JP5123444B2 - Manufacturing method of solar cell - Google Patents

Manufacturing method of solar cell Download PDF

Info

Publication number
JP5123444B2
JP5123444B2 JP2000274083A JP2000274083A JP5123444B2 JP 5123444 B2 JP5123444 B2 JP 5123444B2 JP 2000274083 A JP2000274083 A JP 2000274083A JP 2000274083 A JP2000274083 A JP 2000274083A JP 5123444 B2 JP5123444 B2 JP 5123444B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
type semiconductor
solar cell
silicon semiconductor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000274083A
Other languages
Japanese (ja)
Other versions
JP2002083984A (en
Inventor
善之 奈須野
道雄 近藤
彰久 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sharp Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Sharp Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000274083A priority Critical patent/JP5123444B2/en
Publication of JP2002083984A publication Critical patent/JP2002083984A/en
Application granted granted Critical
Publication of JP5123444B2 publication Critical patent/JP5123444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【0001】
【発明の属する技術分野】
本発明は太陽電池に係り、特にI型半導体層を少なくとも一つ含む非単結晶シリコンの太陽電池およびその製造方法に関するものである。
【0002】
【従来の技術】
I型半導体層中に酸素が不純物として含まれると、その濃度により程度は異なるが、N型の性質を示すことが広く知られている。ここで、I型半導体層をより真性半導体に近づけることにより薄膜シリコン太陽電池を高品質化できることも広く知られている。
【0003】
その手段として従来は、超高真空中でI型半導体層を形成したり(Jpn. J. Appl. Phys. Vol. 37(1998) pp.L265-L268)、原料ガスを純化する装置を用いたりして(J. Meier et al. Mat. Res. Soc. Symp. Proc. vol. 420, p.3-14, 1996 、特開昭59−190209号公報)、I型半導体層中の酸素濃度を低減する方法、およびボロン(B)等を用いてカウンタードーピングを行う(J. Meier et al. Mat. Res. Soc. Symp. Proc. vol. 420, p.3-14, 1996 )方法などが提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の方法では、薄膜シリコン太陽電池を高品質化するために、高価な設備や余分な工程が必要であり、コストアップを招来するという問題点が生じている。
【0005】
本発明の目的は、高価な設備や余分な工程を用いることなく、I型半導体層のN型化を抑制することにより、高品質化された薄膜シリコンの太陽電池およびその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明の太陽電池は、以上の課題を解決するために、I型半導体層を少なくとも一つ含む非単結晶シリコンの太陽電池において、I型半導体層は、I型半導体層中の酸素濃度を2×1018cm-3以上とし、I型半導体層の形成温度を195℃以下として形成されていることを特徴としている。
【0007】
上記太陽電池では、P型半導体層が、I型半導体層上に積層され、P型半導体層のボロンの濃度が300ppm 以上に設定されていてもよい。
【0008】
上記太陽電池においては、P型半導体層に対してP型半導体層の作製温度を超えた温度での熱処理が施されていてもよい。
【0009】
本発明の太陽電池の製造方法は、以上の課題を解決するために、I型半導体層を少なくとも一つ含む非単結晶シリコンの太陽電池の製造方法において、I型半導体層中の酸素濃度を2×1018cm-3以上とし、I型半導体層の形成温度を195℃以下とすることを特徴としている。
【0010】
本発明の太陽電池の他の製造方法は、前記の課題を解決するために、P型半導体層およびI型半導体層を含む非単結晶シリコンの太陽電池の製造方法において、P型半導体層のボロンの濃度を300ppm 以上に設定して作製する工程と、I型半導体層中の酸素濃度を2×1018cm-3以上とし、I型半導体層の形成温度を195℃以下とする工程とを有し、P型半導体層の作製後にP型半導体層の作製温度を超えた温度での熱処理をP型半導体層に対し施すことを特徴としている。
【0011】
本発明によれば、I型半導体層を少なくとも一つ含む非単結晶シリコン太陽電池において、I型半導体層中の酸素不純物濃度が2×1018cm-3以上であったとしても、I型半導体層の形成温度を195℃以下に設定しているため、酸素不純物の活性化を抑えることができ、その結果、太陽電池特性(特に、開放電圧および曲線因子)を向上させることができる。
【0012】
また、低温形成条件の場合、P型半導体層のキャリアの活性化率も同時に低下するため、開放電圧および曲線因子が低下する場合があるが、P型半導体層のBの濃度を300ppm 以上に設定することで、P型半導体層のキャリア濃度を増加させることができるため、開放電圧および曲線因子の低下を抑制させることができる。
【0013】
さらに、形成されたP型半導体層に対しP型半導体層の作製温度を超えた温度での熱処理工程を加えることにより、P型半導体層のキャリアの活性化率を向上させることができるため、開放電圧および曲線因子を向上させることができる。その結果、光電変換効率を向上させることができる。
【0014】
以上より、本発明によれば、I型半導体層を少なくとも一つ含む非単結晶シリコンからなる太陽電池において、高価な設備や余分な工程を用いることなく、I型半導体層のN型化を抑制して、薄膜の非結晶シリコンからなる太陽電池を高品質化できる。
【0015】
【発明の実施の形態】
〔第一の実施の形態〕
以下に、本発明に係る太陽電池を、その製造方法に基づいて具体的に説明する。本第一の実施の形態においては、特に作製方法を限定するものではないが、プラズマCVD法を用いて作製したスーパーストレート型の微結晶シリコン(非単結晶)太陽電池を例にとり具体的に説明する。
【0016】
