例を示す。Application examples of the present invention are shown below.

第3図に長方形と正方形を用いた例を示す。この例では
、例えば領域1,2,3,4.5と領域11.12,1
3.14をそれぞれ異なった方向の■溝を持つ領域とす
る事により上記目的が達せられる。
Figure 3 shows an example using rectangles and squares. In this example, for example, areas 1, 2, 3, 4.5 and areas 11, 12, 1
The above objective can be achieved by forming 3.14 into regions having grooves in different directions.

第4図にはL字型を用いた例を示す。この例では、例え
ば領域1,2.3・・・と領域11゜12.13・・・
をそれぞれ異なった方向のV溝を持つ領域とする事によ
り上記目的が達せられる。
FIG. 4 shows an example using an L-shape. In this example, for example, areas 1, 2.3... and areas 11°12.13...
The above objective can be achieved by forming regions having V grooves in different directions.

第5図には長方形のみを用いた例を示す。この例では、
例えば領域1,2.3・・・と領域11゜1.2.13
・・・をそれぞれ異なった方向の■溝を持つ領域とする
事により上記目的が達せられる。
FIG. 5 shows an example using only rectangles. In this example,
For example, area 1, 2.3... and area 11゜1.2.13
The above objective can be achieved by making ... into regions having ■grooves in different directions.

第6図にはT字型を用いた例を示す。この例では、例え
ば領域1,2.3・・・と領域11゜12・・・をそれ
ぞれ異なった方向の■溝を持つ領域とする事により上記
目的が達せられる。
FIG. 6 shows an example using a T-shape. In this example, the above object can be achieved by, for example, making regions 1, 2, 3, . . . and regions 11, 12, . . . regions having grooves in different directions.

第7図には十字型を用いた例を示す。この例では、例え
ば領域1,2・・・と領域11.12・・・をそれぞれ
異なった方向のV溝を持つ領域とする事により上記目的
が達せられる。
FIG. 7 shows an example using a cross shape. In this example, the above objective can be achieved by, for example, making regions 1, 2, . . . and regions 11, 12, . . . regions having V-grooves in different directions.

第8図には鍵型を用いた例を示す。この例では、例えば
領域1,2・・・と領域11.12・・・をそれぞれ異
なった方向のV溝を持つ領域とする事により上記目的が
達せられる。
FIG. 8 shows an example using a key type. In this example, the above objective can be achieved by, for example, making regions 1, 2, . . . and regions 11, 12, . . . regions having V-grooves in different directions.

次に、第9図を用いて他の例を示す。この例では該基板
の主な領域1はY軸に平行なV溝を持ち、領域2はX軸
に平行なV溝を持つ。この様な構造によっても上記目的
を達成することが出来ることは明らかである。
Next, another example will be shown using FIG. In this example, main region 1 of the substrate has a V-groove parallel to the Y-axis, and region 2 has a V-groove parallel to the X-axis. It is clear that the above object can also be achieved with such a structure.

第10図に第9図で説明した例の応用を示す。FIG. 10 shows an application of the example explained in FIG. 9.

この例では第9図での領域2の形状が本図の領域2.3
.4の様な形状に置き変わっている。
In this example, the shape of area 2 in Figure 9 is area 2.3 in this figure.
.. It has been replaced with a shape similar to 4.

これまで種々の例を挙げて説明したが、該基板の主表面
を横断する直線上に少くとも一ケ所の該直線に平行でな
い■溝を持つ領域が存在する事を満足する組合せならば
どのような組合せであっても本願発明の目的を達するこ
とができる。
We have explained various examples so far, but what combinations can be considered as long as it satisfies the existence of at least one region on a straight line that crosses the main surface of the substrate that has a groove that is not parallel to the straight line? The object of the present invention can be achieved even with a simple combination.

更に、他の応用例として、第11図に該基板の主表面を
4つの部分に、例えば領域1,3をX軸に平行な■溝を
持つ領域に、また領域2,4をY軸に平行なV溝を持つ
領域に分割した例を示す。
Furthermore, as another application example, as shown in FIG. 11, the main surface of the substrate is divided into four parts, for example, regions 1 and 3 are regions with grooves parallel to the X axis, and regions 2 and 4 are arranged along the Y axis. An example is shown in which the area is divided into areas having parallel V grooves.

この例においても例えば領域1,2と領域3,4の■溝
の方向を合わせたり、各々の■溝の方向を入れ替えるこ
とにより種々の組合せを得ることが出来る。
In this example as well, various combinations can be obtained by, for example, matching the directions of the grooves in regions 1 and 2 and regions 3 and 4, or by switching the directions of the grooves in each region.

また、第12図に示すように該基板の主表面の領域を分
割し各々の領域のV溝の方向を組み合わせることも可能
である。
Furthermore, as shown in FIG. 12, it is also possible to divide the main surface of the substrate into regions and to combine the directions of the V-grooves in each region.

第11図や12図では該基板の主表面をこれら1個で覆
うことを考えたが、これらを複数個組み合わせて該基板
の主表面を覆ってもよい。
In FIGS. 11 and 12, the main surface of the substrate is covered with one of these, but a plurality of these may be combined to cover the main surface of the substrate.

これまでは、■溝について述べたが、これはU溝、矩形
溝等を用いて該コルゲート基板を薄型化している場合に
も有効であることは言うまでもない。また該基板がSi
のみならず、ガラス基板または、化合物半導体等から出
来ている場合も同様の事が言える。
So far, we have talked about (1) grooves, but it goes without saying that this is also effective when the corrugated substrate is made thinner by using U grooves, rectangular grooves, etc. Also, the substrate is Si
The same thing can be said not only when the substrate is made of a glass substrate or a compound semiconductor.

〔実施例〕〔Example〕

以下、本発明の実施例を第13図を用いて説明する。 Hereinafter, an embodiment of the present invention will be described using FIG. 13.

本実施例は第1図で説明した大小2種類で正方形の領域
から成る構造を用いている。各々の領域は図中に破線で
示した様に縦方向および横方向のV溝を持つ領域に分か
れている。大きい正方形の一辺aは20mm、小さい正
方形の一辺すは10mmとした。また、各々の領域の境
界では、■溝は拡大図に示すように交わっており、■溝
のピッチCは240μmとした。基板には(100)表
面を持つ250μm厚のSi単結晶基板を用い、この表
面及び裏面に通常の熱酸化法により1000人厚の酸化
膜を形成し、表面の酸化膜をホト工程により各々同図の
破線で示した方向に20μm幅を持つ細線に加工した。
This embodiment uses a structure consisting of square areas of two sizes, small and large, as explained in FIG. Each region is divided into regions having vertical and horizontal V-grooves, as indicated by broken lines in the figure. One side a of the large square was 20 mm, and one side a of the small square was 10 mm. Furthermore, at the boundaries of each region, the grooves intersect with each other as shown in the enlarged view, and the pitch C of the grooves is 240 μm. A 250 μm thick Si single crystal substrate with a (100) surface was used as the substrate, and an oxide film with a thickness of 1,000 μm was formed on the front and back surfaces by a normal thermal oxidation method. A thin wire having a width of 20 μm was processed in the direction shown by the broken line in the figure.

この詳細を同図の拡大図の実線で示す。裏面の酸化膜は
表面の細線パターンに対し半周期ずらして、表面と同様
に形成した。この酸化膜をエツチングマスクに用い、ビ
ドラジン溶液によりSiを異方性エツチングし第2図A
A′断面に示す様なコルゲート断面を形成した。これに
より基板厚しは50μmとなる。
This detail is shown by the solid line in the enlarged view of the figure. The oxide film on the back side was formed in the same way as on the front side, with a half period shift from the thin line pattern on the front side. Using this oxide film as an etching mask, Si was anisotropically etched with a hydrazine solution as shown in Figure 2A.
A corrugated cross section as shown in cross section A' was formed. As a result, the substrate thickness becomes 50 μm.

第13図から判るように、縦方向の溝を持つ領域と、横
方向の溝を持つ領域を組み合せることにより、素子のど
の断面も必ず縦の■溝と横のV溝を含むため、素子の作
製、取扱いにおける衝撃や、装置に組み込んだ後にかか
る応力に対して非常に高い強度を保つ事が出来た。本実
施例では、■溝を異方性エツチングにより形成する方法
について述へたが、これをダイシングなどの機械加工や
、レーザスクライブ加工を用いてもよい。この場合には
異方性エッチを用いないため(100)表面以外を持つ
ウェハーを用いてよい。またV溝のかわりにU溝やその
他の断面形状としていてもよい。
As can be seen from Fig. 13, by combining a region with vertical grooves and a region with horizontal grooves, any cross section of the element always includes a vertical ■ groove and a horizontal V groove, so that the element It was able to maintain extremely high strength against shocks during manufacturing and handling, as well as stress applied after being incorporated into equipment. In this embodiment, a method of forming grooves by anisotropic etching has been described; however, machining such as dicing or laser scribing may also be used. In this case, since anisotropic etching is not used, a wafer having a surface other than the (100) surface may be used. Further, instead of a V-groove, a U-groove or other cross-sectional shape may be used.

また、本実施例ではSi結晶基板について述へたう飄該
基板は、Si結晶に限らず、GaAsやInP等の化合
物半導体や、Ge結晶等でもよい。
Further, in this embodiment, the Si crystal substrate is described, but the substrate is not limited to Si crystal, but may be a compound semiconductor such as GaAs or InP, Ge crystal, or the like.

またこれらは単結晶に限らず、多結晶基板であってもよ
い。さらに、ガラスやセラミック基板上に単結晶、多結
晶、微結晶またはアモルファス状の光電変換層を形成し
た構造において、該基板を本発明の構造とすることによ
り、該基板を薄くしても強度を高くすることが出来る。
Further, these substrates are not limited to single crystal substrates, and may be polycrystalline substrates. Furthermore, in a structure in which a single-crystal, polycrystalline, microcrystalline, or amorphous photoelectric conversion layer is formed on a glass or ceramic substrate, by making the substrate have the structure of the present invention, the strength can be maintained even if the substrate is made thin. It can be made higher.

〔発明の効果〕〔Effect of the invention〕

非常に薄い基板を用いて比較的大きな面積の太陽電池を
作製する場合に、一方向のV溝を持つコルゲート構造で
は特定の方向の機械強度が十分でなかった。しかし、本
発明の構造を採用することにより該太陽電池の機械強度
が全ての方向からの応力に対して非常に高くなった。
When producing a solar cell with a relatively large area using a very thin substrate, a corrugated structure with a V-groove in one direction does not have sufficient mechanical strength in a specific direction. However, by adopting the structure of the present invention, the mechanical strength of the solar cell became extremely high against stress from all directions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構造の一例。第2図は従来の構造の一
例。第3図は本発明の構造の一例。第4図は本発明の構
造の一例。第5図は本発明の構造の一例。第6図は本発
明の構造の一例。第7図は本発明の構造の一例。第8図
は本発明の構造の−例。第9図は本発明の構造の一例。 第10図は本発明の構造の一例。第11図は本発明の構
造の一例。第12図は本発明の構造の一例。第13図は
本発明の一実施例。 符号の説明 1.2,3,4,5,6,11,12,13゜14・・
・■溝形成領域、20− V溝、100・・・クロスビ
ーム。 第 図 第2団 β β′ B’H面 6 /ρθ 70ズt−ム 第31121 第4図 V、Q認 第6回 第′7図 第g図 、tJ /;、、’、3  ノ々−−−〆 」1形成禎
塔第q図 第10図 第11図 第 2 図 第13図
FIG. 1 shows an example of the structure of the present invention. Figure 2 shows an example of a conventional structure. FIG. 3 shows an example of the structure of the present invention. FIG. 4 shows an example of the structure of the present invention. FIG. 5 shows an example of the structure of the present invention. FIG. 6 shows an example of the structure of the present invention. FIG. 7 shows an example of the structure of the present invention. FIG. 8 shows an example of the structure of the present invention. FIG. 9 shows an example of the structure of the present invention. FIG. 10 shows an example of the structure of the present invention. FIG. 11 shows an example of the structure of the present invention. FIG. 12 shows an example of the structure of the present invention. FIG. 13 shows an embodiment of the present invention. Explanation of symbols 1. 2, 3, 4, 5, 6, 11, 12, 13゜14...
・■Groove formation area, 20-V groove, 100...Cross beam. Figure 2 Group β β'B'H plane 6 /ρθ 70 zoom t-m No. 31121 Figure 4 V, Q recognition 6th figure '7 Figure g, tJ /;,,',3 Nono --- 〆〆 1 Formation Tower Figure q Figure 10 Figure 11 Figure 2 Figure 13

Claims (1)

【特許請求の範囲】 1、複数の溝を有する基板の主表面を任意に横切る直線
上に、該直線に実質的に平行でない溝が存在する事を特
徴とするコルゲート型太陽電池用基板の構造。 2、該溝を有する基板において、互いに直交した溝を持
つことを特徴とするコルゲート型太陽電池用基板の構造
。 3、該溝を有する基板において、互いに異なる方向を持
つ該溝が各々異なった領域で囲まれていることを特徴と
するコルゲート型太陽電池用基板の構造。 4、該溝を有する基板において、特定の方向を向いた溝
の中にこれと異なった方向を持つ溝の領域を部分的に設
けたことを特徴とするコルゲート型太陽電池用基板の構
造。
[Claims] 1. Structure of a corrugated solar cell substrate characterized in that, on a straight line that arbitrarily crosses the main surface of a substrate having a plurality of grooves, there are grooves that are not substantially parallel to the straight line. . 2. A structure of a corrugated solar cell substrate, characterized in that the substrate having grooves has grooves that are orthogonal to each other. 3. A structure of a corrugated solar cell substrate, characterized in that, in the substrate having the grooves, the grooves having mutually different directions are surrounded by different regions. 4. A structure of a corrugated solar cell substrate, characterized in that, in the substrate having grooves, a groove oriented in a specific direction is partially provided with a groove region having a direction different from the groove.
JP2019025A 1990-01-31 1990-01-31 Solar cell Expired - Fee Related JPH073879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019025A JPH073879B2 (en) 1990-01-31 1990-01-31 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019025A JPH073879B2 (en) 1990-01-31 1990-01-31 Solar cell

Publications (2)

Publication Number Publication Date
JPH03225876A true JPH03225876A (en) 1991-10-04
JPH073879B2 JPH073879B2 (en) 1995-01-18

Family

ID=11987928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019025A Expired - Fee Related JPH073879B2 (en) 1990-01-31 1990-01-31 Solar cell

Country Status (1)

Country Link
JP (1) JPH073879B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8809982B2 (en) 2008-09-30 2014-08-19 Nxp B.V. Robust high aspect ratio semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152071U (en) * 1979-04-18 1980-11-01
JPS5676430U (en) * 1979-11-19 1981-06-22
JPS56122091U (en) * 1980-02-20 1981-09-17
JPS61278171A (en) * 1985-06-04 1986-12-09 Agency Of Ind Science & Technol Thin film photoelectric conversion device
JPS62152736A (en) * 1985-12-27 1987-07-07 市川 博夫 Reinforced composite corrugated body and manufacture thereof
JPS62184848A (en) * 1986-02-10 1987-08-13 市川 博夫 Reinforced corrugated body and manufacture thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152071U (en) * 1979-04-18 1980-11-01
JPS5676430U (en) * 1979-11-19 1981-06-22
JPS56122091U (en) * 1980-02-20 1981-09-17
JPS61278171A (en) * 1985-06-04 1986-12-09 Agency Of Ind Science & Technol Thin film photoelectric conversion device
JPS62152736A (en) * 1985-12-27 1987-07-07 市川 博夫 Reinforced composite corrugated body and manufacture thereof
JPS62184848A (en) * 1986-02-10 1987-08-13 市川 博夫 Reinforced corrugated body and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8809982B2 (en) 2008-09-30 2014-08-19 Nxp B.V. Robust high aspect ratio semiconductor device

Also Published As

Publication number Publication date
JPH073879B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
US5196378A (en) Method of fabricating an integrated circuit having active regions near a die edge
US4108715A (en) Method for machining surfaces of semiconductor substrates
JPH0888201A (en) Semiconductor element using sapphire substrate
JP5441371B2 (en) Method of manufacturing a wafer for use in a microelectromechanical system
CN111146320A (en) Silicon-based substrate, substrate base plate and manufacturing method thereof, and photoelectric device
JPH03225876A (en) Structure of board for corrugated solar battery
US6468348B1 (en) Method of producing an open form
US8889017B2 (en) Method for producing silicon waveguides on non-SOI substrate
JP3112115B2 (en) Manufacturing method of optical waveguide
JP2018040968A (en) Optical module
KR100271339B1 (en) Semiconductor device and manufacturing method thereof
US6920267B2 (en) Optical coupling device and manufacturing method thereof
JPS6315439A (en) Selective oxidization and isolation
JP3112114B2 (en) Method for manufacturing semiconductor optical waveguide
JP3019271B2 (en) Optical waveguide formation method
US5273807A (en) Substrate having a V-shaped groove of a special configuration in a substrate
US11092743B2 (en) Waveguide absorbers
KR0141254B1 (en) A method of manufacturing semiconductor laser device
JPS58178525A (en) Manufacture of semiconductor device
US6674779B2 (en) Semiconductor laser device and method for producing the same
JP4347091B2 (en) Optical element manufacturing method
JPS61198713A (en) Manufacture of semiconductor device
KR100253175B1 (en) Method for wafer alignment
KR100857939B1 (en) Method of breaking laser diode wafer and wafer structure for the same
KR100270580B1 (en) Method of manufacturing lenticular light collecting structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees