JP2005197597A - Multijunction solar cell - Google Patents

Multijunction solar cell Download PDF

Info

Publication number
JP2005197597A
JP2005197597A JP2004004447A JP2004004447A JP2005197597A JP 2005197597 A JP2005197597 A JP 2005197597A JP 2004004447 A JP2004004447 A JP 2004004447A JP 2004004447 A JP2004004447 A JP 2004004447A JP 2005197597 A JP2005197597 A JP 2005197597A
Authority
JP
Japan
Prior art keywords
solar cell
junction
cell
dot
intermediate member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004004447A
Other languages
Japanese (ja)
Inventor
Akira Shimizu
彰 清水
Toru Takeda
徹 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004004447A priority Critical patent/JP2005197597A/en
Publication of JP2005197597A publication Critical patent/JP2005197597A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multijunction solar cell in which balance is struck in photocurrent between cells, electric connectivity between cells is improved, deterioration in solar cell characteristics during accumulation, in other words, deterioration in leak current is inhibited, and current-voltage charateristics are improved. <P>SOLUTION: The multijunction solar cell comprises a plurality of laminated pin junction cells, and an intermediate member in dot- or stripe-form that is provided between at least two pin junction cells of the plurality of pin junction cells. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複数のpin接合セルを積層して構成した多接合型太陽電池において、pin接合セル間に、ドット状もしくはストライプ状の中間部材を設けることにより、電流−電圧特性を改善した多接合型太陽電池に関する。   The present invention relates to a multi-junction solar cell configured by laminating a plurality of pin junction cells, and by providing a dot-shaped or striped intermediate member between the pin junction cells, the multi-junction having improved current-voltage characteristics Type solar cell.

将来の需給が懸念され、かつ地球温暖化現象の原因となる二酸化炭素排出の問題がある石油などの化石燃料の代替エネルギー源として太陽電池が注目され、様々な素子の開発、実用化が進められている。   Solar cells are attracting attention as an alternative energy source for fossil fuels such as petroleum, where there is concern about future supply and demand and carbon dioxide emissions that cause global warming, and various devices are being developed and put to practical use. ing.

素子の開発においては、光電変換効率を高めることが1つの課題であり、その解決手段として、複数の素子(セル)を積層した多接合型太陽電池が提案されている。図4は、ガラス基板1、透明電極2、アモルファスシリコンセル3、微結晶シリコンセル4および裏面電極5からなる二端子構造の多接合型太陽電池の一例を示す概略断面図である。このような二端子構造の多接合型太陽電池において、より高い光電変換効率を得ようとする場合には、セル間の光電流バランスが非常に重要になる。   In the development of elements, increasing the photoelectric conversion efficiency is one problem, and a multi-junction solar cell in which a plurality of elements (cells) are stacked has been proposed as a solution. FIG. 4 is a schematic cross-sectional view showing an example of a multi-junction solar cell having a two-terminal structure including a glass substrate 1, a transparent electrode 2, an amorphous silicon cell 3, a microcrystalline silicon cell 4, and a back electrode 5. In such a multi-junction solar cell having a two-terminal structure, in order to obtain higher photoelectric conversion efficiency, the photocurrent balance between cells becomes very important.

例えば、光入射側のセルの光電流がそれ以外のセルの光電流に比べて小さい場合には、セル間に、酸化シリコンなどの屈折率の小さい物質からなる中間層を挿入してこれを反射層とし、光入射側のセルを透過してきた光の一部を再度光入射側のセルに戻し、これを吸収させて光電流を確保する方法が提案されている(特開昭61−183976号公報:特許文献1および特開平4−127580号公報:特許文献2参照)。図5は、このような光反射用中間層を有する多接合型太陽電池の一例を示す概略断面図である。図中、6は屈折率の小さい物質からなる中間層を示す。
しかしながら、この中間層は、光入射側のセルを透過してきた光の一部を反射させるだけであり、中間層で反射する光や中間層を透過する光を散乱させる効果はほとんどなく、セル間の光電流バランスの整合を実現するには不十分であった。
For example, when the photocurrent of a cell on the light incident side is smaller than the photocurrent of other cells, an intermediate layer made of a material having a low refractive index such as silicon oxide is inserted between the cells and reflected. A method has been proposed in which a part of light transmitted through the light incident side cell is returned to the light incident side cell and absorbed to secure a photocurrent (Japanese Patent Laid-Open No. 61-183976). Publication: Japanese Patent Application Laid-Open No. 4-127580 and Japanese Patent Application Laid-Open No. 4-127580). FIG. 5 is a schematic cross-sectional view showing an example of a multijunction solar cell having such a light reflecting intermediate layer. In the figure, reference numeral 6 denotes an intermediate layer made of a material having a low refractive index.
However, this intermediate layer only reflects part of the light transmitted through the cells on the light incident side, and has little effect of scattering the light reflected by the intermediate layer or the light transmitted through the intermediate layer. It was not sufficient to realize photocurrent balance matching.

また、図4に示すような二端子構造の多接合型太陽電池の開発においては、セル間の電気的接続性を改善することが1つの課題であり、その解決手段として、セル間に、酸化亜鉛などの低抵抗もしくは狭バンドギャップの中間層を挿入する方法が提案されている(特開平6−151016号公報:特許文献3参照)。図6は、このような接続性改善用中間層を有する多接合型太陽電池の一例を示す概略断面図である。図中、7は低抵抗または狭バンドギャップの中間層を示す。
しかしながら、この接続性改善用中間層を有する多接合型太陽電池は、図7に示すように多接合型太陽電池を集積した場合に、低抵抗中間層を介した電流リークパス(図中の矢印)ができ、集積後の太陽電池特性を大幅に低下させてしまうという問題があった。
Further, in the development of a multi-junction solar cell having a two-terminal structure as shown in FIG. 4, one problem is to improve the electrical connectivity between cells. A method of inserting a low resistance or narrow band gap intermediate layer such as zinc has been proposed (see Japanese Patent Application Laid-Open No. 6-151016: Patent Document 3). FIG. 6 is a schematic cross-sectional view showing an example of a multijunction solar cell having such an intermediate layer for improving connectivity. In the figure, 7 indicates an intermediate layer having a low resistance or a narrow band gap.
However, the multijunction solar cell having the connectivity improving intermediate layer has a current leak path (arrow in the figure) through the low resistance intermediate layer when the multijunction solar cells are integrated as shown in FIG. There has been a problem that the characteristics of the solar cell after integration can be significantly reduced.

特開昭61−183976号公報JP 61-183976 A 特開平4−127580号公報JP-A-4-127580 特開平6−151016号公報JP-A-6-151016

本発明は、セル間の光電流バランスの整合を実現し、セル間の電気的接続性を改善し、集積時の太陽電池特性の低下、すなわちリーク電流の低下を抑制し、電流−電圧特性が改善された多接合型太陽電池を提供することを課題とする。   The present invention realizes matching of photocurrent balance between cells, improves electrical connectivity between cells, suppresses degradation of solar cell characteristics during integration, that is, degradation of leakage current, and has current-voltage characteristics. It is an object to provide an improved multijunction solar cell.

本発明者らは、上記の課題を解決するために鋭意検討を重ねた結果、従来の平坦な中間層の代わりに、セル間に光学的に光散乱効果を有する中間部材を設けることにより、上記の課題を解決できることを見出し、本発明を完成するに到った。   As a result of intensive studies to solve the above problems, the present inventors have provided an intermediate member having an optical light scattering effect between cells instead of the conventional flat intermediate layer. The present inventors have found that the above problems can be solved and have completed the present invention.

かくして、本発明によれば、複数のpin接合セルを積層して構成され、複数のpin接合セルの内、少なくとも1つのpin接合セル間にドット状またはストライプ状の中間部材が設けられてなることを特徴とする多接合型太陽電池が提供される。
また、本発明によれば、上記の多接合型太陽電池を集積した多接合型太陽電池モジュールが提供される。
Thus, according to the present invention, a plurality of pin junction cells are stacked, and a dot-shaped or stripe-shaped intermediate member is provided between at least one pin junction cell among the plurality of pin junction cells. A multi-junction solar cell is provided.
Moreover, according to this invention, the multijunction solar cell module which integrated said multijunction solar cell is provided.

本発明によれば、セル間の光電流バランスの整合を実現し、セル間の電気的接続性を改善し、集積時の太陽電池特性の低下、すなわちリーク電流の低下を抑制し、電流−電圧特性が改善された多接合型太陽電池を提供することができる。   According to the present invention, the matching of the photocurrent balance between cells is realized, the electrical connectivity between cells is improved, the solar cell characteristics during integration, that is, the leakage current is suppressed, and the current-voltage A multi-junction solar cell with improved characteristics can be provided.

本発明の多接合型太陽電池の基本構造は、例えば、図1に示すように、ガラス基板1、透明電極2、アモルファスシリコンセル3、四角錘形状(ピラミッド形状)のドット状の中間部材8、微結晶シリコンセル4および裏面電極5からなる。アモルファスシリコンセル3と微結晶シリコンセル4は、それぞれpin接合セルであり、ドット状の中間部材8は、ストライプ状であってもよい。このように、本発明の多接合型太陽電池は、複数のpin接合セルを積層して構成され、複数のpin接合セルの内、少なくとも1つのpin接合セル間にドット状またはストライプ状の中間部材が設けられてなることを特徴とする。
ドット状またはストライプ状の中間部材以外は、公知の材料および方法により形成することができる。
The basic structure of the multi-junction solar cell of the present invention is, for example, as shown in FIG. 1, a glass substrate 1, a transparent electrode 2, an amorphous silicon cell 3, a quadrangular pyramid-shaped dot-shaped intermediate member 8, It consists of a microcrystalline silicon cell 4 and a back electrode 5. Each of the amorphous silicon cell 3 and the microcrystalline silicon cell 4 may be a pin junction cell, and the dot-shaped intermediate member 8 may have a stripe shape. As described above, the multi-junction solar cell of the present invention is configured by stacking a plurality of pin junction cells, and among the plurality of pin junction cells, an intermediate member having a dot shape or a stripe shape between at least one pin junction cell. Is provided.
Except for the dot-like or stripe-like intermediate member, it can be formed by known materials and methods.

中間部材の材質は、本発明の効果を発揮し得る材料であれば、半導体材料、金属材料を問わず、特に限定されない。十分な光学的効果を得るためには、pin接合セル材料に比べて低屈折率の材料を用いるか、金属のような全反射をする材料を使用することが望ましい。例えばAlもしくはGaなどがドープされた酸化亜鉛のような低屈折率を有する低抵抗の光透過性材料を用いてもよく、金や銀のような高反射率を有し、かつpin接合セル材料との良好なオーミック接合が得られる低抵抗の金属材料でもよい。
また、pin接合セル間の光電流バランスの整合を実現し、セル間の電気的接続性を改善するためには、pin接合セルに比べてバンドギャップの狭い半導体材料が好ましい。
したがって、中間部材は、低抵抗半導体、pin接合セルに比べてバンドギャップの狭い半導体材料または金属材料からなるのが好ましい。
The material of the intermediate member is not particularly limited as long as it is a material that can exhibit the effects of the present invention, regardless of whether it is a semiconductor material or a metal material. In order to obtain a sufficient optical effect, it is desirable to use a material having a low refractive index as compared with the pin junction cell material, or a material having total reflection such as a metal. For example, a low-resistance light-transmitting material having a low refractive index such as zinc oxide doped with Al or Ga may be used, and a pin-junction cell material having a high reflectance such as gold or silver. A low-resistance metal material that can provide a good ohmic junction with the substrate may be used.
Further, in order to achieve photocurrent balance matching between pin junction cells and improve electrical connectivity between cells, a semiconductor material having a narrow band gap as compared with pin junction cells is preferable.
Therefore, the intermediate member is preferably made of a semiconductor material or metal material having a narrow band gap as compared with a low-resistance semiconductor or pin junction cell.

中間部材の形状は、ドット状、ストライプ状のいずれであってもよい。
ドットの形状は、十分な光学的、すなわち光散乱効果を得ることができる形状であれば特に限定されない。例えば、四角錘形状などの角錐形状、四角錘台形状などの角錘台形状、半円球形状などが挙げられ、光散乱効果の点では平板状ではない角錐形状、半円球形状が好ましい。ここで、「角錘台」とは、頭を切った角錐を意味する。
したがって、ドットの形状は、四角錘形状、四角錘台形状または半円球形状であるのが好ましい。
The shape of the intermediate member may be either a dot shape or a stripe shape.
The shape of the dot is not particularly limited as long as the shape is sufficient optical, that is, a light scattering effect can be obtained. Examples thereof include a pyramid shape such as a quadrangular pyramid shape, a truncated pyramid shape such as a quadrangular frustum shape, and a semicircular shape. In terms of light scattering effect, a pyramid shape that is not a flat plate shape and a semispherical shape are preferable. Here, the “pyramidal base” means a pyramid with a truncated head.
Therefore, the shape of the dot is preferably a quadrangular pyramid shape, a quadrangular frustum shape, or a hemispherical shape.

本発明のドット状またはストライプ状の中間部材は、透過光に対しても反射光に対しても、従来の平坦な中間層に比べて、高い光散乱効果が得られ、光電流の増加による光電変換効率の向上が期待できる。薄膜太陽電池では、一般に、光散乱により光閉じ込め効果を高めること、セル内の有効光路長さを長くすることが行われているが、本発明の中間部材は、従来の中間層に比べて、より高い光散乱効果を付与する。   The dot-like or stripe-like intermediate member of the present invention provides a higher light scattering effect than the conventional flat intermediate layer with respect to transmitted light and reflected light, and provides a photoelectric effect due to an increase in photocurrent. Improvement in conversion efficiency can be expected. In the thin film solar cell, generally, the light confinement effect is increased by light scattering, and the effective optical path length in the cell is increased, but the intermediate member of the present invention is compared with the conventional intermediate layer, Gives a higher light scattering effect.

ドットの大きさは、十分な光学的特性を得るために、光の波長に対して十分な大きさが必要であり、四角錘形状または四角錘台形状の場合、底面の対角の長さ0.1〜10μm程度、高さ0.01〜10μm程度が好ましく、半円球形状の場合、直径0.1〜10μm程度、高さ0.01〜10μm程度が好ましい。   The dot size needs to be sufficient with respect to the wavelength of light in order to obtain sufficient optical characteristics. In the case of a quadrangular pyramid shape or a quadrangular frustum shape, the diagonal length of the bottom surface is 0. About 1 to 10 μm and a height of about 0.01 to 10 μm are preferable.

また、ドットの間隔は、隣接するpin接合セルにおけるドープ層の抵抗率の影響を大きく受け、通常、ドットの大きさと同程度が好ましい。個々のドットの抵抗率は、十分な電気的特性を得るために、10-1Ωcm2以下が好ましい。
ドットの間隔が隣接するpin接合セルにおけるドープ層の抵抗率に対して十分に小さい場合には、ドット周辺の電流はドープ層を介して低抵抗のドットに集約され、pin接合セル間の接合に関して従来の平坦な中間層とほぼ同様の接合改善効果が得られる。その上、ドット同士は電気的に直接繋がっていないために、セル間の電気的接続性の改善を目的として中間部材の抵抗率を小さくしても、図6に示したような、従来の多接合型太陽電池の中間層で生じていた集積時の電流リークが生じ難くなる。その結果、中間部材の低抵抗化による改善効果と、集積時の電流リーク抑制を同時に実現でき、多接合型太陽電池の光電変換特性が改善される。
さらに、本発明の多接合型太陽電池は、中間部材のドット間またはストライプ間には、シリコン酸化膜などの絶縁層が設けられているのが好ましい。
Also, the dot interval is greatly affected by the resistivity of the doped layer in the adjacent pin junction cell, and is generally preferably about the same as the dot size. The resistivity of each dot is preferably 10 −1 Ωcm 2 or less in order to obtain sufficient electrical characteristics.
When the dot spacing is sufficiently small relative to the resistivity of the doped layer in adjacent pin junction cells, the current around the dot is concentrated through the doped layer into a low resistance dot, with respect to the junction between the pin junction cells. The effect of improving the bonding is almost the same as that of the conventional flat intermediate layer. In addition, since the dots are not directly connected to each other, even if the resistivity of the intermediate member is reduced for the purpose of improving the electrical connectivity between cells, the conventional multiplicity as shown in FIG. Current leakage during integration that has occurred in the intermediate layer of the junction solar cell is less likely to occur. As a result, the improvement effect due to the low resistance of the intermediate member and the suppression of current leakage during integration can be realized at the same time, and the photoelectric conversion characteristics of the multijunction solar cell are improved.
Furthermore, in the multijunction solar cell of the present invention, it is preferable that an insulating layer such as a silicon oxide film is provided between dots or stripes of the intermediate member.

一方、中間部材がストライプ状の場合、その幅は0.1〜10μm程度であり、その間隔は、通常、ドットの幅と同程度であるのが好ましい。   On the other hand, when the intermediate member is striped, the width is about 0.1 to 10 μm, and the interval is usually preferably about the same as the width of the dots.

中間部材の形成方法は、特に限定されず、中間部材の形状に応じて、公知の方法により形成することができる。具体的には、マスクを用いたスパッタ法、CVD法、塗布法などにより成膜する方法、スパッタ法、CVD法、塗布法などにより成膜した膜をエッチングなどで部分的に取り除く方法が挙げられる。例えば、スパッタ法でpin接合セル上に酸化亜鉛膜を成膜し、酸化亜鉛の異方性や微少な斑により生じるエッチング速度の差を利用し、得られた酸化亜鉛膜を希塩酸でエッチングすることにより、酸化亜鉛からなるドット状の中間部材を得ることができる。   The formation method of an intermediate member is not specifically limited, According to the shape of an intermediate member, it can form by a well-known method. Specifically, a method of forming a film by a sputtering method using a mask, a CVD method, a coating method, or the like, or a method of partially removing a film formed by a sputtering method, a CVD method, a coating method, or the like by etching or the like. . For example, a zinc oxide film is formed on a pin junction cell by sputtering, and the resulting zinc oxide film is etched with dilute hydrochloric acid using the difference in etching rate caused by the anisotropy and minute spots of zinc oxide. Thus, a dot-shaped intermediate member made of zinc oxide can be obtained.

本発明の多接合型太陽電池は、積層された複数のpin接合セルの内、少なくとも1つのpin接合セル間にドット状またはストライプ状の中間部材が設けられていればよい。したがって、1つの多接合型太陽電池が、ドット状またはストライプ状の中間部材と従来の平坦な中間層を共に有していてもよい。すなわち、3接合型太陽電池の場合、2つのpin接合セル間にドット状またはストライプ状の中間部材が設けられていてもよく、また一方のpin接合セル間にドット状またはストライプ状の中間部材が設けられ、かつ他方のpin接合セル間に従来の平坦な中間層が設けられていてもよい。   In the multijunction solar cell of the present invention, a dot-like or stripe-like intermediate member may be provided between at least one pin junction cell among a plurality of stacked pin junction cells. Therefore, one multi-junction solar cell may have both a dot-shaped or striped intermediate member and a conventional flat intermediate layer. That is, in the case of a 3-junction solar cell, a dot-like or striped intermediate member may be provided between two pin junction cells, and a dot-like or striped intermediate member is provided between one pin junction cell. And a conventional flat intermediate layer may be provided between the other pin junction cells.

また、本発明の多接合型太陽電池は、少なくとも1つのpin接合セルが、pn接合セルまたはショットキー接合セルで置換されていてもよい。すなわち、本発明の多接合型太陽電池は、pin接合セルと、pn接合セルおよび/またはショットキー接合セルとの接合型であってもよい。   In the multijunction solar cell of the present invention, at least one pin junction cell may be replaced with a pn junction cell or a Schottky junction cell. That is, the multijunction solar cell of the present invention may be a junction type of a pin junction cell and a pn junction cell and / or a Schottky junction cell.

さらに本発明によれば、上記の多接合型太陽電池を公知の方法により集積した多接合型太陽電池モジュールが提供される。このモジュールは、従来のモジュールに比べて、集積時のリーク電流が低減されるので、集積後の太陽電池特性が大幅に低下することがない。   Furthermore, according to this invention, the multijunction solar cell module which integrated | stacked said multijunction solar cell by the well-known method is provided. Since this module has a reduced leakage current at the time of integration compared to a conventional module, the characteristics of the solar cell after integration will not be significantly reduced.

次に、本発明の多接合型太陽電池の実施形態について具体的に説明するが、これらの実施形態により本発明が限定されるものではない。   Next, embodiments of the multi-junction solar cell of the present invention will be specifically described, but the present invention is not limited to these embodiments.

(実施形態1)
図1は、四角錘形状のドット状の中間部材を有する本発明の多接合型太陽電池の一例を示す概略断面図である。この多接合型太陽電池は、ガラス基板1、透明電極2、アモルファスシリコンセル3、四角錘形状(ピラミッド形状)のドット状の中間部材8、微結晶シリコンセル4および裏面電極5からなる。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing an example of a multi-junction solar cell of the present invention having a square pyramid-shaped dot-shaped intermediate member. This multi-junction solar cell includes a glass substrate 1, a transparent electrode 2, an amorphous silicon cell 3, a quadrangular pyramid-shaped dot-shaped intermediate member 8, a microcrystalline silicon cell 4, and a back electrode 5.

この多接合型太陽電池は、次のようにして得られる。
まず、スパッタ法などの公知の方法により、板厚0.1〜10mm程度のガラス基板1上に、膜厚0.1〜10μm程度のITOなどの透明電極2を形成し、さらにプラズマCVD法などの公知の方法により、膜厚0.1〜0.5μm程度のアモルファスシリコンセル(pin接合セル)3を形成する。次に、スパッタ法などの公知の方法により、前記pin接合セル上に、AlもしくはGaドープの酸化亜鉛膜を成膜し、酸化亜鉛の異方性や微少な斑により生じるエッチング速度の差を利用して、得られた酸化亜鉛膜を希塩酸でエッチングすることにより、直径1μm程度の酸化亜鉛からなるドット状の中間部材8を得る。次に、プラズマCVD法などの公知の方法により、膜厚0.1〜10μm程度の微結晶シリコンセル(pin接合セル)4を形成する。次に、スパッタ法などの公知の方法により、膜厚0.01〜10μm程度の銀などの裏面電極5を形成し、多接合型太陽電池を完成する。
This multi-junction solar cell is obtained as follows.
First, a transparent electrode 2 such as ITO having a thickness of about 0.1 to 10 μm is formed on a glass substrate 1 having a thickness of about 0.1 to 10 mm by a known method such as a sputtering method, and further a plasma CVD method or the like. The amorphous silicon cell (pin junction cell) 3 having a film thickness of about 0.1 to 0.5 μm is formed by the known method. Next, an Al or Ga-doped zinc oxide film is formed on the pin junction cell by a known method such as sputtering, and the difference in etching rate caused by anisotropy of zinc oxide and minute spots is used. Then, the obtained zinc oxide film is etched with dilute hydrochloric acid to obtain a dot-shaped intermediate member 8 made of zinc oxide having a diameter of about 1 μm. Next, a microcrystalline silicon cell (pin junction cell) 4 having a thickness of about 0.1 to 10 μm is formed by a known method such as a plasma CVD method. Next, a back electrode 5 made of silver or the like having a thickness of about 0.01 to 10 μm is formed by a known method such as sputtering, thereby completing a multi-junction solar cell.

この多接合型太陽電池は、中間部材が四角錘形状のドット状であるので、セル間の光電流バランスの整合を実現し、セル間の電気的接続性を改善し、集積時の太陽電池特性の低下、すなわちリーク電流の低下を抑制し、電流−電圧特性が改善される。   In this multi-junction solar cell, since the intermediate member is a quadrangular pyramid-shaped dot, the photocurrent balance between cells is matched, the electrical connectivity between cells is improved, and the solar cell characteristics during integration , That is, the leakage current is suppressed, and the current-voltage characteristics are improved.

(実施形態2)
図2は、半円球形状のドット状の中間部材を有する本発明の多接合型太陽電池の一例を示す概略断面図である。この多接合型太陽電池は、ガラス基板1、透明電極2、アモルファスシリコンセル3、半円球形状のドット状の中間部材(金属ドット)9、微結晶シリコンセル4および裏面電極5からなる。
この多接合型太陽電池は、中間部材が半円球形状のドット状であり、その材質が金属(銀)であること以外は、基本的に実施形態1と同じである。中間部材は、例えば、蒸着法により形成することができる。
従来の平坦な中間層では透過光が著しく減少するために、金属材料を使用できなかったが、ドット状にすることによりドットの隙間で透過光を確保できるので、中間部材に金属材料を使用できる。その結果、pin接合セル材料との良好なオーミック接合が得られる。
(Embodiment 2)
FIG. 2 is a schematic cross-sectional view showing an example of the multijunction solar cell of the present invention having a hemispherical dot-shaped intermediate member. This multi-junction solar cell includes a glass substrate 1, a transparent electrode 2, an amorphous silicon cell 3, a semispherical dot-shaped intermediate member (metal dot) 9, a microcrystalline silicon cell 4, and a back electrode 5.
This multi-junction solar cell is basically the same as Embodiment 1 except that the intermediate member is a semispherical dot shape and the material thereof is metal (silver). The intermediate member can be formed by, for example, a vapor deposition method.
In the conventional flat intermediate layer, since the transmitted light is remarkably reduced, the metal material cannot be used. However, since the transmitted light can be secured in the gap between the dots by forming the dots, the metal material can be used for the intermediate member. . As a result, a good ohmic junction with the pin junction cell material is obtained.

(実施形態3)
図3は、四角錘台形状のドット状の中間部材を有する本発明の多接合型太陽電池の一例を示す概略断面図である。この多接合型太陽電池は、ガラス基板1、透明電極2、アモルファスシリコンセル3、四角錘台形状のドット状の中間部材(金属ドット)10、絶縁膜(シリコン酸化膜)11、微結晶シリコンセル4および裏面電極5からなる。
この多接合型太陽電池は、中間部材が四角錘台形状のドット状であり、ドット間にシリコン酸化膜からなる絶縁層が設けられていること以外は、基本的に実施形態1と同じである。中間部材は、例えば、スパッタ法とエッチング処理により形成することができ、シリコン酸化膜は、例えば、PECVD法により形成することができる。
ドット間に設けられたシリコン酸化膜は、隣接するpin接合セルのパッシベーション膜を兼ねるので、pin接合セルの表面再結合が抑制され、良好な太陽電池特性が得られる。
(Embodiment 3)
FIG. 3 is a schematic cross-sectional view showing an example of the multi-junction solar cell of the present invention having a square pyramid-shaped dot-shaped intermediate member. This multi-junction solar cell includes a glass substrate 1, a transparent electrode 2, an amorphous silicon cell 3, a square pyramid-shaped dot-shaped intermediate member (metal dot) 10, an insulating film (silicon oxide film) 11, a microcrystalline silicon cell. 4 and the back electrode 5.
This multi-junction solar cell is basically the same as Embodiment 1 except that the intermediate member is in the form of a square frustum-shaped dot and an insulating layer made of a silicon oxide film is provided between the dots. . The intermediate member can be formed by, for example, sputtering and etching, and the silicon oxide film can be formed by, for example, PECVD.
Since the silicon oxide film provided between the dots also serves as a passivation film for the adjacent pin junction cell, surface recombination of the pin junction cell is suppressed and good solar cell characteristics can be obtained.

本発明の多接合型太陽電池の一例を示す概略断面図である(実施形態1)。It is a schematic sectional drawing which shows an example of the multijunction solar cell of this invention (Embodiment 1). 本発明の多接合型太陽電池の一例を示す概略断面図である(実施形態2)。It is a schematic sectional drawing which shows an example of the multijunction solar cell of this invention (Embodiment 2). 本発明の多接合型太陽電池の一例を示す概略断面図である(実施形態3)。It is a schematic sectional drawing which shows an example of the multijunction solar cell of this invention (Embodiment 3). 中間層を有さない従来の多接合型太陽電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the conventional multijunction type solar cell which does not have an intermediate | middle layer. 光反射用中間層を有する従来の多接合型太陽電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the conventional multijunction solar cell which has an intermediate | middle layer for light reflection. 電気的接続性改善用中間層を有する従来の多接合型太陽電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the conventional multijunction solar cell which has an intermediate | middle layer for electrical connectivity improvement. 図6の多接合型太陽電池を集積した場合の問題点を示す概略断面図である。It is a schematic sectional drawing which shows the problem at the time of integrating the multijunction solar cell of FIG.

符号の説明Explanation of symbols

1 ガラス基板
2 透明電極
3 アモルファスシリコンセル
4 微結晶シリコンセル
5 裏面電極
6 屈折率の小さい物質からなる中間層
7 低抵抗または狭バンドギャップの中間層
8 四角錘形状のドット状の中間部材
9 半円球形状のドット状の中間部材(金属ドット)
10 四角錘台形状のドット状の中間部材(金属ドット)
11 絶縁膜(シリコン酸化膜)
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Transparent electrode 3 Amorphous silicon cell 4 Microcrystalline silicon cell 5 Back surface electrode 6 Intermediate layer made of a material having a small refractive index 7 Low resistance or narrow band gap intermediate layer 8 Square pyramid-shaped dot-shaped intermediate member 9 Half Circular spherical dot-shaped intermediate member (metal dot)
10 Square pyramid shaped dot-shaped intermediate member (metal dot)
11 Insulating film (silicon oxide film)

Claims (8)

複数のpin接合セルを積層して構成され、複数のpin接合セルの内、少なくとも1つのpin接合セル間にドット状またはストライプ状の中間部材が設けられてなることを特徴とする多接合型太陽電池。   A multi-junction solar comprising a plurality of pin junction cells and a dot-like or stripe-shaped intermediate member provided between at least one pin junction cell among the plurality of pin junction cells battery. 中間部材が、低抵抗半導体材料、pin接合セルに比べてバンドギャップの狭い半導体材料または金属材料からなる請求項1に記載の多接合型太陽電池。   The multi-junction solar cell according to claim 1, wherein the intermediate member is made of a semiconductor material or a metal material having a narrow band gap as compared with a low-resistance semiconductor material or a pin junction cell. ドットの形状が、四角錘形状、四角錘台形状または半円球形状である請求項1または2に記載の多接合型太陽電池。   The multi-junction solar cell according to claim 1 or 2, wherein the dot has a quadrangular pyramid shape, a quadrangular frustum shape, or a semispherical shape. 四角錘形状または四角錘台形状が、底面の対角の長さ0.1〜10μm、高さ0.01〜10μmである請求項3に記載の多接合型太陽電池。   The multijunction solar cell according to claim 3, wherein the quadrangular pyramid shape or the quadrangular frustum shape is a diagonal length of 0.1 to 10 μm and a height of 0.01 to 10 μm. 半円球形状が、直径0.1〜10μm、高さ0.01〜10μmである請求項3に記載の多接合型太陽電池。   The multi-junction solar cell according to claim 3, wherein the semispherical shape has a diameter of 0.1 to 10 µm and a height of 0.01 to 10 µm. 中間部材のドット間またはストライプ間に絶縁層が設けられてなる請求項1〜5のいずれか1つに記載の多接合型太陽電池。   The multijunction solar cell according to claim 1, wherein an insulating layer is provided between dots or stripes of the intermediate member. 少なくとも1つのpin接合セルが、pn接合セルまたはショットキー接合セルで置換されてなる請求項1〜6のいずれか1つに記載の多接合型太陽電池。   The multi-junction solar cell according to claim 1, wherein at least one pin junction cell is replaced with a pn junction cell or a Schottky junction cell. 請求項1〜7のいずれか1つに記載の多接合型太陽電池を集積した多接合型太陽電池モジュール。   The multijunction solar cell module which integrated the multijunction solar cell as described in any one of Claims 1-7.
JP2004004447A 2004-01-09 2004-01-09 Multijunction solar cell Pending JP2005197597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004004447A JP2005197597A (en) 2004-01-09 2004-01-09 Multijunction solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004004447A JP2005197597A (en) 2004-01-09 2004-01-09 Multijunction solar cell

Publications (1)

Publication Number Publication Date
JP2005197597A true JP2005197597A (en) 2005-07-21

Family

ID=34819063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004004447A Pending JP2005197597A (en) 2004-01-09 2004-01-09 Multijunction solar cell

Country Status (1)

Country Link
JP (1) JP2005197597A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266096A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Solar cell and its manufacturing method
JP2008270562A (en) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd Multi-junction type solar cell
JP2009141331A (en) * 2007-11-16 2009-06-25 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and its manufacturing method
JP2010062302A (en) * 2008-09-03 2010-03-18 Mitsubishi Electric Corp Thin-film solar cell and method of manufacturing the same
WO2010037102A3 (en) * 2008-09-29 2010-07-01 Thinsilicon Corporation Monolithically-integrated solar module
JP2010278148A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Photovoltaic apparatus and method of manufacturing the same
JP2013055216A (en) * 2011-09-05 2013-03-21 Dainippon Printing Co Ltd Solar cell and solar cell module
US9048581B2 (en) 2013-07-02 2015-06-02 Tyco Electronics Corporation Electrical connectors and receptacle assemblies having retention inserts
JP2017028234A (en) * 2015-07-21 2017-02-02 五十嵐 五郎 Multi-junction photovoltaic device
US11031512B2 (en) 2017-03-17 2021-06-08 Kabushiki Kaisha Toshiba Solar cell, multijunction solar cell, solar cell module, and solar power generation system
US11171253B2 (en) 2016-09-21 2021-11-09 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266096A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Solar cell and its manufacturing method
JP2008270562A (en) * 2007-04-20 2008-11-06 Sanyo Electric Co Ltd Multi-junction type solar cell
JP2009141331A (en) * 2007-11-16 2009-06-25 Semiconductor Energy Lab Co Ltd Photoelectric conversion device and its manufacturing method
JP2010062302A (en) * 2008-09-03 2010-03-18 Mitsubishi Electric Corp Thin-film solar cell and method of manufacturing the same
EP2332177A2 (en) * 2008-09-29 2011-06-15 Thinsilicon Corporation Monolithically-integrated solar module
WO2010037102A3 (en) * 2008-09-29 2010-07-01 Thinsilicon Corporation Monolithically-integrated solar module
EP2332177A4 (en) * 2008-09-29 2012-12-26 Thinsilicon Corp Monolithically-integrated solar module
KR101308324B1 (en) * 2008-09-29 2013-09-17 씬실리콘 코포레이션 Monolithically-integrated solar module
JP2010278148A (en) * 2009-05-27 2010-12-09 Mitsubishi Electric Corp Photovoltaic apparatus and method of manufacturing the same
JP2013055216A (en) * 2011-09-05 2013-03-21 Dainippon Printing Co Ltd Solar cell and solar cell module
US9048581B2 (en) 2013-07-02 2015-06-02 Tyco Electronics Corporation Electrical connectors and receptacle assemblies having retention inserts
JP2017028234A (en) * 2015-07-21 2017-02-02 五十嵐 五郎 Multi-junction photovoltaic device
US11171253B2 (en) 2016-09-21 2021-11-09 Kabushiki Kaisha Toshiba Solar cell, multi-junction solar cell, solar cell module, and photovoltaic system
US11031512B2 (en) 2017-03-17 2021-06-08 Kabushiki Kaisha Toshiba Solar cell, multijunction solar cell, solar cell module, and solar power generation system

Similar Documents

Publication Publication Date Title
US10903375B2 (en) Solar cell
JP4765916B2 (en) Semiconductor light emitting device
JP5147818B2 (en) Substrate for photoelectric conversion device
US8962985B2 (en) Solar cell and solar cell module
JP2012522403A (en) Photovoltaic cell and method for enhancing light capture in a semiconductor layer stack
US20120227805A1 (en) Solar cell
JPH0680837B2 (en) Photoelectric conversion element with extended optical path
KR20090035355A (en) High efficiency solar cell and method for the same
WO2012040979A1 (en) Light emitting device and manufacturing method thereof
US9412885B2 (en) Solar cell
EP2509117A1 (en) Photoelectric conversion module, method for manufacturing same, and power generation device
JP2005197597A (en) Multijunction solar cell
KR20120039361A (en) Manufacturing method of solar cell
WO2015146333A1 (en) Photoelectric converter
JP2019149444A (en) Solar cell and manufacturing method of solar cell
JPWO2009131212A1 (en) Solar cell
JP2010141192A (en) Thin-film solar cell and thin-film solar battery
KR20120106259A (en) Solar cell and method of manufacturing the same
KR20230124737A (en) solar cell
JPWO2011136177A1 (en) Thin film solar cell and manufacturing method thereof, substrate with transparent conductive film and manufacturing method thereof
JP5266375B2 (en) Thin film solar cell and manufacturing method thereof
JP5036663B2 (en) Thin film solar cell and manufacturing method thereof
JP2009295943A (en) Thin-film photoelectric converter, and manufacturing method thereof
KR101178445B1 (en) Solar cell and manufacturing method thereof
CN209729918U (en) Solar battery