本第一の実施の形態における太陽電池は、図1に示されているように、光の入射側から、ガラス等で構成された透明基板11の片側表面上にSnO2 からなる第1透明導電膜12を8000Å堆積し、さらに、上記第1透明導電膜12の表面に凹凸(透明導電膜12の厚さ方向に)を形成した。続いて、上記第1透明導電膜12の表面上に対し、ZnOからなる第2透明導電膜13を500Åの膜厚で形成した。
【0017】
次に、第2透明導電膜13上に、シリコンからなる半導体薄膜14をプラズマCVD法にて形成した。半導体薄膜14は、光入射側から順にPIN構造を有している。PIN構造における、P型半導体層、I型半導体層はそれぞれ微結晶シリコン、N型半導体層はアモルファスシリコンからなるように設定した。
【0018】
本第一の実施の形態においては、上記半導体薄膜14は、プラズマCVDを用いて、プラズマ励起周波数を各層とも13.56MHzの条件で形成されている。このとき、各層のRFプラズマパワーは、P型半導体層、I型半導体層、N型半導体層それぞれ25mW、20mW、30mWとした。各層の製膜圧力は、P型半導体層、I型半導体層がそれぞれ1.5Torr、N型半導体層が0.2Torrとした。
【0019】
原料ガスは、P型半導体層の場合、SiH4 を3sccm、水素で5000ppm に希釈したB2 6 を1sccm、H2 を600sccm、I型半導体層の場合、SiH4 を11sccm、H2 を350sccm、N型半導体層の場合、SiH4 を10sccm、水素で1000ppm に希釈したPH3 を100sccmの流量でそれぞれ供給した。各層の膜厚は、N型半導体層、P型半導体層をそれぞれ300Å、I型半導体層を10000Åとした。
【0020】
最後に、半導体薄膜14上に、ZnOからなる第3透明導電膜15を500Å堆積し、その上にAg等の金属薄膜からなる裏面電極16を2000Åの膜厚で形成することにより本第一の実施の形態に係る太陽電池が得られた。
【0021】
上記の第2透明導電膜13、第3透明導電膜15および裏面電極16の形成方法としては特に限定はしないが、本第一の実施の形態においては、マグネトロンスパッタ法にて形成した。
【0022】
ここで、上記の条件を固定し、I型半導体層の製膜温度を140℃、180℃、250℃の3条件で作製した微結晶シリコン太陽電池の特性についてそれぞれ比較した。このとき、I型半導体層中の酸素濃度は、SIMS(Secondary-Ion Mass Spectroscopy) 測定の結果、1×1019cm-3であった。
【0023】
ここで、I型半導体層の製膜温度が250℃の場合、I型半導体層中の酸素濃度が1×1018cm-3以上になると、上記I型半導体層はN型化することが知られている(Jpn. J. Appl. Phys. Vol. 37(1998) pp.L265-L268)。
【0024】
また、I型半導体層の製膜温度が200℃の場合でも、I型半導体層中の酸素濃度が2×1018cm-3以上になると、上記I型半導体層はN型化することが知られている(J. Meier et al. Mat. Res. Soc. Symp. Proc. vol. 420, p.3-14, 1996 )。
【0025】
すなわち、通常用いられている200℃以上のI型半導体層の製膜温度条件においては、I型半導体層中の酸素濃度を2×1018cm-3未満にしなければ、N型化を防ぐことができないといわれていた。
【0026】
本第一の実施の形態においては、I型半導体層中の酸素濃度が2×1018cm-3以上であっても、I型半導体層の製膜温度を低温化することで、N型化を防ぐことができ、太陽電池を高効率化できることについて示す。
【0027】
まず、図2ないし図5に太陽電池の光照射下での各電流−電圧特性のI型半導体層の製膜温度依存性について示す。測定条件はAM1.5(100mW)、25℃とした。
【0028】
その結果、I型半導体層の製膜温度を下げていくと、短絡電流密度はわずかに低下するものの開放電圧、曲線因子は大きく向上し、光電変換効率としてはI型半導体層の製膜温度が、下限値140℃、より好ましくは下限値160℃から、上限値195℃、より好ましくは185℃までの温度範囲で、7.6%以上という高い光電変換効率値が得られることが判った。
【0029】
ここで、開放電圧、曲線因子が向上した理由は、製膜温度を下げたことによりI型半導体層のN型化を防ぐことができたためであると考えられる。表1に、ガラス基板上に上述の条件でI型半導体層のみを作成した時の暗導電率の製膜温度依存性についてまとめた。
【0030】
【表1】

Figure 0005123444
【0031】
表1より、I型半導体層の製膜温度を下げることにより暗導電率が低下していることからN型化を防ぐことができたことがわかる。以上より、I型半導体層中の酸素濃度が1×1019cm-3のように非常に高い場合でも製膜温度を195℃以下、140℃以上の、より好ましくは185℃以下、160℃以上の範囲内に設定することで、I型半導体層のN型化を防ぐことができ、太陽電池の光電変換効率を向上させることができることが判る。
【0032】
〔第二の実施の形態〕
本第二の実施の形態においては、基本的に第一の実施の形態に記載の製造方法と同様であるが図1における半導体薄膜14の作製条件のみ異なる太陽電池およびその作成方法について説明する。
【0033】
本第二の実施の形態における太陽電池の半導体薄膜14は、光入射側からPIN構造を有し、P型半導体層、I型半導体層は微結晶シリコン、N型半導体層はアモルファスシリコンに設定した。本第二の実施の形態においては、プラズマCVDを用いて、プラズマ励起周波数および製膜温度は各層とも13.56MHz、140℃の条件で形成した。
【0034】
各層のプラズマパワーは、P型半導体層、I型半導体層、N型半導体層それぞれ25mW、20mW、30mWとした。各層の製膜圧力は、P型半導体層、I型半導体層が1.5Torr、N型半導体層が0.2Torrとした。各層の膜厚は、N型半導体層、P型半導体層をそれぞれ300Å、I型半導体層を25000Åに設定した。
【0035】
原料ガスは、I型半導体層の場合、SiH4 を10sccm、H2 を350sccm、N型半導体層の場合、SiH4 を10sccm、H2 で1000ppm に希釈したPH3 を100sccmの流量でそれぞれ供給した。
【0036】
ここで、P型半導体層については、SiH4 を3sccm、H2 を600sccmに固定し、B2 6 の流量を〔B2 6 〕/〔SiH4 〕=0.016、0.03、0.066容量%となるように設定した3条件で作製した微結晶シリコン太陽電池の特性について比較した。
【0037】
まず、図6ないし図9に太陽電池の光照射下での電流−電圧特性に対する、P型半導体層の原料ガス流量比[〔B26 〕/〔SiH4 〕]依存性について示す。測定条件は、AM1.5(100mW)、25℃とした。
【0038】
その結果、P型半導体層の原料ガス流量比[〔B2 6 〕/〔SiH4 〕]を大きく設定していくと、短絡電流密度はわずかに低下するものの、開放電圧、曲線因子は大きく向上し、光電変換効率としては、〔B2 6 〕/〔SiH4 〕=0.066容量%のときに、8.2%という高い値が得られている。
【0039】
また、〔B2 6 〕/〔SiH4 〕=0.03容量%のときに、開放電圧が大きく向上していることから、P型半導体層の原料ガス流量比[〔B2 6 〕/〔SiH4 〕]は、少なくとも0.03容量%必要であると考えられる。ここで、〔B2 6 〕/〔SiH4 〕=0.03容量%で製膜したP型半導体層のボロン(B)の濃度は約600ppm であった。
