KR100253175B1 - Method for wafer alignment - Google Patents

Method for wafer alignment Download PDF

Info

Publication number
KR100253175B1
KR100253175B1 KR1019930001263A KR930001263A KR100253175B1 KR 100253175 B1 KR100253175 B1 KR 100253175B1 KR 1019930001263 A KR1019930001263 A KR 1019930001263A KR 930001263 A KR930001263 A KR 930001263A KR 100253175 B1 KR100253175 B1 KR 100253175B1
Authority
KR
South Korea
Prior art keywords
wafer
alignment
wafers
nozzle
jig
Prior art date
Application number
KR1019930001263A
Other languages
Korean (ko)
Other versions
KR940018923A (en
Inventor
전영삼
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR1019930001263A priority Critical patent/KR100253175B1/en
Publication of KR940018923A publication Critical patent/KR940018923A/en
Application granted granted Critical
Publication of KR100253175B1 publication Critical patent/KR100253175B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE: A method for wafer alignment is provided to present oxide composite to easily align upper/lower wafers without using an expensive alignment device by inserting an alignment jig into nozzle parts of the upper/lower wafers. CONSTITUTION: First, an insulating layer(8) is deposited on back sides of at least two Si-wafers having circuit patterns formed on their front surfaces and then etched to form patterns. Then, the Si-wafers are etched in anisotropic solution to form a membrane(9) and a nozzle(10). Next, an alignment jig having uneven parts of same shape and size as those of the nozzle(10) are manufactured, and the jig is inserted into the Si-wafer to align a plurality of Si-wafers.

Description

웨이퍼 정렬방법Wafer Alignment

제1도는 종래 웨이퍼 정렬방법 부분 사시도.1 is a partial perspective view of a conventional wafer alignment method.

제2도는 제1도에 있어서, 실리콘 웨이퍼와 정렬핀(4)과의 관계도.2 is a relationship between the silicon wafer and the alignment pins in FIG.

제3도는 본 발명 웨이퍼 정렬 구조도.3 is a wafer alignment structure diagram of the present invention.

제4도의 (a) 또는 (b)는 본 발명 웨이퍼 정렬 공정도.Figure 4 (a) or (b) is a wafer alignment process diagram of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 상부웨이퍼 2 : 하부웨이퍼1: upper wafer 2: lower wafer

3 : V-홈 4 : 정렬핀3: V-groove 4: Alignment pin

5 : 정렬지그 6 : 투명전극5: alignment jig 6: transparent electrode

7 : 보호막 8 : 절연막7: protective film 8: insulating film

9 : 멤브레인 10 : 노즐9: membrane 10: nozzle

11 : 식각정지층11: etch stop layer

본 발명은 웨이퍼 정렬방법에 관한 것으로, 특히 2개 이상의 웨이퍼를 더블(Double) 또는 적외선정렬기(IR Aligner)와 같은 고가의 장비없이 간편하면서도 신속정확하게 정렬(Alignment)할 수 있도록 하는 웨이퍼 정렬방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer alignment method, and more particularly, to a wafer alignment method that enables easy and quick alignment of two or more wafers without expensive equipment such as a double or an IR aligner. It is about.

제1도는 종래 웨이퍼 정렬방법 부분사시도로서, 이에 도시된 바와같이 V-홈(3)이 형성된 상, 하부 웨이퍼(1)(2)에 광학섬유(Optical Fiber)인 정렬핀(4)이 삽입되며, 상기 상, 하부 웨이퍼(1)(2)에 4개의 V-홈(3)이 형성되고, 그 V-홈(3)에 각기 정렬핀(4)이 삽입되어 구성된다.FIG. 1 is a partial perspective view of a conventional wafer alignment method, in which an alignment pin 4, which is an optical fiber, is inserted into an upper and lower wafers 1 and 2 on which a V-groove 3 is formed. Four V-grooves 3 are formed in the upper and lower wafers 1 and 2, and alignment pins 4 are inserted into the V-grooves 3, respectively.

이와같이 구성된 종래 웨이퍼 정렬방법을 설명하면 다음과 같다.Referring to the conventional wafer alignment method configured as described above is as follows.

일반적으로 (100)방향의 실리콘 웨이퍼를 비등방성 식각을 하면 실리콘 웨이퍼 표면에 (111)방향의 V-홈(3)이 형성된다. 이와같이 형성되는 V-홈(3)에서의 각도(θ)는 제2도에 도시된 바와같이 단결정실리콘의 결정학적 측면에 의해 57.74°라는 것은 공지된 사실이다. 따라서 상기 V-홈(3)에 정렬핀(4)을 삽입할시 정렬핀(4)의 크기와 V-홈(3)의 표면폭(2L)을 미리 고려하면, 상기 V-홈(3)의 표면폭(2L)을 다음과 같이 계산할 수 있다.In general, anisotropic etching of the silicon wafer in the (100) direction forms a V-groove 3 in the (111) direction on the silicon wafer surface. It is known that the angle θ in the thus formed V-groove 3 is 57.74 ° by the crystallographic side of the single crystal silicon as shown in FIG. Therefore, when the alignment pin 4 is inserted into the V-groove 3, considering the size of the alignment pin 4 and the surface width 2L of the V-groove 3 in advance, the V-groove 3 The surface width (2L) of can be calculated as follows.

즉 2L = 2R/Sinθ2L = 2R / Sinθ

실예로서, 정렬핀(4)의 재질로 직경 125㎛의 광학섬유(Optical faber)를 사용하며, 이때 V-홈(3)의 폭(2L)은 154㎛로 한다.As an example, an optical fiber having a diameter of 125 μm is used as the material of the alignment pin 4, and the width 2L of the V-groove 3 is 154 μm.

이와같은 V-홈(3)을 상, 하부 웨이퍼(1)(2)에 4개정도 형성하고, 하부 웨이퍼(2)에 형성된 V-홈(3)에 직경 125㎛의 정렬핀(4)을 각기 끼워 상부 웨이퍼(1)를 회전시키면서 2개이상의 웨이퍼 정렬을 수행하였다.Four V-grooves 3 are formed on the upper and lower wafers 1 and 2, and alignment pins 4 having a diameter of 125 μm are formed on the V-grooves 3 formed on the lower wafers 2. Two or more wafer alignments were performed while rotating the upper wafer 1, respectively.

그러나 종래 웨이퍼 정렬방법은 센서 또는 액튜에이터 제작시 제작상의 난점이나 3차원적인 구조물의 제작 필요성에 의해 2개의 웨이퍼를 본딩할시 이를 2㎛이하의 정밀도로 정렬(Alignment)한 후 500-1000℃의 고온공정을 거쳐야 하는데 이 고온공정전에 정렬핀을 제거해야 한다. 이때 웨이퍼 정렬이 흐트러질 수 있고, 정렬핀을 제거하지 않을 경우에는 실리콘과 유사한 열팽창계수를 갖는 재질의 정렬핀을 제작해야 하는 문제점과, 열팽창계수가 다를때에는 고온에서 웨이퍼로 확산되어 제작된 회로에 손상을 주는 문제점이 있었다.However, in the conventional wafer alignment method, when bonding two wafers due to manufacturing difficulties or necessity of manufacturing a three-dimensional structure when fabricating a sensor or an actuator, the wafers are aligned at a precision of 2 μm or less and then a high temperature of 500-1000 ° C. The process must be done before the alignment pins are removed. In this case, the wafer alignment may be disturbed, and if the alignment pin is not removed, a problem of manufacturing an alignment pin made of a material having a thermal expansion coefficient similar to that of silicon is required. There was a damaging problem.

본 발명은 이러한 문제점을 해결하기 위하여 상, 하부 웨이퍼에 정렬위치에 비등성 식각으로 노즐(Nozzle)부위를 형성하고, 상기 노즐치수의 요철을 갖는 정렬지그(Alignment Jig)를 제작하여 이 정렬지그를 상, 하부 웨이퍼의 노즐부위에 끼워 넣음으로써 고가의 정렬기 없이도 손쉽게 상, 하부 웨이퍼를 정렬시킬 수 있도록 하는 웨이퍼 정렬방법을 창안한 것으로, 이를 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다.In order to solve this problem, the present invention is to form an alignment jig having an unevenness in the upper and lower wafers by boiling etching at the alignment position, and to produce an alignment jig having irregularities of the nozzle dimension. The wafer alignment method of the upper and lower wafers is inserted into the nozzle portion of the upper and lower wafers so that the upper and lower wafers can be easily aligned without an expensive sorter, which will be described in detail with reference to the accompanying drawings.

제3도는 본 발명 웨이퍼 정렬 구성도로서, 이에 도시한 바와 같이 노즐을 형성하여 일치시킨 상, 하부 웨이퍼(1)(2)에 노즐치수의 요철을 갖는 정렬지그(5)가 노즐을 통해 끼워져 구성된다.3 is a wafer alignment configuration diagram of the present invention, in which an alignment jig 5 having an unevenness of nozzle dimensions is inserted through a nozzle in the upper and lower wafers 1 and 2, in which nozzles are formed and matched. do.

이와같이 구성한 본 발명 웨이퍼 정렬방법을 첨부한 제4도를 참조하여 설명하면 다음과 같다.Referring to Figure 4 attached to the wafer alignment method of the present invention configured as described above is as follows.

제4도는 (a)(b)는 본 발명 웨이퍼 정렬방법 공정도로서, 제4도의 (a)에 도시한 바와같이 앞면에 투명전극(6)을 형성하고, 그 위에 보호막(7)을 증착하여 회로형성을 마친 웨이퍼의 뒷면에 절연막(8)을 증착한 후 사진식각공정을 이용해 상기 절연막(8)을 식각한다.4 is a process drawing of the wafer alignment method of the present invention. As shown in FIG. 4A, a transparent electrode 6 is formed on the front surface, and a protective film 7 is deposited thereon to form a circuit. After the insulating film 8 is deposited on the back surface of the formed wafer, the insulating film 8 is etched using a photolithography process.

이때 노즐이 위치할 부분의 식각윈도우(Etch Window)의 폭(2L)은 웨이퍼의 두께(t)를 고래해야 하므로 상기 절연막(8) 식각시 그 폭(2L)은 2L > 2t/Sinθ로 해야한다.At this time, the width (2L) of the etching window (Etch Window) of the portion where the nozzle is to be located should be the thickness (t) of the wafer, so the width (2L) when etching the insulating film 8 should be 2L> 2t / Sinθ. .

여기서 식각윈도우의 위치는 기존의 정렬위치를 참고로 하여 정한다.Here, the position of the etching window is determined by referring to the existing alignment position.

실예로 400㎛의 실리콘 웨이퍼에서 노즐을 형성하려면 식각윈도우의 치수는 적어도 한변의 길이가 566㎛이상이어야 한다.For example, in order to form a nozzle on a 400 μm silicon wafer, the etching window should have a dimension of at least one side of at least 566 μm.

이후 상기와 같이 형성된 웨이퍼를 비등방성 식각용액내에 넣어 식각을 하면 제4도의 (b)와같이 (111)방향으로 둘러쌓인 모습을 보이면서 멤브레인(9)과 노즐(10)이 형성된다.Subsequently, when the wafer formed as described above is etched into the anisotropic etching solution, the membrane 9 and the nozzle 10 are formed while being enclosed in the (111) direction as shown in FIG.

이때 상기 노즐(10)은 웨이퍼를 관통해야 하고, 멤브레인(9)은 웨이퍼를 관통하지 않아야 한다.At this time, the nozzle 10 should penetrate the wafer, and the membrane 9 should not penetrate the wafer.

따라서 멤브레인(9)이 형성될 면에 브론(Boron)을 두껍게 도핑한 식각정지층(11)을 미리 형성한다.Therefore, the etch stop layer 11 doped with boron thick is formed in advance on the surface on which the membrane 9 is to be formed.

또는 식각지연방법을 사용하여 멤브레인(9)을 형성해도 된다.Alternatively, the membrane 9 may be formed using an etching delay method.

이와같이 제조되는 상, 하부 웨이퍼를 일치시키고, 일치된 상, 하부 웨이퍼의 노즐(10)과 식각윈도우 치수의 요철을 갖는 정렬지그(5)를 제작하여 그 정렬지그(5)를 상, 하부 웨이퍼(1)(2)에 기계적으로 끼워 넣으면 제3도와 같이 상, 하부 웨이퍼(1)(2)를 정렬시킬 수 있다.The alignment jig 5 having the upper and lower wafers manufactured as described above and matching the nozzle 10 of the upper and lower wafers and the unevenness of the etching window dimensions are fabricated, and the alignment jig 5 is replaced by the upper and lower wafers ( When mechanically inserted into 1) (2), the upper and lower wafers 1 and 2 can be aligned as shown in FIG.

상기에서 설명한 바와같이 본 발명은 고가의 정렬기 없이도 손쉽게 상, 하부의 실리콘 웨이퍼를 정렬할 수 있고, 또한 웨이퍼 사이에 정렬핀이 필요없이 제작과 제거에 드는 수고와 비용이 절감되어 경제성이 증대되며, 또한 웨이퍼와 웨이퍼를 직접 본딩할 수 있는 효과가 있다.As described above, the present invention can easily align the upper and lower silicon wafers without an expensive sorter, and also reduce the labor and cost required for fabrication and removal without the need for alignment pins between wafers. In addition, there is an effect that can directly bond the wafer and the wafer.

Claims (3)

앞면에 회로패턴이 형성된 2개이상의 실리콘 웨이퍼의 뒷면에 절연막(8)을 증착한 후 패턴을 형성하는 단계와, 상기의 실리콘 웨이퍼를 비등방성용액에서 식각하여 멤브레인(9)과 노즐(10)을 형성하는 단계와, 상기 노즐(10)과 동일한 크기, 모양, 위치의 요철을 갖는 정렬지그(5)를 제조하여 이를 상기 실리콘 웨이퍼에 끼워넣어 다수의 실리콘 웨이퍼를 정렬하는 단계로 이루어짐을 특징으로 하는 웨이퍼 정렬방법.Depositing an insulating film 8 on the back surface of two or more silicon wafers having a circuit pattern formed on the front surface, and then forming a pattern, and etching the silicon wafer in an anisotropic solution to remove the membrane 9 and the nozzle 10. Forming the alignment jig 5 having the same size, shape, and position as the nozzle 10, and inserting the alignment jig 5 into the silicon wafer to align the plurality of silicon wafers. Wafer alignment method. 제1항에 있어서, 노즐(10) 형성을 위한 식각윈도우의 폭(2L)은 2t/Sinθ보다 크게 형성함을 특징으로 하는 웨이퍼 정렬방법.The method of claim 1, wherein the width of the etching window (2L) for forming the nozzle (10) is larger than 2t / Sin θ. 제1항에 있어서, 멤브레인(9)은 실리콘 웨이퍼의 앞면에 미리 식각정지층(11)을 형성하거나 시각지연방법으로 형성함을 특징으로 하는 웨이퍼 정렬방법.The wafer alignment method according to claim 1, wherein the membrane (9) is formed in advance on the front surface of the silicon wafer or by a visual delay method.
KR1019930001263A 1993-01-30 1993-01-30 Method for wafer alignment KR100253175B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930001263A KR100253175B1 (en) 1993-01-30 1993-01-30 Method for wafer alignment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930001263A KR100253175B1 (en) 1993-01-30 1993-01-30 Method for wafer alignment

Publications (2)

Publication Number Publication Date
KR940018923A KR940018923A (en) 1994-08-19
KR100253175B1 true KR100253175B1 (en) 2000-04-15

Family

ID=19350203

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930001263A KR100253175B1 (en) 1993-01-30 1993-01-30 Method for wafer alignment

Country Status (1)

Country Link
KR (1) KR100253175B1 (en)

Also Published As

Publication number Publication date
KR940018923A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
JP2565094B2 (en) Optical coupling structure
US4470875A (en) Fabrication of silicon devices requiring anisotropic etching
Hauffe et al. Methods for passive fiber chip coupling of integrated optical devices
US6458494B2 (en) Etching method
JPH031820B2 (en)
US4524127A (en) Method of fabricating a silicon lens array
JPH07168044A (en) Manufacture of self-alignment type optical subassembly
US5404417A (en) Apparatus for positioning the center of an optical fiber along a predetermined reference axis
US5589083A (en) Method of manufacturing microstructure by the anisotropic etching and bonding of substrates
KR100253175B1 (en) Method for wafer alignment
JPH05134146A (en) Multi-fiber connector ferrule
JPH07151940A (en) Optical coupling structure and its production
US5639387A (en) Method for etching crystalline bodies
EP1363148B1 (en) Optical coupling device and manufacturing method thereof
JP3031176B2 (en) Optical fiber guiding structure and method of manufacturing the same
JPH05249340A (en) Coupling device for optical parts
JPH0997754A (en) Aligning method of single crystal laminated structure
JPH02230751A (en) Identification of crystal orientation and mechanism device formed using the identification
JPH07162098A (en) Method for automatically positioning optical device array to optical fiber
JPH08122564A (en) Optical fiber-holding substrate and joined body of the same and optical integrated circuit board
JPH08167586A (en) Manufacture of semiconductor device and wafer used therefor
JPH0668568B2 (en) How to connect the optical waveguide to the optical fiber
JPS63148205A (en) Optical fiber holding substrate and its manufacture
JPH1027944A (en) Photo-semiconductor element and module and their manufacturing methods
JPH116938A (en) Waveguide device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20031229

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee