JP2010278148A - Photovoltaic apparatus and method of manufacturing the same - Google Patents

Photovoltaic apparatus and method of manufacturing the same Download PDF

Info

Publication number
JP2010278148A
JP2010278148A JP2009128033A JP2009128033A JP2010278148A JP 2010278148 A JP2010278148 A JP 2010278148A JP 2009128033 A JP2009128033 A JP 2009128033A JP 2009128033 A JP2009128033 A JP 2009128033A JP 2010278148 A JP2010278148 A JP 2010278148A
Authority
JP
Japan
Prior art keywords
electrode layer
photoelectric conversion
cell
film
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009128033A
Other languages
Japanese (ja)
Inventor
Yasusato Yashiki
保聡 屋敷
Shinsaku Yamaguchi
晋作 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009128033A priority Critical patent/JP2010278148A/en
Publication of JP2010278148A publication Critical patent/JP2010278148A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photovoltaic apparatus capable of absorbing solar light more efficiently even in a photovoltaic apparatus having a structure in which strip-like unit cells are connected in series via an isolation trench on a translucent insulating substrate. <P>SOLUTION: In a photovoltaic apparatus, a cell 10 including a surface electrode layer 11 formed by a transparent conductive material, a photoelectric conversion layer 12 including a semiconductor material that converts light into electricity, and a back surface electrode layer 14 consisting of a conductive material, is formed on an insulating translucent substrate 2. The back surface electrode layer 14 of the cell 10 is connected with the surface electrode layer 11 of an adjacent cell 10 in an isolation trench 22 formed between the cell and the photoelectric conversion layer 12 of the adjacent cell 10, and the plurality of cells 10 are connected in series. The photovoltaic apparatus has a lamination light reflection film 15 in which two or more kinds of material having a refractive index different from each other so as to cover at least the side and the bottom surface of the isolation trench 22. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、光エネルギを電気エネルギに変換する光起電力装置およびその製造方法に関するものである。   The present invention relates to a photovoltaic device that converts light energy into electrical energy and a method for manufacturing the photovoltaic device.

従来の薄膜で構成される光起電力装置では、変換効率を向上させるために、光電変換層に吸収される光を多くすることができる構造のものが求められている。たとえば、光電変換を行う主として半導体層で構成される光電変換層の膜厚を厚くすることで光をより多く吸収できるようにする構造や、光の入射する基板上に凹凸を設けて光を拡散させるようにする構造、基板上または太陽電池の光電変換層内および積層型太陽電池の積層界面に光を拡散、反射させる層を設ける構造などが提案されている(たとえば、特許文献1参照)。このような構造の光起電力装置にあっては、光の入射方向と同方向に吸収されずに透過した光に対しては光の閉じ込め効果を得ることができる。   Conventional photovoltaic devices composed of thin films are required to have a structure capable of increasing the amount of light absorbed by the photoelectric conversion layer in order to improve the conversion efficiency. For example, a structure that allows more light to be absorbed by increasing the film thickness of the photoelectric conversion layer, which is mainly composed of semiconductor layers that perform photoelectric conversion, and unevenness on the substrate on which light is incident to diffuse light A structure for providing light, a structure for diffusing and reflecting light on the substrate or in the photoelectric conversion layer of the solar cell and on the stacked interface of the stacked solar cell have been proposed (for example, see Patent Document 1). In the photovoltaic device having such a structure, a light confinement effect can be obtained for light transmitted without being absorbed in the same direction as the light incident direction.

特許第3,258,680号公報Japanese Patent No. 3,258,680 特開2008−305945号公報JP 2008-305945 A

ところで、近年では、透光性絶縁支持体上に、短冊状に形成した透明電極層を形成し、その上に光電変換層と裏面電極層を積層した後、レーザスクライブ法によって分離溝を形成して複数の短冊状セル領域に分割し、複数の短冊状セル領域を電気的に直列接続した構造の光起電力装置が提案されている(たとえば、特許文献2参照)。しかし、この特許文献2に記載の光起電力装置の裏面電極層の分離溝に面した側面から洩れる光に対する対策は、従来なされていなかった。その結果、この裏面電極の分離溝に面した側面から漏れた光の分、損失が生じてしまうという問題点があった。   By the way, in recent years, a transparent electrode layer formed in a strip shape is formed on a translucent insulating support, a photoelectric conversion layer and a back electrode layer are laminated thereon, and then a separation groove is formed by a laser scribing method. A photovoltaic device having a structure in which a plurality of strip-shaped cell regions are divided into a plurality of strip-shaped cell regions and electrically connected in series has been proposed (for example, see Patent Document 2). However, no countermeasure has been taken for light leaking from the side surface facing the separation groove of the back electrode layer of the photovoltaic device described in Patent Document 2. As a result, there is a problem that a loss is caused by the amount of light leaking from the side surface facing the separation groove of the back electrode.

この発明は、上記に鑑みてなされたもので、透光性絶縁基板上に短冊状の単位セルが分離溝を介して直列に接続された構造の光起電力装置においても太陽光をより効率的に吸収することができる光起電力装置およびその製造方法を得ることを目的とする。   The present invention has been made in view of the above, and even in a photovoltaic device having a structure in which strip-shaped unit cells are connected in series via a separation groove on a translucent insulating substrate, sunlight is more efficiently produced. It is an object of the present invention to obtain a photovoltaic device that can be absorbed in the water and a manufacturing method thereof.

上記目的を達成するため、この発明にかかる光起電力装置は、透光性の基板上に、透明導電性材料によって形成される第1の電極層と、光を電気に変換する半導体材料を含む光電変換層と、導電性の材料からなる第2の電極層と、を含むセルが形成され、前記セルの前記第2の電極層を、隣接するセルの前記光電変換層との間に形成された分離溝内で、前記隣接するセルの第1の電極層と接続させて、複数の前記セルが直列に接続された光起電力装置において、少なくとも前記分離溝の側面および底面を被覆するように、屈折率の異なる2種類以上の材料を積層した積層光反射膜を備えることを特徴とする。   To achieve the above object, a photovoltaic device according to the present invention includes a first electrode layer formed of a transparent conductive material on a light-transmitting substrate and a semiconductor material that converts light into electricity. A cell including a photoelectric conversion layer and a second electrode layer made of a conductive material is formed, and the second electrode layer of the cell is formed between the photoelectric conversion layer of an adjacent cell. In the photovoltaic device in which a plurality of the cells are connected in series so as to cover at least the side surface and the bottom surface of the separation groove in the separation groove and connected to the first electrode layer of the adjacent cell. And a laminated light reflecting film in which two or more kinds of materials having different refractive indexes are laminated.

この発明によれば、分離溝を積層光反射膜で覆うようにしたので、レーザスクライブ法やエッチング法などの方法で分離溝を形成することで露出した光電変換層の側面から横方向に洩れる光を再び光電変換層内に戻すことができる。その結果、発電効率を向上させることができるという効果を有する。また、積層光反射膜を多層膜とすることによって、特定の波長の光に対する反射率を単層の膜の場合よりも高くすることができ、より効果的に光の閉じ込めを行い、発電効率を向上させることができるという効果も有する。   According to the present invention, since the separation groove is covered with the laminated light reflecting film, the light leaking laterally from the side surface of the photoelectric conversion layer exposed by forming the separation groove by a method such as a laser scribing method or an etching method. Can be returned to the photoelectric conversion layer again. As a result, the power generation efficiency can be improved. Also, by making the laminated light reflecting film a multilayer film, the reflectance for light of a specific wavelength can be made higher than in the case of a single layer film, more effectively confining light, and generating efficiency can be improved. There is also an effect that it can be improved.