【0040】
以上のことより、I型半導体層の製膜温度が前述の好適な温度範囲内の場合に、P型半導体層のボロン(B)の濃度を、下限値300ppm より好ましくは600ppm 、上限値2500ppm より好ましくは1600ppm の範囲内に設定することにより、太陽電池の光電変換効率を向上させることができることが判る。
【0041】
〔第三の実施の形態〕
本第三の実施の形態においては、第二の実施の形態に記載の太陽電池の製造方法において、P型半導体層の原料ガス流量比〔B2 6 〕/〔SiH4 〕=0.066容量%の条件で作製した。ここで、P型半導体層の作製後に、熱処理工程を挿入(追加)した結果について説明する。熱処理条件は、例えば、200℃、1時間である。熱処理の有無による光電変換効率の変化を表2に示す。
【0042】
【表2】
Figure 0005123444
【0043】
表2より、光電変換効率を8.2%から8.6%まで向上させることができたことが判る。一方、はじめから各半導体層の製膜温度を200℃で太陽電池を作製したところ光電変換効率は、熱処理を施しても7.9%であった。
【0044】
以上より、195℃以下の低温で作製した太陽電池において、P型半導体層作製後に、P型半導体層の作製温度より高い、上記作製温度を超えて250℃までの温度範囲内、より好ましくは、180℃から250℃までの温度範囲内、かつ、0.5時間から2時間までの、より好ましくは0.7時間から1.5時間までの範囲内にて熱処理を施すという工程を加えることで、太陽電池を高効率化できることが判る。
【0045】
なお、上記熱処理において、上記熱処理温度は、200℃を超えると、250℃までは僅かに効果を示すものの、効果の発現量が小さくなる。また、処理時間については、2時間までが適当であり、2時間を超えても特に効果に変化はなく不経済である。
【0046】
なお、上記の各実施の形態では、スーパーストレート型の微結晶シリコン太陽電池を用いた例を挙げたが、他の型式の太陽電池にも同様に適用でき、例えば図10に示す各型式の太陽電池にも適用可能である。図10(a)ないし(f)では、pが、P型半導体層、iがI型半導体層、nがN型半導体層を示す。
【0047】
【発明の効果】
本発明の太陽電池は、以上のように、I型半導体層が、I型半導体層中の酸素濃度を2×1018cm-3以上とし、I型半導体層の形成温度を195℃以下として形成されている構成である。
【0048】
それゆえ、上記構成では、高価な設備や余分な工程を用いることなく、I型半導体層のN型化を抑制して、薄膜シリコンからなる太陽電池を高品質化できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る第一ないし第三の実施の形態に関する太陽電池の断面構造を示す概略断面図である。
【図2】上記第一の実施の形態に係る太陽電池の光照射下での電流−電圧特性の内、短絡電流密度に関するI型半導体層の製膜温度依存性を示すグラフである。
【図3】上記第一の実施の形態に係る太陽電池の光照射下での電流−電圧特性の内、開放電圧に関するI型半導体層の製膜温度依存性を示すグラフである。
【図4】上記第一の実施の形態に係る太陽電池の光照射下での電流−電圧特性の内、曲線因子に関するI型半導体層の製膜温度依存性を示すグラフである。
【図5】上記第一の実施の形態に係る太陽電池の光照射下での電流−電圧特性の内、光電変換効率に関するI型半導体層の製膜温度依存性を示すグラフである。
【図6】本発明の第二の実施の形態に係る太陽電池の光照射下での電流−電圧特性の内、短絡電流密度に関するP型半導体層の原料ガス流量比[〔B2 6 〕/〔SiH4 〕]依存性を示すグラフである。
【図7】本発明の第二の実施の形態に係る太陽電池の光照射下での電流−電圧特性の内、開放電圧に関するP型半導体層の原料ガス流量比[〔B2 6 〕/〔SiH4 〕]依存性を示すグラフである。
【図8】本発明の第二の実施の形態に係る太陽電池の光照射下での電流−電圧特性の内、曲線因子に関するP型半導体層の原料ガス流量比[〔B2 6 〕/〔SiH4 〕]依存性を示すグラフである。
【図9】本発明の第二の実施の形態に係る太陽電池の光照射下での電流−電圧特性の内、光電変換効率に関するP型半導体層の原料ガス流量比[〔B2 6 〕/〔SiH4 〕]依存性を示すグラフである。
【図10】本発明に係る太陽電池の他の各変形例を(a)〜(f)にてそれぞれ示す概略断面図である。
【符号の説明】
11 透明基板
12 第1透明導電膜
13 第2透明導電膜
14 半導体薄膜
15 第3透明導電膜
16 裏面電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solar cell, and more particularly to a non-single-crystal silicon solar cell including at least one I-type semiconductor layer and a method for manufacturing the same.
[0002]
[Prior art]
When oxygen is contained as an impurity in an I-type semiconductor layer, it is widely known that it exhibits N-type properties, although the degree depends on the concentration. Here, it is also widely known that the quality of a thin film silicon solar cell can be improved by bringing the I-type semiconductor layer closer to an intrinsic semiconductor.
[0003]
Conventionally, I-type semiconductor layers are formed in ultra-high vacuum (Jpn. J. Appl. Phys. Vol. 37 (1998) pp.L265-L268), or a device that purifies the source gas is used. Soc. Proc. Vol. 420, p.3-14, 1996, JP 59-190209 A, and the oxygen concentration in the I-type semiconductor layer was determined. Proposal of reduction method and counter-doping using boron (B) (J. Meier et al. Mat. Res. Soc. Proc. Vol. 420, p.3-14, 1996) Has been.
[0004]
[Problems to be solved by the invention]
However, in the conventional method, in order to improve the quality of the thin-film silicon solar cell, expensive equipment and an extra process are required, which causes a problem of increasing the cost.
[0005]
An object of the present invention is to provide a high-quality thin-film silicon solar cell and a method for manufacturing the same by suppressing the N-type semiconductor layer from becoming N-type without using expensive equipment or extra steps. It is in.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the solar cell of the present invention is a non-single-crystal silicon solar cell including at least one I-type semiconductor layer. The I-type semiconductor layer has an oxygen concentration of 2 in the I-type semiconductor layer. It is characterized in that it is formed at 10 × 10 18 cm −3 or more and the formation temperature of the I-type semiconductor layer is 195 ° C. or less.
[0007]
In the solar cell, the P-type semiconductor layer may be stacked on the I-type semiconductor layer, and the boron concentration of the P-type semiconductor layer may be set to 300 ppm or more.
[0008]
In the solar cell, the P-type semiconductor layer may be subjected to heat treatment at a temperature exceeding the production temperature of the P-type semiconductor layer.
[0009]
In order to solve the above problems, a method for manufacturing a solar cell of the present invention is a method for manufacturing a non-single-crystal silicon solar cell including at least one I-type semiconductor layer, wherein the oxygen concentration in the I-type semiconductor layer is 2 It is characterized by being x 10 18 cm −3 or more and the formation temperature of the I-type semiconductor layer being 195 ° C. or less.
[0010]
In order to solve the above problems, another method for manufacturing a solar cell of the present invention is a method for manufacturing a non-single-crystal silicon solar cell including a P-type semiconductor layer and an I-type semiconductor layer. And the step of setting the oxygen concentration in the I-type semiconductor layer to 2 × 10 18 cm −3 or more and the formation temperature of the I-type semiconductor layer to 195 ° C. or less. In addition, after the P-type semiconductor layer is manufactured, heat treatment at a temperature exceeding the manufacturing temperature of the P-type semiconductor layer is performed on the P-type semiconductor layer.
[0011]
According to the present invention, in a non-single-crystal silicon solar cell including at least one I-type semiconductor layer, even if the oxygen impurity concentration in the I-type semiconductor layer is 2 × 10 18 cm −3 or more, the I-type semiconductor Since the layer formation temperature is set at 195 ° C. or lower, activation of oxygen impurities can be suppressed, and as a result, solar cell characteristics (particularly, open-circuit voltage and fill factor) can be improved.
[0012]
In addition, under the low temperature formation conditions, the activation rate of carriers in the P-type semiconductor layer also decreases at the same time, so the open circuit voltage and the fill factor may decrease, but the concentration of B in the P-type semiconductor layer is set to 300 ppm or more. By doing so, since the carrier concentration of the P-type semiconductor layer can be increased, it is possible to suppress the reduction of the open circuit voltage and the fill factor.
[0013]
Furthermore, by adding a heat treatment step at a temperature exceeding the manufacturing temperature of the P-type semiconductor layer to the formed P-type semiconductor layer, the activation rate of carriers in the P-type semiconductor layer can be improved. Voltage and fill factor can be improved. As a result, the photoelectric conversion efficiency can be improved.
[0014]
As described above, according to the present invention, in a solar cell made of non-single-crystal silicon including at least one I-type semiconductor layer, the N-type semiconductor layer can be prevented from becoming N-type without using expensive equipment or extra steps. Thus, the quality of a solar cell made of a thin film of amorphous silicon can be improved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
[First embodiment]
Below, the solar cell which concerns on this invention is demonstrated concretely based on the manufacturing method. In the first embodiment, a manufacturing method is not particularly limited, but a super straight type microcrystalline silicon (non-single crystal) solar cell manufactured by using a plasma CVD method will be specifically described as an example. To do.
[0016]
As shown in FIG. 1, the solar cell in the first embodiment is a first transparent conductive material made of SnO 2 on one side surface of a transparent substrate 11 made of glass or the like from the light incident side. The film 12 was deposited in an amount of 8000 mm, and irregularities (in the thickness direction of the transparent conductive film 12) were formed on the surface of the first transparent conductive film 12. Subsequently, a second transparent conductive film 13 made of ZnO was formed to a thickness of 500 mm on the surface of the first transparent conductive film 12.
[0017]
Next, a semiconductor thin film 14 made of silicon was formed on the second transparent conductive film 13 by a plasma CVD method. The semiconductor thin film 14 has a PIN structure in order from the light incident side. In the PIN structure, the P-type semiconductor layer and the I-type semiconductor layer were set to be made of microcrystalline silicon and the N-type semiconductor layer was made of amorphous silicon.
[0018]
In the first embodiment, the semiconductor thin film 14 is formed under the condition that the plasma excitation frequency is 13.56 MHz for each layer by using plasma CVD. At this time, the RF plasma power of each layer was set to 25 mW, 20 mW, and 30 mW, respectively, for the P-type semiconductor layer, the I-type semiconductor layer, and the N-type semiconductor layer. The deposition pressure of each layer was 1.5 Torr for the P-type semiconductor layer and I-type semiconductor layer and 0.2 Torr for the N-type semiconductor layer, respectively.
[0019]
The source gas is 3 sccm for SiH 4 in the case of a P-type semiconductor layer, 1 sccm for B 2 H 6 diluted to 5000 ppm with hydrogen, 600 sccm for H 2, and 11 sccm for SiH 4 and 350 sccm for H 2 in the case of an I-type semiconductor layer. In the case of the N-type semiconductor layer, SiH 4 was supplied at a flow rate of 10 sccm and PH 3 diluted to 1000 ppm with hydrogen at a flow rate of 100 sccm. The thickness of each layer was 300 mm for the N-type semiconductor layer and P-type semiconductor layer, and 10,000 mm for the I-type semiconductor layer.
[0020]
Finally, 500 mm of the third transparent conductive film 15 made of ZnO is deposited on the semiconductor thin film 14, and the back electrode 16 made of a metal thin film of Ag or the like is formed on the third transparent conductive film 15 to a thickness of 2000 mm. A solar cell according to the embodiment was obtained.
[0021]
The method of forming the second transparent conductive film 13, the third transparent conductive film 15, and the back electrode 16 is not particularly limited, but in the first embodiment, it is formed by a magnetron sputtering method.
[0022]
Here, the characteristics of the microcrystalline silicon solar cells manufactured under the three conditions of 140 ° C., 180 ° C., and 250 ° C. with the above-described conditions fixed and film formation temperatures of the I-type semiconductor layer were compared. At this time, the oxygen concentration in the I-type semiconductor layer was 1 × 10 19 cm −3 as a result of SIMS (Secondary-Ion Mass Spectroscopy) measurement.
[0023]
Here, it is known that when the deposition temperature of the I-type semiconductor layer is 250 ° C. and the oxygen concentration in the I-type semiconductor layer is 1 × 10 18 cm −3 or more, the I-type semiconductor layer becomes N-type. (Jpn. J. Appl. Phys. Vol. 37 (1998) pp. L265-L268).
[0024]
Further, it is known that even when the deposition temperature of the I-type semiconductor layer is 200 ° C., when the oxygen concentration in the I-type semiconductor layer becomes 2 × 10 18 cm −3 or more, the I-type semiconductor layer becomes N-type. (J. Meier et al. Mat. Res. Soc. Symp. Proc. Vol. 420, p.3-14, 1996).
[0025]
In other words, under the commonly used temperature conditions for forming an I-type semiconductor layer of 200 ° C. or higher, N-type is prevented unless the oxygen concentration in the I-type semiconductor layer is less than 2 × 10 18 cm −3. It was said that it was not possible.
[0026]
In the first embodiment, even if the oxygen concentration in the I-type semiconductor layer is 2 × 10 18 cm −3 or more, the N-type semiconductor layer is formed by lowering the film formation temperature of the I-type semiconductor layer. It can be prevented that the solar cell can be made highly efficient.
[0027]
First, FIG. 2 to FIG. 5 show the film forming temperature dependence of each type of current-voltage characteristics under light irradiation of a solar cell. The measurement conditions were AM1.5 (100 mW) and 25 ° C.
[0028]
As a result, when the film formation temperature of the I-type semiconductor layer is lowered, the open-circuit voltage and the fill factor are greatly improved although the short-circuit current density is slightly decreased, and the film formation temperature of the I-type semiconductor layer is the photoelectric conversion efficiency. It was found that a high photoelectric conversion efficiency value of 7.6% or more can be obtained in a temperature range from a lower limit of 140 ° C., more preferably from a lower limit of 160 ° C. to an upper limit of 195 ° C., more preferably from 185 ° C.
[0029]
Here, it is considered that the reason why the open-circuit voltage and the fill factor were improved was that the N-type semiconductor layer could be prevented from becoming N-type by lowering the film forming temperature. Table 1 summarizes the film formation temperature dependence of dark conductivity when only an I-type semiconductor layer is formed on a glass substrate under the above-described conditions.
[0030]
[Table 1]
Figure 0005123444
[0031]
From Table 1, it is understood that the N-type can be prevented because the dark conductivity is lowered by lowering the film forming temperature of the I-type semiconductor layer. From the above, even when the oxygen concentration in the I-type semiconductor layer is as high as 1 × 10 19 cm −3 , the film forming temperature is 195 ° C. or lower, 140 ° C. or higher, more preferably 185 ° C. or lower, 160 ° C. or higher. It can be seen that by setting within the range, it is possible to prevent the I-type semiconductor layer from becoming N-type, and to improve the photoelectric conversion efficiency of the solar cell.
[0032]
[Second Embodiment]
In the second embodiment, a solar cell which is basically the same as the manufacturing method described in the first embodiment but differs only in the manufacturing conditions of the semiconductor thin film 14 in FIG. 1 and a manufacturing method thereof will be described.
[0033]
The semiconductor thin film 14 of the solar cell in the second embodiment has a PIN structure from the light incident side, the P-type semiconductor layer and the I-type semiconductor layer are set to microcrystalline silicon, and the N-type semiconductor layer is set to amorphous silicon. . In the second embodiment, plasma CVD is used, and the plasma excitation frequency and the film formation temperature are formed under the conditions of 13.56 MHz and 140 ° C. for each layer.
[0034]
The plasma power of each layer was 25 mW, 20 mW, and 30 mW for the P-type semiconductor layer, the I-type semiconductor layer, and the N-type semiconductor layer, respectively. The deposition pressure of each layer was 1.5 Torr for the P-type semiconductor layer and I-type semiconductor layer, and 0.2 Torr for the N-type semiconductor layer. The film thickness of each layer was set to 300 mm for the N-type semiconductor layer and P-type semiconductor layer, and 25000 mm for the I-type semiconductor layer.
[0035]
Raw material gas, when the I-type semiconductor layer, 10 sccm of SiH 4, when the H 2 350 sccm, the N-type semiconductor layer, each were fed the SiH 4 10 sccm, a PH 3 diluted to 1000ppm with H 2 at a flow rate of 100sccm .
[0036]
Here, the P-type semiconductor layer, the SiH 4 3 sccm, fixed and H 2 to 600 sccm, B 2 the flow rate of H 6 [B 2 H 6] / [SiH 4] = 0.016,0.03, The characteristics of the microcrystalline silicon solar cells manufactured under three conditions set to be 0.066% by volume were compared.
[0037]
First, FIG. 6 to FIG. 9 show the dependence of the source gas flow rate ratio [[B 2 H 6 ] / [SiH 4 ]] of the P-type semiconductor layer on the current-voltage characteristics of the solar cell under light irradiation. The measurement conditions were AM1.5 (100 mW) and 25 ° C.
[0038]
As a result, when the source gas flow ratio [[B 2 H 6 ] / [SiH 4 ]] of the P-type semiconductor layer is set to be large, the short-circuit current density is slightly reduced, but the open-circuit voltage and the fill factor are large. As a result, the photoelectric conversion efficiency is as high as 8.2% when [B 2 H 6 ] / [SiH 4 ] = 0.066% by volume.
[0039]
Further, when [B 2 H 6 ] / [SiH 4 ] = 0.03% by volume, the open-circuit voltage is greatly improved, so that the raw material gas flow ratio of the P-type semiconductor layer [[B 2 H 6 ] / [SiH 4 ]] is considered to be required at least 0.03% by volume. Here, the concentration of boron (B) in the P-type semiconductor layer formed at [B 2 H 6 ] / [SiH 4 ] = 0.03 vol% was about 600 ppm.
[0040]
From the above, when the deposition temperature of the I-type semiconductor layer is within the above-mentioned preferable temperature range, the boron (B) concentration of the P-type semiconductor layer is lower than the lower limit of 300 ppm, more preferably 600 ppm, and the upper limit of 2500 ppm. It can be seen that the photoelectric conversion efficiency of the solar cell can be improved by setting preferably within the range of 1600 ppm.
[0041]
[Third embodiment]
In the third embodiment, in the method for manufacturing a solar cell described in the second embodiment, the raw material gas flow ratio [B 2 H 6 ] / [SiH 4 ] = 0.066 in the P-type semiconductor layer. It was produced under the condition of volume%. Here, the result of inserting (adding) a heat treatment step after the production of the P-type semiconductor layer will be described. The heat treatment conditions are, for example, 200 ° C. and 1 hour. Table 2 shows changes in photoelectric conversion efficiency with and without heat treatment.