図1は、この発明の実施の形態による光起電力装置の構造の一例を模式的に示す断面図である。FIG. 1 is a sectional view schematically showing an example of the structure of a photovoltaic device according to an embodiment of the present invention. 図2は、積層光反射膜の一部を拡大して模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an enlarged part of the laminated light reflecting film. 図3は、積層光反射膜の反射率を一般的な光の多重反射モデルで計算した結果を示す図である。FIG. 3 is a diagram illustrating a result of calculating the reflectance of the laminated light reflecting film using a general multiple reflection model of light. 図4は、アモルファスシリコンの吸収係数を示す図である。FIG. 4 is a diagram showing the absorption coefficient of amorphous silicon. 図5は、シミュレーションで求めたアモルファスシリコン太陽電池の量子効率を示す図である。FIG. 5 is a diagram showing the quantum efficiency of the amorphous silicon solar cell obtained by simulation. 図6−1は、この実施の形態による光起電力装置の製造方法の手順の一例を模式的に示す断面図である(その1)。FIG. 6A is a cross-sectional view schematically showing an example of the procedure of the manufacturing method of the photovoltaic device according to this embodiment (No. 1). 図6−2は、この実施の形態による光起電力装置の製造方法の手順の一例を模式的に示す断面図である(その2)。6-2 is sectional drawing which shows typically an example of the procedure of the manufacturing method of the photovoltaic device by this embodiment (the 2). 図6−3は、この実施の形態による光起電力装置の製造方法の手順の一例を模式的に示す断面図である(その3)。6-3 is sectional drawing which shows typically an example of the procedure of the manufacturing method of the photovoltaic device by this embodiment (the 3). 図6−4は、この実施の形態による光起電力装置の製造方法の手順の一例を模式的に示す断面図である(その4)。6-4 is sectional drawing which shows typically an example of the procedure of the manufacturing method of the photovoltaic device by this embodiment (the 4). 図6−5は、この実施の形態による光起電力装置の製造方法の手順の一例を模式的に示す断面図である(その5)。6-5 is sectional drawing which shows typically an example of the procedure of the manufacturing method of the photovoltaic device by this embodiment (the 5). 図6−6は、この実施の形態による光起電力装置の製造方法の手順の一例を模式的に示す断面図である(その6)。6-6 is sectional drawing which shows typically an example of the procedure of the manufacturing method of the photovoltaic device by this embodiment (the 6).

以下に添付図面を参照して、この発明の実施の形態にかかる光起電力装置およびその製造方法を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、以下の実施の形態で用いられる光起電力装置の断面図は模式的なものであり、層の厚みと幅との関係や各層の厚みの比率などは現実のものとは異なる。   Hereinafter, a photovoltaic device and a manufacturing method thereof according to embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments. Moreover, sectional views of the photovoltaic devices used in the following embodiments are schematic, and the relationship between the thickness and width of the layers, the ratio of the thicknesses of the layers, and the like are different from the actual ones.

図1は、この発明の実施の形態による光起電力装置の構造の一例を模式的に示す断面図である。この光起電力装置1は、ガラス基板や樹脂基板などの絶縁透光性基板2上に複数の単位太陽電池セル(以下、単にセルという)10が所定の方向(図中では、左右方向)に直列に接続されている。それぞれのセル10は、表面電極層11、光電変換層12、裏面反射層13および裏面電極層14が順に積層された光電変換素子によって形成されている。あるセル10の表面電極層11は、隣接する一方の(この図1では左隣の)セル10の裏面電極層14と接続され、裏面電極層14は、隣接する他方(この図1では右隣の)セル10の表面電極層11と接続される。そして、直列に接続されたセル10の上面および側面を被覆するように積層光反射膜15が形成される。   FIG. 1 is a sectional view schematically showing an example of the structure of a photovoltaic device according to an embodiment of the present invention. In this photovoltaic device 1, a plurality of unit solar cells (hereinafter simply referred to as cells) 10 are arranged in a predetermined direction (left and right in the figure) on an insulating translucent substrate 2 such as a glass substrate or a resin substrate. Connected in series. Each cell 10 is formed by a photoelectric conversion element in which a front surface electrode layer 11, a photoelectric conversion layer 12, a back surface reflection layer 13, and a back surface electrode layer 14 are sequentially stacked. The surface electrode layer 11 of a certain cell 10 is connected to the back electrode layer 14 of one adjacent cell 10 (left adjacent in FIG. 1), and the back electrode layer 14 is connected to the other adjacent (right adjacent in FIG. 1). And (b) connected to the surface electrode layer 11 of the cell 10. Then, the laminated light reflecting film 15 is formed so as to cover the upper surface and side surfaces of the cells 10 connected in series.

また、たとえば直列方向の両端のセル10の裏面電極層14上の一部には積層光反射膜15を除去して外部電極接続部が設けられ、この外部電極接続部に外部電極16が形成され、さらに外部電極16には取出配線17が取り付けられている。そして、このように形成された絶縁透光性基板2上の光電変換素子は、エチレン酢酸ビニル共重合体(EVA)などの封止樹脂18で封止される。ここで、光電変換層12が形成される絶縁透光性基板2上の領域をセル形成領域Rというものとする。また、この光起電力装置1において、光入射側の面を表面といい、表面とは反対側の面を裏面という。以下に、光電変換素子を構成する各層の詳細について説明する。   Further, for example, the laminated light reflecting film 15 is removed from a part on the back electrode layer 14 of the cell 10 at both ends in the series direction to provide an external electrode connection portion, and the external electrode 16 is formed in the external electrode connection portion. Further, an extraction wiring 17 is attached to the external electrode 16. And the photoelectric conversion element on the insulating translucent board | substrate 2 formed in this way is sealed with sealing resin 18, such as an ethylene vinyl acetate copolymer (EVA). Here, a region on the insulating translucent substrate 2 where the photoelectric conversion layer 12 is formed is referred to as a cell formation region R. Moreover, in this photovoltaic apparatus 1, the surface on the light incident side is referred to as the front surface, and the surface opposite to the front surface is referred to as the back surface. Below, the detail of each layer which comprises a photoelectric conversion element is demonstrated.

表面電極層11は、酸化亜鉛や酸化錫、ITO(Indium Tin Oxide)などの透明導電性材料で構成される。表面電極層11は、セル10ごとに分離溝21によって分離して形成されるが、その形成位置はセル形成領域Rとは一致しておらず、自身が属するセル形成領域Rの一部と、隣接する(この図の例では、左側に隣接する)セル形成領域Rの一部にまたがって形成される。つまり、セル形成領域Rには、そのセル形成領域Rで機能する表面電極層11と、隣接するセル形成領域Rで機能する表面電極層11とが、距離をおいて配置されている。たとえばこの図1において、あるセル形成領域Rのほぼ左半分の領域にはこのセル10の光電変換素子の一部を構成する表面電極層11が形成され、このセル形成領域Rの右側端部の領域には右に隣接するセル10の光電変換素子の一部を構成する表面電極層11が形成されている。   The surface electrode layer 11 is made of a transparent conductive material such as zinc oxide, tin oxide, or ITO (Indium Tin Oxide). The surface electrode layer 11 is formed separately for each cell 10 by the separation groove 21, but the formation position thereof does not coincide with the cell formation region R, and a part of the cell formation region R to which the surface electrode layer 11 belongs, It is formed across a part of the cell forming region R adjacent (adjacent to the left side in the example of this figure). That is, in the cell formation region R, the surface electrode layer 11 that functions in the cell formation region R and the surface electrode layer 11 that functions in the adjacent cell formation region R are arranged at a distance. For example, in FIG. 1, a surface electrode layer 11 constituting a part of the photoelectric conversion element of the cell 10 is formed in a substantially left half region of a certain cell forming region R. In the region, a surface electrode layer 11 constituting a part of the photoelectric conversion element of the cell 10 adjacent to the right is formed.

光電変換層12は、pn接合またはpin接合を有し、入射する光によって発電を行う1層のまたは複数層積層された薄膜半導体層を含む層によって構成される。薄膜半導体層として、水素化アモルファスシリコン、微結晶シリコン、アモルファスシリコンゲルマニウム、微結晶シリコンゲルマニウム、アモルファス炭化シリコン、微結晶炭化シリコンなどを用いることができる。さらに、光電変換層12が、複数の薄膜半導体層の積層膜からなる場合には、異なる薄膜半導体層間に、ITOやZnOなどの透明導電性膜や、不純物をドーピングして導電性を向上させたSiO2やSiNなどの珪素化合物膜を中間層として挿入してもよい。 The photoelectric conversion layer 12 has a pn junction or a pin junction, and is configured by a layer including a single layer or a plurality of stacked thin film semiconductor layers that generate power by incident light. As the thin film semiconductor layer, hydrogenated amorphous silicon, microcrystalline silicon, amorphous silicon germanium, microcrystalline silicon germanium, amorphous silicon carbide, microcrystalline silicon carbide, or the like can be used. Further, when the photoelectric conversion layer 12 is composed of a laminated film of a plurality of thin film semiconductor layers, conductivity is improved by doping a transparent conductive film such as ITO or ZnO or impurities between different thin film semiconductor layers. A silicon compound film such as SiO 2 or SiN may be inserted as an intermediate layer.

裏面反射層13は、光電変換層12と裏面電極層14との間に形成されるので導電膜が好ましく、また、反射率が高いものほど好ましい。たとえば、波長650nmにおける垂直入射時の反射率が90%以上のAlやAgなどが望ましい。また、可視光領域から近赤外領域にかけてはAlよりもAgの反射率の方が高いことから、裏面反射層13としてAgを用いることが望ましい。   Since the back surface reflection layer 13 is formed between the photoelectric conversion layer 12 and the back surface electrode layer 14, a conductive film is preferable, and a higher reflectance is more preferable. For example, Al or Ag having a reflectance of 90% or more at the time of vertical incidence at a wavelength of 650 nm is desirable. Moreover, since the reflectance of Ag is higher than that of Al from the visible light region to the near infrared region, it is desirable to use Ag as the back surface reflection layer 13.

これらの光電変換層12と裏面反射層13は、セル10ごとに分離溝22によって分離して形成され、その形成位置はセル形成領域Rと一致している。   The photoelectric conversion layer 12 and the back surface reflection layer 13 are formed separately for each cell 10 by the separation groove 22, and the formation position thereof coincides with the cell formation region R.

裏面電極層14は、Al,Ag,Au,Cu,Pt,Crなどから選ばれる少なくとも1つの導電性材料、または酸化亜鉛、ITO、二酸化錫などの透明導電性材料とAl,Ag,Au,Cu,Pt,Crなどから選ばれる少なくとも1つの導電性材料との積層体によって形成され、光電変換層12で発電された光電流を収集する機能を有する。   The back electrode layer 14 is made of at least one conductive material selected from Al, Ag, Au, Cu, Pt, Cr, etc., or a transparent conductive material such as zinc oxide, ITO, tin dioxide, and Al, Ag, Au, Cu. , Pt, Cr, and the like, and has a function of collecting the photocurrent generated by the photoelectric conversion layer 12.

この裏面電極層14は、セル10の配列方向の一方の側面(この図1では、右側の側面)の全面にも形成され、分離溝22の底部で隣接する(この図1では、右側に隣接する)セル10の表面電極層11と接続されている。つまり、裏面電極層14は、セル10の配列方向の一方の側面をコンフォーマルに被覆している。   The back electrode layer 14 is also formed on the entire surface of one side surface in the arrangement direction of the cells 10 (right side surface in FIG. 1) and is adjacent to the bottom of the separation groove 22 (adjacent to the right side in FIG. 1). Connected to the surface electrode layer 11 of the cell 10. That is, the back electrode layer 14 conformally covers one side surface in the arrangement direction of the cells 10.

積層光反射膜15は、裏面電極層14上と、光電変換層12と裏面反射層13に形成される分離溝22の側面を覆うように、複数の材料が積層してなる多層膜によって形成される。たとえば、積層光反射膜15は、光電変換層12よりも屈折率の低い第1の材料からなる薄膜、第1の材料よりも屈折率の高い第2の材料からなる薄膜、第1の材料からなる薄膜、・・・というように屈折率の異なる薄膜を交互に複数積層することによって構成される。このように、屈折率の高い材料と低い材料とを交互に積層させることで、高い光閉じ込め効果が得られる。   The laminated light reflecting film 15 is formed by a multilayer film in which a plurality of materials are laminated so as to cover the back electrode layer 14 and the side surfaces of the separation grooves 22 formed in the photoelectric conversion layer 12 and the back reflecting layer 13. The For example, the laminated light reflecting film 15 includes a thin film made of a first material having a refractive index lower than that of the photoelectric conversion layer 12, a thin film made of a second material having a higher refractive index than that of the first material, and a first material. The thin film is formed by alternately laminating a plurality of thin films having different refractive indexes. Thus, a high light confinement effect can be obtained by alternately laminating a material having a high refractive index and a material having a low refractive index.

図2は、積層光反射膜の一部を拡大して模式的に示す断面図である。この図では、裏面電極層14上と分離溝22の側面に形成される積層光反射膜15が、酸化シリコン(SiOx(x=1〜2))膜151、シリコン(Si)膜152、窒化シリコン(SiNx(x=1〜2))膜153からなる場合を示している。なお、窒化シリコン膜153に代えて酸窒化シリコン(SiONx(x=1〜2))膜を用いてもよい。これらの各膜151〜153の典型的な膜厚は数〜100nmの範囲である。このような構造の積層光反射膜15は、光の閉じ込め機能に加えて、裏面電極層14と封止樹脂18との間の密着性を向上することができるとともに、酸素や水などによる裏面電極の腐食を防ぐことができる。なお、積層光反射膜15として使用される材料は、酸化シリコンや窒化シリコン、酸窒化シリコンに限られず、上記の屈折率の条件を満たすものであればよい。 FIG. 2 is a cross-sectional view schematically showing an enlarged part of the laminated light reflecting film. In this figure, a laminated light reflecting film 15 formed on the back electrode layer 14 and on the side surface of the separation groove 22 includes a silicon oxide (SiO x (x = 1 to 2)) film 151, a silicon (Si) film 152, a nitride film. In this example, a silicon (SiN x (x = 1 to 2)) film 153 is formed. Note that a silicon oxynitride (SiON x (x = 1 to 2)) film may be used instead of the silicon nitride film 153. The typical film thickness of each of these films 151 to 153 is in the range of several to 100 nm. The laminated light reflecting film 15 having such a structure can improve the adhesion between the back electrode layer 14 and the sealing resin 18 in addition to the light confinement function, and can also be back electrode made of oxygen or water. Can prevent corrosion. The material used for the laminated light reflecting film 15 is not limited to silicon oxide, silicon nitride, or silicon oxynitride, and may be any material that satisfies the above refractive index conditions.

図3は、積層光反射膜の反射率を一般的な光の多重反射モデルで計算した結果を示す図である。ここでは、積層光反射膜15として、(a)75nmの酸化シリコン膜のみを用いた場合、(b)75nmの酸化シリコン膜、25nmのシリコン膜、75nmの酸化シリコン膜を三層積層した場合、および(c)75nmの酸化シリコン膜、50nmのシリコン膜、75nmの酸化シリコン膜を三層積層した場合のそれぞれの反射率について示している。   FIG. 3 is a diagram illustrating a result of calculating the reflectance of the laminated light reflecting film using a general multiple reflection model of light. Here, when (a) only a 75 nm silicon oxide film is used as the laminated light reflecting film 15, (b) when a 75 nm silicon oxide film, a 25 nm silicon film, and a 75 nm silicon oxide film are laminated, And (c) The reflectivity when three layers of a 75 nm silicon oxide film, a 50 nm silicon film, and a 75 nm silicon oxide film are stacked is shown.

この図に示されるように、(a)の酸化シリコン膜の場合には、450nm付近で最大の反射率55%近くを有し、波長が長くなるにつれて反射率が低減し、700nmで反射率は約10%となる。一方、(b)の積層膜の場合には、400nmでは反射率が30%程度であり、470nm付近で反射率が0になり、560nm付近で最大の反射率62%近くを有し、波長が長くなるにつれて反射率が低減するが、630nm付近では反射率が55%程度であり、700nmでの反射率は38%程度であり、800nmでの反射率は18%程度となっている。また、(c)の積層膜の場合には、400nmでは反射率が10%程度であり、500nm付近で最大の反射率65%を有し、波長が長くなるにつれて反射率が低減するが、650nm以上では、(a)の酸化シリコン膜とほぼ同様の反射率を示す。   As shown in this figure, in the case of the silicon oxide film (a), the maximum reflectance is near 55% near 450 nm, the reflectance decreases as the wavelength increases, and the reflectance is 700 nm. About 10%. On the other hand, in the case of the laminated film (b), the reflectance is about 30% at 400 nm, the reflectance is 0 near 470 nm, the maximum reflectance is near 62% near 560 nm, and the wavelength is The reflectance decreases as the length increases, but the reflectance is about 55% near 630 nm, the reflectance at 700 nm is about 38%, and the reflectance at 800 nm is about 18%. In the case of the laminated film (c), the reflectivity is about 10% at 400 nm, the maximum reflectivity is 65% near 500 nm, and the reflectivity decreases as the wavelength increases. The reflectivity is almost the same as that of the silicon oxide film (a).

このように、積層させることで高い反射率と波長の選択性が得られることがわかる。また、(b)の積層膜と(c)の積層膜のように膜厚を変化させることで、この波長の選択性を変化させることができるため、適用する光電変換層12で吸収されにくい波長に適した反射率を有する積層光反射膜15を設計することで、高い変換効率を有する光起電力装置1を製造することができる。   Thus, it can be seen that high reflectivity and wavelength selectivity can be obtained by laminating. Moreover, since the selectivity of this wavelength can be changed by changing the film thickness like the laminated film of (b) and the laminated film of (c), the wavelength that is difficult to be absorbed by the applied photoelectric conversion layer 12 The photovoltaic device 1 having high conversion efficiency can be manufactured by designing the laminated light reflecting film 15 having a reflectance suitable for the above.

図4は、アモルファスシリコンの吸収係数を示す図であり、図5は、シミュレーションで求めたアモルファスシリコン太陽電池の量子効率を示す図である。図4で、横軸は波長(nm)を示し、縦軸は吸収係数(cm-1)を示している。また、図5で、横軸は波長(nm)を示し、縦軸は量子効率を示している。なお、図4は、"Optical and Electrical Properties of Undoped Microcrystalline Silicon Deposited by the VHF-GD with Different Dilutions of Silane in Hydrogen"(Beck N., Torres P., Fric J., Remes Z., Poruba A., Stuchlikova H. A., Fejfar A., Wyrsch N., Vanecek M., Kocka J., Shah A., MRS Symp., vol. 452, 1997, p.761-766)を参考にしている。 FIG. 4 is a diagram showing the absorption coefficient of amorphous silicon, and FIG. 5 is a diagram showing the quantum efficiency of the amorphous silicon solar cell obtained by simulation. In FIG. 4, the horizontal axis indicates the wavelength (nm), and the vertical axis indicates the absorption coefficient (cm −1 ). In FIG. 5, the horizontal axis indicates the wavelength (nm) and the vertical axis indicates the quantum efficiency. FIG. 4 shows "Optical and Electrical Properties of Undoped Microcrystalline Silicon Deposited by the VHF-GD with Different Dilutions of Silane in Hydrogen" (Beck N., Torres P., Fric J., Remes Z., Poruba A., Stuchlikova HA, Fejfar A., Wyrsch N., Vanecek M., Kocka J., Shah A., MRS Symp., Vol. 452, 1997, p.761-766).

図4に示されるようにアモルファスシリコンでは、吸収係数が10,000cm-1となる波長(約630nm)より長波長の光に対して、光起電力装置の量子効率が0.3をきってしまい、有効に利用できていないことがわかる。そこで、吸収係数が10,000cm-1以下となる波長の光に対して高い反射率を有する積層光反射膜15を設置することで、従来構造では有効に利用できていなかった光を再び光起電力装置内に戻し、利用することができるようになる。これは、ほかの材料に対しても同様で、光電変換層12の材料に合わせて積層光反射膜15の膜厚および構成材料を設計することで反射する光の波長領域を変えることができる。 As shown in FIG. 4, in the amorphous silicon, the quantum efficiency of the photovoltaic device is less than 0.3 for light having a wavelength longer than the wavelength (about 630 nm) at which the absorption coefficient is 10,000 cm −1. , You can see that it is not available effectively. Therefore, by installing the laminated light reflecting film 15 having a high reflectance with respect to light having a wavelength of absorption coefficient of 10,000 cm −1 or less, light that has not been effectively used in the conventional structure can be regenerated. It can be returned to the power device and used. The same applies to other materials, and the wavelength range of reflected light can be changed by designing the film thickness and constituent materials of the laminated light reflecting film 15 in accordance with the material of the photoelectric conversion layer 12.

また、図5から、波長が720nm以下であれば量子効率がある程度大きくなるので、光を電気に変換することができる。この720nmでのアモルファスシリコンの吸収係数は、図4より100cm-1である。 Further, from FIG. 5, if the wavelength is 720 nm or less, the quantum efficiency is increased to some extent, so that light can be converted into electricity. The absorption coefficient of amorphous silicon at 720 nm is 100 cm −1 from FIG.

以上より、光電変換層12としてアモルファスシリコンを用いる場合には、波長が630〜720nm(すなわち、吸収係数が10,000〜100cm-1)の範囲で反射率がある程度あればよい。たとえば、図3に示される積層光反射膜15の場合には、波長630nmで約55%の反射率を有し、波長800nmでも約18%の反射率を有する(b)の積層膜が、積層光反射膜15としてより望ましい。 As described above, when amorphous silicon is used as the photoelectric conversion layer 12, it is sufficient that the reflectance is in a certain range within a wavelength range of 630 to 720 nm (that is, an absorption coefficient of 10,000 to 100 cm −1 ). For example, in the case of the laminated light reflecting film 15 shown in FIG. 3, the laminated film (b) having a reflectance of about 55% at a wavelength of 630 nm and a reflectance of about 18% at a wavelength of 800 nm is laminated. More desirable as the light reflecting film 15.

なお、以上の説明は、光電変換層12としてアモルファスシリコンを用いる場合であり、光電変換層12に用いる材料によってその値は変化するので、光電変換層12に用いる材料によって、反射率を高める波長範囲を予め実験によって求めておく必要がある。たとえば、光電変換層12として微結晶シリコンを用いる場合には、さらに長波長域の光、おおよそ1μmまでの光を変換することができる。この微結晶シリコンの波長1μmの場合の吸収係数は、100cm-1程度である。そのため、微結晶シリコンの場合には、吸収係数が10,000〜100cm-1(すなわち、波長が630nm〜1μm)の範囲である程度の反射率を有する積層光反射膜15を用いればよい。 In addition, the above description is a case where amorphous silicon is used as the photoelectric conversion layer 12, and the value varies depending on the material used for the photoelectric conversion layer 12. Therefore, the wavelength range in which the reflectance is increased depending on the material used for the photoelectric conversion layer 12. Must be obtained by experiments in advance. For example, when microcrystalline silicon is used as the photoelectric conversion layer 12, light in a longer wavelength region, that is, light up to approximately 1 μm can be converted. The absorption coefficient of the microcrystalline silicon at a wavelength of 1 μm is about 100 cm −1 . Therefore, in the case of microcrystalline silicon, the laminated light reflecting film 15 having a certain degree of reflectance may be used in the range where the absorption coefficient is 10,000 to 100 cm −1 (that is, the wavelength is 630 nm to 1 μm).

なお、上記の説明における反射率は高ければ高いほどよい。図3の(b)と(c)の積層膜のスペクトルは必ずしも最適なものではないが、たとえば(b)と(c)の積層膜のように、少なくとも630nm(吸収係数で10,000cm-1)で反射率が20%以上あることが望ましい。また、(b)の積層膜のように630〜720nmの波長範囲の全域で反射率が30%以上あることが望ましく、その範囲内に50%以上の反射率を有することがさらに望ましい。 Note that the higher the reflectance in the above description, the better. The spectra of the laminated films (b) and (c) in FIG. 3 are not necessarily optimal. For example, as in the laminated films (b) and (c), at least 630 nm (absorption coefficient is 10,000 cm −1). ) And the reflectance is desirably 20% or more. Further, it is desirable that the reflectance is 30% or more in the entire wavelength range of 630 to 720 nm as in the laminated film (b), and it is more desirable that the reflectance is 50% or more within the range.

以上のように、積層光反射膜15は、光電変換層12を構成する材料の吸収係数が10,000cm-1以下で、量子効率が0よりも大きくなる波長範囲において、少なくとも20%以上の反射率を有するものが望ましい。 As described above, the laminated light reflecting film 15 has a reflection coefficient of at least 20% or more in the wavelength range in which the absorption coefficient of the material constituting the photoelectric conversion layer 12 is 10,000 cm −1 or less and the quantum efficiency is greater than 0. Those with a rate are desirable.

以上のような構成によって、あるセル10の裏面電極層14が、たとえば右に隣接するセル10の表面電極層11と分離溝22内で接続され、あるセル10の表面電極層11が左に隣接する他のセル10の裏面電極層14と分離溝22内で接続され、これが繰り返されることによって、複数のセル10が直列に接続された光起電力装置1が形成される。   With the configuration as described above, the back electrode layer 14 of a certain cell 10 is connected to, for example, the surface electrode layer 11 of the cell 10 adjacent to the right in the separation groove 22, and the surface electrode layer 11 of a certain cell 10 is adjacent to the left The photovoltaic device 1 in which a plurality of cells 10 are connected in series is formed by being connected to the back electrode layer 14 of the other cell 10 in the separation groove 22 and repeating this.

ここで、このような構造の光起電力装置1における動作の概略について説明する。絶縁透光性基板2の裏面(セル10が形成されていない方の面)から太陽光が入射すると、各セル10の光電変換層12で自由キャリアが生成され、電流が発生する。各セル10で発生した電流は表面電極層11と裏面電極層14を介して隣接するセル10に流れ込み、光起電力装置1(モジュール)全体の発電電流を生成する。そして、外部電極16と取出配線17を介して光起電力装置1の外部に発電電流(光起電力)が取出される。   Here, an outline of the operation of the photovoltaic device 1 having such a structure will be described. When sunlight enters from the back surface of the insulating translucent substrate 2 (the surface on which the cell 10 is not formed), free carriers are generated in the photoelectric conversion layer 12 of each cell 10 and current is generated. The current generated in each cell 10 flows into the adjacent cell 10 via the front electrode layer 11 and the back electrode layer 14, and generates a generated current of the entire photovoltaic device 1 (module). Then, a generated current (photovoltaic force) is taken out of the photovoltaic device 1 through the external electrode 16 and the extraction wiring 17.

また、光電変換層12で吸収されずに透過した光の一部は、裏面反射層13で光電変換層12側に反射される。また、この裏面反射層13を透過した光は、積層光反射膜15で光電変換層12側に反射される。さらに、光電変換層12に入射して分離溝22の側面に到達した光も積層光反射膜15で光電変換層12側に反射される。これらの裏面反射層13や積層光反射膜15で反射された光は、再び光電変換層12に入射して自由キャリアの生成に寄与する光となる。   Further, part of the light transmitted without being absorbed by the photoelectric conversion layer 12 is reflected by the back surface reflection layer 13 to the photoelectric conversion layer 12 side. Further, the light transmitted through the back surface reflection layer 13 is reflected to the photoelectric conversion layer 12 side by the laminated light reflection film 15. Furthermore, the light that has entered the photoelectric conversion layer 12 and reached the side surface of the separation groove 22 is also reflected by the laminated light reflection film 15 toward the photoelectric conversion layer 12. The light reflected by the back surface reflection layer 13 and the laminated light reflection film 15 enters the photoelectric conversion layer 12 again and becomes light that contributes to the generation of free carriers.

つぎに、このような構造の光起電力装置1の製造方法について説明する。図6−1〜図6−6は、この実施の形態による光起電力装置の製造方法の手順の一例を模式的に示す断面図である。   Next, a method for manufacturing the photovoltaic device 1 having such a structure will be described. 6-1 to 6-6 are cross-sectional views schematically showing an example of the procedure of the method for manufacturing the photovoltaic device according to this embodiment.