[0042]
[Table 2]
Figure 0005123444
[0043]
Table 2 shows that the photoelectric conversion efficiency could be improved from 8.2% to 8.6%. On the other hand, when a solar cell was produced from the beginning at a film formation temperature of each semiconductor layer of 200 ° C., the photoelectric conversion efficiency was 7.9% even after heat treatment.
[0044]
As described above, in the solar cell manufactured at a low temperature of 195 ° C. or lower, after the P-type semiconductor layer is manufactured, the temperature is higher than the manufacturing temperature of the P-type semiconductor layer, within the temperature range from the above manufacturing temperature to 250 ° C., more preferably, By adding a step of performing a heat treatment within a temperature range of 180 ° C. to 250 ° C. and 0.5 hours to 2 hours, more preferably 0.7 hours to 1.5 hours. It can be seen that the solar cell can be made highly efficient.
[0045]
In the heat treatment, when the heat treatment temperature exceeds 200 ° C., the effect is slightly reduced up to 250 ° C., but the effect is reduced. Further, the treatment time is suitably up to 2 hours, and even if the treatment time exceeds 2 hours, the effect is not particularly changed and it is uneconomical.
[0046]
In each of the above embodiments, an example using a super straight type microcrystalline silicon solar cell has been described. However, the present invention can be similarly applied to other types of solar cells. For example, each type of solar cell shown in FIG. It can also be applied to batteries. 10A to 10F, p is a P-type semiconductor layer, i is an I-type semiconductor layer, and n is an N-type semiconductor layer.
[0047]
【Effect of the invention】
In the solar cell of the present invention, as described above, the I-type semiconductor layer is formed so that the oxygen concentration in the I-type semiconductor layer is 2 × 10 18 cm −3 or more and the formation temperature of the I-type semiconductor layer is 195 ° C. or less. It is the structure which is done.
[0048]
Therefore, in the above configuration, there is an effect that the solar cell made of thin film silicon can be improved in quality by suppressing the N-type semiconductor layer from becoming N-type without using expensive equipment or extra steps.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a cross-sectional structure of a solar cell according to first to third embodiments of the present invention.
FIG. 2 is a graph showing the dependency of the short-circuit current density on the deposition temperature of the I-type semiconductor layer in the current-voltage characteristics of the solar cell according to the first embodiment under light irradiation.
FIG. 3 is a graph showing the film formation temperature dependence of the I-type semiconductor layer with respect to the open circuit voltage in the current-voltage characteristics of the solar cell according to the first embodiment under light irradiation.
FIG. 4 is a graph showing the film formation temperature dependence of the I-type semiconductor layer with respect to the fill factor among the current-voltage characteristics of the solar cell according to the first embodiment under light irradiation.
FIG. 5 is a graph showing the dependency of photoelectric conversion efficiency on the deposition temperature of the I-type semiconductor layer in the current-voltage characteristics of the solar cell according to the first embodiment under light irradiation.
FIG. 6 shows a raw material gas flow rate ratio [[B 2 H 6 ] of a P-type semiconductor layer related to a short-circuit current density among current-voltage characteristics of a solar cell according to a second embodiment of the present invention under light irradiation. / is a graph showing the [SiH 4]] dependent.
FIG. 7 is a graph showing a source gas flow rate ratio [[B 2 H 6 ] / of a P-type semiconductor layer with respect to an open-circuit voltage among current-voltage characteristics of a solar cell according to a second embodiment of the present invention under light irradiation. is a graph showing the [SiH 4]] dependent.
FIG. 8 shows a raw material gas flow rate ratio [[B 2 H 6 ] / of a P-type semiconductor layer related to a fill factor in the current-voltage characteristics of a solar cell under light irradiation according to a second embodiment of the present invention. is a graph showing the [SiH 4]] dependent.
FIG. 9 shows a flow rate ratio of a source gas of a P-type semiconductor layer related to photoelectric conversion efficiency among current-voltage characteristics under light irradiation of a solar cell according to a second embodiment of the present invention [[B 2 H 6 ]. / is a graph showing the [SiH 4]] dependent.
FIG. 10 is a schematic cross-sectional view showing other modifications of the solar cell according to the present invention in (a) to (f), respectively.
[Explanation of symbols]
11 transparent substrate 12 first transparent conductive film 13 second transparent conductive film 14 semiconductor thin film 15 third transparent conductive film 16 back electrode

Claims (3)

P型微結晶シリコン半導体層、I型微結晶シリコン半導体層、N型シリコン半導体層が互いに積層されてなる太陽電池の製造方法であって、
上記P型微結晶シリコン半導体層のボロンの濃度を、300ppm以上、2500ppm以下に設定し、上記P型微結晶シリコン半導体層の製膜温度を、140℃以上、195℃以下にて作製する工程と、
上記I型微結晶シリコン半導体層中の酸素濃度を、2×1018cm-3以上とし、上記I型微結晶シリコン半導体層の製膜温度を、140℃以上、195℃以下とする工程とを有し、
上記P型微結晶シリコン半導体層の作製後に上記P型微結晶シリコン半導体層の作製温度を超え、200℃以下の温度での熱処理を、上記P型微結晶シリコン半導体層に対し施すことを特徴とする太陽電池の製造方法。
A method of manufacturing a solar cell in which a P-type microcrystalline silicon semiconductor layer, an I-type microcrystalline silicon semiconductor layer, and an N-type silicon semiconductor layer are stacked on each other,
The boron concentration of the P-type microcrystalline silicon semiconductor layer is set to 300 ppm or more and 2500 ppm or less, and the deposition temperature of the P-type microcrystalline silicon semiconductor layer is 140 ° C. or more and 195 ° C. or less; ,
A step of setting an oxygen concentration in the I-type microcrystalline silicon semiconductor layer to 2 × 10 18 cm −3 or more and a film forming temperature of the I-type microcrystalline silicon semiconductor layer to 140 ° C. or more and 195 ° C. or less. Have
A heat treatment is performed on the P-type microcrystalline silicon semiconductor layer after the P-type microcrystalline silicon semiconductor layer is formed, and a heat treatment is performed at a temperature exceeding 200 ° C. and exceeding the manufacturing temperature of the P-type microcrystalline silicon semiconductor layer. A method for manufacturing a solar cell.
上記I型微結晶シリコン半導体層中の酸素濃度を、1×1019cm-3以下とすることを特徴とする請求項に記載の太陽電池の製造方法。2. The method for manufacturing a solar cell according to claim 1 , wherein an oxygen concentration in the I-type microcrystalline silicon semiconductor layer is 1 × 10 19 cm −3 or less. 上記P型微結晶シリコン半導体層の製膜温度を、140℃、上記I型微結晶シリコン半導体層の製膜温度を、140℃とすることを特徴とする請求項またはに記載の太陽電池の製造方法。The deposition temperature of the P-type microcrystalline silicon semiconductor layer, 140 ° C., the solar cell according to film formation temperature of the I-type microcrystalline silicon semiconductor layer, to claim 1 or 2, characterized in that the 140 ° C. Manufacturing method.
JP2000274083A 2000-09-08 2000-09-08 Manufacturing method of solar cell Expired - Lifetime JP5123444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000274083A JP5123444B2 (en) 2000-09-08 2000-09-08 Manufacturing method of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000274083A JP5123444B2 (en) 2000-09-08 2000-09-08 Manufacturing method of solar cell

Publications (2)

Publication Number Publication Date
JP2002083984A JP2002083984A (en) 2002-03-22
JP5123444B2 true JP5123444B2 (en) 2013-01-23

Family

ID=18759910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000274083A Expired - Lifetime JP5123444B2 (en) 2000-09-08 2000-09-08 Manufacturing method of solar cell

Country Status (1)

Country Link
JP (1) JP5123444B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006049003A1 (en) * 2004-11-04 2006-05-11 Kaneka Corporation Process for producing thin-film photoelectric converter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193673A (en) * 1984-10-12 1986-05-12 Sanyo Electric Co Ltd Photovoltaic element
JPS62256481A (en) * 1986-04-30 1987-11-09 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPH0760802B2 (en) * 1987-04-21 1995-06-28 松下電器産業株式会社 Method for producing p-type amorphous silicon
JPS63283173A (en) * 1987-05-15 1988-11-21 Kanegafuchi Chem Ind Co Ltd Film forming apparatus
JP2644901B2 (en) * 1990-01-19 1997-08-25 株式会社日立製作所 Method for manufacturing pin type amorphous silicon solar cell
JPH07312435A (en) * 1994-05-16 1995-11-28 Sanyo Electric Co Ltd Photovoltaic device
JPH098340A (en) * 1996-06-06 1997-01-10 Canon Inc Photovoltaic power element and fabrication thereof
JP3259908B2 (en) * 1998-06-03 2002-02-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2002083984A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
JP3926800B2 (en) Manufacturing method of tandem type thin film photoelectric conversion device
JP4208281B2 (en) Multilayer photovoltaic device
US8691613B2 (en) Method for manufacturing photoelectric conversion device
AU2005200023B2 (en) Photovoltaic device
JP5285651B2 (en) Manufacturing method of solar cell
JP2001267611A (en) Thin-film solar battery and its manufacturing method
CN108431967B (en) Method for manufacturing photoelectric conversion device
JPH10242492A (en) Manufacture of amorphous silicon germanium thin film and photovoltaic element
JP2002208715A (en) Photovoltaic element and its manufacturing method
JP3792376B2 (en) Silicon-based thin film photoelectric conversion device
JP2004214442A (en) Photovoltaic device and its manufacturing method
CN106887483A (en) Silicon substrate heterojunction solar cell and preparation method thereof
JP5123444B2 (en) Manufacturing method of solar cell
JP4215697B2 (en) Photoelectric conversion device and manufacturing method thereof
JP3762086B2 (en) Tandem silicon thin film photoelectric conversion device
JP2010267885A (en) Silicon-based thin-film photoelectric converter, and method of manufacturing the same
JP4215694B2 (en) Photoelectric conversion device and manufacturing method thereof
JP3933334B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof
JP2003258286A (en) Thin film solar battery and manufacturing method thereof
JP2000058889A (en) Silicon base thin film and silicon base thin film photoelectric converter
JP2004111551A (en) Silicon photovoltaic device and method for manufacturing the same
JP3753556B2 (en) Photoelectric conversion element and manufacturing method thereof
JP2007189266A (en) Stacked photovoltaic element
JPH11145499A (en) Manufacturing silicon type thin-film photoelectric converter
JP4098386B2 (en) Thin film silicon photoelectric conversion device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5123444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term