まず、絶縁透光性基板2上に酸化亜鉛、酸化錫、またはITOなどを含む透明導電性材料からなる表面電極層11をスパッタ法などの成膜方法によって形成し、フォトリソグラフィ技術やレーザスクライビングなどの方法で、所定の位置に分離溝21を形成して分離し、パターニングを行う(図6−1)。   First, the surface electrode layer 11 made of a transparent conductive material containing zinc oxide, tin oxide, ITO or the like is formed on the insulating translucent substrate 2 by a film forming method such as sputtering, and photolithography technology, laser scribing, etc. By this method, the separation groove 21 is formed and separated at a predetermined position, and patterning is performed (FIG. 6-1).

ついで、パターニングした表面電極層11上に、光電変換層12と裏面反射層13とを順に形成する(図6−2)。ここで、光電変換層12は、たとえばpin型の三層構造からなるアモルファスシリコン膜などの半導体薄膜からなり、CVD(Chemical Vapor Deposition)法などの成膜法によって形成される。また、裏面反射層13は、たとえばAgやAlなどの可視光域から近赤外線領域の反射率が高い膜からなり、スパッタ法や蒸着法などの成膜法によって、形成される。   Subsequently, the photoelectric conversion layer 12 and the back surface reflection layer 13 are formed in order on the patterned surface electrode layer 11 (FIG. 6-2). Here, the photoelectric conversion layer 12 is made of a semiconductor thin film such as an amorphous silicon film having a pin-type three-layer structure, for example, and is formed by a film forming method such as a CVD (Chemical Vapor Deposition) method. Moreover, the back surface reflection layer 13 is made of a film having a high reflectivity from the visible light region to the near infrared region, such as Ag and Al, and is formed by a film forming method such as a sputtering method or a vapor deposition method.

その後、表面電極層11間に形成した分離溝21とほぼ平行となるように、またこの分離溝21の位置と重ならない裏面反射層13と光電変換層12の所定の位置に分離溝22を、レーザスクライビング法やメカニカルスクライビング法、エッチング法などの方法によってライン状に加工する(図6−3)。   Thereafter, the separation groove 22 is formed at a predetermined position of the back surface reflection layer 13 and the photoelectric conversion layer 12 so as to be substantially parallel to the separation groove 21 formed between the front surface electrode layers 11 and not to overlap the position of the separation groove 21. It is processed into a line by a laser scribing method, a mechanical scribing method, an etching method, or the like (FIG. 6-3).

ついで、裏面電極層14を裏面反射層13上と分離溝22を覆うように形成する(図6−4)。裏面電極層14として反射率が高くかつ電気伝導率の高いAgやAlなどの導電性材料や、酸化スズやITOなどの透明導電性材料とAgやAlの積層膜をスパッタ法などの成膜法によって形成することができる。このとき、裏面電極層14は、分離溝22をコンフォーマルに被覆するように形成される。   Next, the back electrode layer 14 is formed so as to cover the back reflection layer 13 and the separation groove 22 (FIG. 6-4). A film forming method such as sputtering using a conductive material such as Ag or Al having high reflectivity and high electrical conductivity as the back electrode layer 14, or a laminated film of Ag and Al with a transparent conductive material such as tin oxide or ITO. Can be formed. At this time, the back electrode layer 14 is formed so as to conformally cover the separation groove 22.

その後、たとえば絶縁透光性基板2の裏面側からレーザ光を分離溝22に沿って照射し、分離溝22の底部と側面部に形成されている裏面電極層14のうち、一部のみが表面電極層11と接続されるように、他の部分を除去する(図6−5)。ここでは、分離溝22の底面部と右側の側面部に形成される裏面電極層14を除去する。これによって、隣接するセル10間の裏面電極層14は電気的に絶縁される。   After that, for example, laser light is irradiated along the separation groove 22 from the back surface side of the insulating translucent substrate 2, and only a part of the back electrode layer 14 formed on the bottom and side surfaces of the separation groove 22 is the surface. Other portions are removed so as to be connected to the electrode layer 11 (FIGS. 6-5). Here, the back electrode layer 14 formed on the bottom surface portion and the right side surface portion of the separation groove 22 is removed. Thereby, the back electrode layer 14 between the adjacent cells 10 is electrically insulated.

ついで、直列に接続された両端のセル10の外部電極接続部の形成領域上に、フィルムなどのカバー31を設置する。その後、分離溝22で一部が分離された裏面電極層14上とカバー31上に、積層光反射膜15を、分離溝22の側面と底面をコンフォーマルに被覆するように形成する(図6−6)。たとえば、積層光反射膜15が、酸化シリコンとシリコンの積層膜で構成される場合には、プラズマCVD法で、モノシラン、ジシランといったシラン系ガスに、水素、二酸化炭素を加えたものを原料ガスとして成膜を行うことによって、積層光反射膜を形成することができる。このとき、二酸化炭素の供給のオン/オフを切り替えるといった簡易な操作で、酸化シリコンとシリコンの積層膜を形成することができる。   Next, a cover 31 such as a film is installed on the formation region of the external electrode connection portions of the cells 10 at both ends connected in series. Thereafter, the laminated light reflecting film 15 is formed on the back electrode layer 14 and the cover 31 partially separated by the separation groove 22 so as to conformally cover the side and bottom surfaces of the separation groove 22 (FIG. 6). -6). For example, when the laminated light reflecting film 15 is composed of a laminated film of silicon oxide and silicon, a material obtained by adding hydrogen and carbon dioxide to a silane-based gas such as monosilane or disilane by plasma CVD is used as a source gas. By forming the film, a laminated light reflecting film can be formed. At this time, a stacked film of silicon oxide and silicon can be formed by a simple operation such as switching on / off of the supply of carbon dioxide.

ついで、カバー31を除去し、積層光反射膜15上にたとえばレジストを塗布し、カバー31を除去した外部電極接続部が開口するようにフォトリソグラフィ法によって開口を設ける。その後、外部電極接続部にAgやAlなどの金属材料で外部電極16を形成し、レジストを除去する。最後に、外部電極16に取出配線17を設け、封止樹脂18によって、セル10を封止することで、図1に示される光起電力装置1が得られる。   Next, the cover 31 is removed, a resist, for example, is applied onto the laminated light reflecting film 15, and an opening is provided by photolithography so that the external electrode connection portion from which the cover 31 has been removed is opened. Thereafter, the external electrode 16 is formed of a metal material such as Ag or Al at the external electrode connection portion, and the resist is removed. Finally, an extraction wiring 17 is provided on the external electrode 16, and the cell 10 is sealed with a sealing resin 18, whereby the photovoltaic device 1 shown in FIG. 1 is obtained.

なお、外部電極接続部の形成に当たって、積層光反射膜15の形成前にカバー31を被せる方法を例示したが、これに限定されるものではない。たとえば、積層光反射膜15を形成した後、レジストを塗布し、フォトリソグラフィ法によって、外部電極形成位置に開口を設けたレジストマスクを形成する。そして、レジストマスクを用いて裏面電極層14が露出するまで積層光反射膜15のエッチングを行った後、外部電極16を形成してもよい。   In addition, in forming the external electrode connection portion, the method of covering the cover 31 before forming the laminated light reflecting film 15 is exemplified, but the present invention is not limited to this. For example, after the laminated light reflecting film 15 is formed, a resist is applied, and a resist mask having an opening at an external electrode formation position is formed by photolithography. Then, after etching the laminated light reflecting film 15 until the back electrode layer 14 is exposed using a resist mask, the external electrode 16 may be formed.

また、上記した積層光反射膜15の多層構造は一例であり、層構成、積層数、膜厚は適切な反射特性となるように適宜変更可能である。   Further, the multilayer structure of the laminated light reflecting film 15 described above is an example, and the layer configuration, the number of laminated layers, and the film thickness can be appropriately changed so as to have appropriate reflection characteristics.

ところで、従来の光起電力装置の構造においては、光電変換層12に入射した光がその側面から分離溝22へと洩れる光を有効利用できていなかった。しかし、この実施の形態のように分離溝22の側面と底面を覆う積層光反射膜15を形成したことで、光電変換層12の側面から分離溝22へと洩れていた光を、再び光電変換層12へと戻すことで有効に利用できるとともに、裏面電極層14の保護を同時に実現することができる。   By the way, in the structure of the conventional photovoltaic device, the light which the light which injected into the photoelectric converting layer 12 leaked into the separation groove | channel 22 from the side surface was not able to be utilized effectively. However, by forming the laminated light reflecting film 15 that covers the side surface and the bottom surface of the separation groove 22 as in this embodiment, light leaking from the side surface of the photoelectric conversion layer 12 to the separation groove 22 is photoelectrically converted again. By returning to the layer 12, it can be used effectively, and the back electrode layer 14 can be protected at the same time.

この実施の形態によれば、セル10間の光電変換層12を分離する分離溝22に積層光反射膜15を形成したので、光電変換層12で吸収されずに分離溝22が形成される側面に到達した光は、再びセル10内へと戻される。その結果、分離溝22に反射構造を有さない、従来構造の場合に比して、漏れていた光を有効利用することができるので、セル10での光電流が増大し、変換効率が向上するという効果を有する。また、積層光反射膜15によって、裏面電極層14を保護することができるという効果も有する。   According to this embodiment, since the laminated light reflecting film 15 is formed in the separation groove 22 that separates the photoelectric conversion layers 12 between the cells 10, the side surface on which the separation grooves 22 are formed without being absorbed by the photoelectric conversion layer 12. The light that reaches has been returned to the cell 10 again. As a result, compared to the conventional structure in which the separation groove 22 does not have a reflecting structure, the leaked light can be used effectively, so that the photocurrent in the cell 10 increases and the conversion efficiency improves. Has the effect of In addition, the back electrode layer 14 can be protected by the laminated light reflecting film 15.

以上のように、本発明にかかる光起電力装置は、薄膜で構成される太陽電池に有用である。   As mentioned above, the photovoltaic device concerning this invention is useful for the solar cell comprised with a thin film.

1 光起電力装置
2 絶縁透光性基板
10 セル
11 表面電極層
12 光電変換層
13 裏面反射層
14 裏面電極層
15 積層光反射膜
16 外部電極
17 取出配線
18 封止樹脂
21 分離溝
22 分離溝
31 カバー
151 酸化シリコン膜
152 シリコン膜
153 窒化シリコン膜
DESCRIPTION OF SYMBOLS 1 Photovoltaic apparatus 2 Insulating translucent board | substrate 10 Cell 11 Front surface electrode layer 12 Photoelectric conversion layer 13 Back surface reflecting layer 14 Back surface electrode layer 15 Laminated light reflecting film 16 External electrode 17 Extraction wiring 18 Sealing resin 21 Separation groove 22 Separation groove 31 Cover 151 Silicon oxide film 152 Silicon film 153 Silicon nitride film

Claims (7)

透光性の基板上に、透明導電性材料によって形成される第1の電極層と、光を電気に変換する半導体材料を含む光電変換層と、導電性の材料からなる第2の電極層と、を含むセルが形成され、前記セルの前記第2の電極層を、隣接するセルの前記光電変換層との間に形成された分離溝内で、前記隣接するセルの第1の電極層と接続させて、複数の前記セルが直列に接続された光起電力装置において、
少なくとも前記分離溝の側面および底面を被覆するように、屈折率の異なる2種類以上の材料を積層した積層光反射膜を備えることを特徴とする光起電力装置。
A first electrode layer formed of a transparent conductive material on a light-transmitting substrate; a photoelectric conversion layer including a semiconductor material that converts light into electricity; and a second electrode layer formed of a conductive material. The second electrode layer of the cell is separated from the first electrode layer of the adjacent cell in a separation groove formed between the photoelectric conversion layer of the adjacent cell and the second electrode layer of the cell. In a photovoltaic device in which a plurality of the cells are connected in series,
A photovoltaic device comprising: a laminated light reflecting film in which two or more kinds of materials having different refractive indexes are laminated so as to cover at least a side surface and a bottom surface of the separation groove.
前記積層光反射膜は、前記セルの前記第2の電極層上にも形成されることを特徴とする請求項1に記載の光起電力装置。   The photovoltaic device according to claim 1, wherein the laminated light reflecting film is also formed on the second electrode layer of the cell. 前記積層光反射膜は、前記光電変換層で吸収されにくい波長の光を選択的に反射する材料、膜厚、および積層数を有することを特徴とする請求項1または2に記載の光起電力装置。   3. The photovoltaic according to claim 1, wherein the laminated light reflecting film has a material that selectively reflects light having a wavelength that is difficult to be absorbed by the photoelectric conversion layer, a film thickness, and the number of laminated layers. apparatus. 前記光電変換層は、それぞれpin構造を有する1つ以上の半導体薄膜からなり、
前記積層光反射膜は、前記光電変換層の吸収係数が10,000〜100cm-1に対応する波長領域で20%以上の反射率を有することを特徴とする請求項1〜3のいずれか1つに記載の光起電力装置。
The photoelectric conversion layer is composed of one or more semiconductor thin films each having a pin structure,
4. The laminated light reflecting film according to claim 1, wherein the photoelectric conversion layer has a reflectance of 20% or more in a wavelength region corresponding to 10,000 to 100 cm −1. A photovoltaic device according to claim 1.
前記積層光反射膜は、前記半導体材料よりも屈折率の低い低屈折率材料と、前記低屈折率材料よりも屈折率の高い高屈折率材料と、が複数積層した多層膜によって構成されることを特徴とする請求項1〜4のいずれか1つに記載の光起電力装置。   The laminated light reflecting film is constituted by a multilayer film in which a plurality of low refractive index materials having a refractive index lower than that of the semiconductor material and a plurality of high refractive index materials having a refractive index higher than that of the low refractive index material are laminated. The photovoltaic device according to any one of claims 1 to 4. 前記低屈折率材料は、酸化シリコン、窒化シリコンまたは酸窒化シリコンを主成分とする誘電体膜であり、
前記高屈折率材料は、前記誘電体膜よりも屈折率の高いSiを主成分とする半導体膜であることを特徴とする請求項5に記載の光起電力装置。
The low refractive index material is a dielectric film mainly composed of silicon oxide, silicon nitride or silicon oxynitride,
6. The photovoltaic device according to claim 5, wherein the high refractive index material is a semiconductor film mainly composed of Si having a refractive index higher than that of the dielectric film.
透光性の基板上に、透明導電性材料からなる膜を形成し、各セル間を分離するようにパターニングして前記各セルの第1の電極層を形成する第1の工程と、
前記第1の電極層を形成した前記基板上に、半導体材料を含む光電変換層を形成する第2の工程と、
前記セルごとに光電変換層を分離する分離溝を形成する第3の工程と、
前記光電変換層の上面と、前記分離溝の側面および底面に導電性材料層を形成し、隣接するセル間の前記導電性材料層を分離して第2の電極層を形成する第4の工程と、
前記半導体材料で吸収されにくい光を反射するように構成された複数の材料を積層した積層光反射膜を、少なくとも前記分離溝の底面と側面を被複するように形成する第5の工程と、
を含むことを特徴とする光起電力装置の製造方法。
A first step of forming a first electrode layer of each cell by forming a film made of a transparent conductive material on a light-transmitting substrate and patterning so as to separate each cell;
A second step of forming a photoelectric conversion layer containing a semiconductor material on the substrate on which the first electrode layer is formed;
A third step of forming a separation groove for separating the photoelectric conversion layer for each cell;
A fourth step of forming a second electrode layer by forming a conductive material layer on an upper surface of the photoelectric conversion layer and on a side surface and a bottom surface of the separation groove, and separating the conductive material layer between adjacent cells; When,
A fifth step of forming a laminated light reflecting film in which a plurality of materials configured to reflect light that is difficult to be absorbed by the semiconductor material is laminated so as to cover at least a bottom surface and a side surface of the separation groove;
A method for manufacturing a photovoltaic device, comprising:
JP2009128033A 2009-05-27 2009-05-27 Photovoltaic apparatus and method of manufacturing the same Pending JP2010278148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009128033A JP2010278148A (en) 2009-05-27 2009-05-27 Photovoltaic apparatus and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009128033A JP2010278148A (en) 2009-05-27 2009-05-27 Photovoltaic apparatus and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010278148A true JP2010278148A (en) 2010-12-09

Family

ID=43424859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009128033A Pending JP2010278148A (en) 2009-05-27 2009-05-27 Photovoltaic apparatus and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010278148A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017742A1 (en) * 2010-08-06 2012-02-09 三菱電機株式会社 Thin film solar battery and process for production thereof
EP2466680A1 (en) 2010-12-14 2012-06-20 Sony Corporation Electronic device, battery pack, and method of computing battery pack capacity
WO2019044810A1 (en) * 2017-08-30 2019-03-07 京セラ株式会社 Solar cell module

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193076A (en) * 1983-04-18 1984-11-01 Semiconductor Energy Lab Co Ltd Photoelectric conversion semiconductor device
JPH04186779A (en) * 1990-11-21 1992-07-03 Hitachi Ltd Polycrystalline silicon solar battery cell
JPH07302890A (en) * 1994-05-09 1995-11-14 Omron Corp Light receiving element, and photocoupler using the light receiving element, and light insulation type solid relay
JPH0961536A (en) * 1995-08-28 1997-03-07 Canon Inc Semiconductor radiation detector and its manufacture
JP2005197597A (en) * 2004-01-09 2005-07-21 Sharp Corp Multijunction solar cell
JP2006339413A (en) * 2005-06-02 2006-12-14 Fujitsu Ltd Semiconductor light receiving device and its manufacturing method
JP2008124381A (en) * 2006-11-15 2008-05-29 Sharp Corp Solar battery
JP2008305945A (en) * 2007-06-07 2008-12-18 Kaneka Corp Substrate for thin film solar cell and manufacturing method of the same, and manufacturing method of thin film solar cell
JP2009065076A (en) * 2007-09-10 2009-03-26 Masayoshi Murata Integrated tandem-type thin-film silicon solar cell module and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193076A (en) * 1983-04-18 1984-11-01 Semiconductor Energy Lab Co Ltd Photoelectric conversion semiconductor device
JPH04186779A (en) * 1990-11-21 1992-07-03 Hitachi Ltd Polycrystalline silicon solar battery cell
JPH07302890A (en) * 1994-05-09 1995-11-14 Omron Corp Light receiving element, and photocoupler using the light receiving element, and light insulation type solid relay
JPH0961536A (en) * 1995-08-28 1997-03-07 Canon Inc Semiconductor radiation detector and its manufacture
JP2005197597A (en) * 2004-01-09 2005-07-21 Sharp Corp Multijunction solar cell
JP2006339413A (en) * 2005-06-02 2006-12-14 Fujitsu Ltd Semiconductor light receiving device and its manufacturing method
JP2008124381A (en) * 2006-11-15 2008-05-29 Sharp Corp Solar battery
JP2008305945A (en) * 2007-06-07 2008-12-18 Kaneka Corp Substrate for thin film solar cell and manufacturing method of the same, and manufacturing method of thin film solar cell
JP2009065076A (en) * 2007-09-10 2009-03-26 Masayoshi Murata Integrated tandem-type thin-film silicon solar cell module and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017742A1 (en) * 2010-08-06 2012-02-09 三菱電機株式会社 Thin film solar battery and process for production thereof
JP5430764B2 (en) * 2010-08-06 2014-03-05 三菱電機株式会社 Method for manufacturing thin film solar cell
US9293618B2 (en) 2010-08-06 2016-03-22 Mitsubishi Electric Corporation Thin-film solar battery and manufacturing method thereof
EP2466680A1 (en) 2010-12-14 2012-06-20 Sony Corporation Electronic device, battery pack, and method of computing battery pack capacity
WO2019044810A1 (en) * 2017-08-30 2019-03-07 京セラ株式会社 Solar cell module

Similar Documents

Publication Publication Date Title
JP4811945B2 (en) Thin film photoelectric converter
US8558341B2 (en) Photoelectric conversion element
US20090255569A1 (en) Method to improve pv aesthetics and efficiency
US20130306130A1 (en) Solar module apparatus with edge reflection enhancement and method of making the same
JP2010062593A (en) Substrate for photoelectric converter
JP2010123944A (en) Solar cell having reflective structure
TWI453932B (en) Photovoltaic module and method of manufacturing a photovoltaic module having an electrode diffusion layer
JP2008270562A (en) Multi-junction type solar cell
JP2009289817A (en) Photoelectric conversion device and method of manufacturing the same
JP2002118273A (en) Integrated hybrid thin film photoelectric conversion device
JP2010278148A (en) Photovoltaic apparatus and method of manufacturing the same
JPWO2006006359A1 (en) Thin film photoelectric converter
KR101166456B1 (en) Solar cell and method for fabricating the same
JP2007035914A (en) Thin film photoelectric converter
JP2009141059A (en) Thin-film photoelectric converter
KR101306913B1 (en) Solar Cell
JP2010287715A (en) Thin film solar cell and method of manufacturing the same
JP5542025B2 (en) Photoelectric conversion device
JP2009259926A (en) Solar cell
JP4358493B2 (en) Solar cell
WO2010067702A1 (en) Thin-film solar cell and method for manufacturing same
US20110221026A1 (en) Photovoltaic device including a substrate or a flexible substrate and method for manufacturing the same
JP2009231499A (en) Photoelectric conversion device
KR101106481B1 (en) Photovoltaic device and method for manufacturing the same
KR20110128616A (en) Tandem solar cell and method for fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703