JPS62256481A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62256481A
JPS62256481A JP61099939A JP9993986A JPS62256481A JP S62256481 A JPS62256481 A JP S62256481A JP 61099939 A JP61099939 A JP 61099939A JP 9993986 A JP9993986 A JP 9993986A JP S62256481 A JPS62256481 A JP S62256481A
Authority
JP
Japan
Prior art keywords
type semiconductor
layer
semiconductor layer
type
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61099939A
Other languages
Japanese (ja)
Inventor
Keizo Asaoka
圭三 浅岡
Masataka Kondo
正隆 近藤
Kazunaga Tsushimo
津下 和永
Hideo Yamagishi
英雄 山岸
Akihiko Hiroe
昭彦 廣江
Yoshinori Yamaguchi
美則 山口
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP61099939A priority Critical patent/JPS62256481A/en
Priority to CA000521602A priority patent/CA1321660C/en
Priority to AU64619/86A priority patent/AU600453B2/en
Priority to EP19920104633 priority patent/EP0494090A3/en
Priority to EP86115170A priority patent/EP0221523B1/en
Priority to EP92104628A priority patent/EP0494088B1/en
Priority to DE3650712T priority patent/DE3650712T2/en
Priority to DE3650012T priority patent/DE3650012T2/en
Priority to CN86106353A priority patent/CN1036817C/en
Priority to KR860009364A priority patent/KR870005477A/en
Publication of JPS62256481A publication Critical patent/JPS62256481A/en
Priority to CN89104797A priority patent/CN1018310B/en
Priority to US07/477,138 priority patent/US5032884A/en
Priority to AU65966/90A priority patent/AU636677B2/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve photoelectric conversion efficiency by a method wherein there are provided, respectively sandwiched between a P-type semiconductor layer and electrode on the P-layer side and/or between an N-type semiconductor layer and electrode on the N-layer side, a P-type semiconductor layer that is same as said P-type semiconductor layer in the type of conductivity and high in impurity concentration and/or an N-type semiconductor. CONSTITUTION:Sandwiched respectively between a P-type semiconductor layer 4 and P-layer side electrode 2 and/or between an N-type semiconductor layer 6 and N-layer side electrode 7 are a P-type semiconductor layer 3 same as the P-type semiconductor layer 4 in the type of conductivity and high in impurity concentration and/or an N-type semiconductor layer same as the N-type semiconductor layer 6 in the type of conductivity and high in impurity concentration. Less contact resistance is present between the P-type semiconductor layer and P-layer side electrode and/or between the N-type semiconductor layer and N-layer side electrode. Loss of light due to absorption will never he large in the impurity-containing region. This results in a semiconductor device with improved photoelectric conversion efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置に関する。さらに詳しくは光電変換
効率を向上させた光起電力素子からなる半導体装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device. More specifically, the present invention relates to a semiconductor device comprising a photovoltaic element with improved photoelectric conversion efficiency.

[従業の技術] 一般に非晶質半導体層が形成されている太陽電池などの
半導体装置に使用される非晶質半導体としてはa−3i
:HSa−SiC:H%a−8IGe:Hsa−8IN
:H、a−81:P:H%a−Ge:Hなどやこれらに
微結晶相を含ませた半導体が用いられている。
[Employee's technology] A-3I is generally used as an amorphous semiconductor for semiconductor devices such as solar cells in which an amorphous semiconductor layer is formed.
:HSa-SiC:H%a-8IGe:Hsa-8IN
:H, a-81:P:H%a-Ge:H, and semiconductors containing these with a microcrystalline phase are used.

従来の太陽電池などの半導体装置においては、その起電
力発生部分が前記半導体に不純物を加えたp型層導体お
よびn型半導体と、真性半導体またはそれに微量の不純
物を加えた半導体からなるn型層導体とをpln pi
n・・・あるいはn1pnip・・・の順に順次積層し
た構造となっている。
In a conventional semiconductor device such as a solar cell, the electromotive force generating portion is composed of a p-type layer conductor and an n-type semiconductor made by adding an impurity to the semiconductor, and an n-type layer made of an intrinsic semiconductor or a semiconductor with a trace amount of impurity added thereto. conductor and pln pi
It has a structure in which layers are sequentially stacked in the order of n... or n1pnip....

第2図は3層構造のpin型半導体を使用した従来の太
陽電池などに用いられる半導体装置を示している。図に
おいて(1)はガラス基板であり、ガラス基板(1)上
にはこれに固着して透明電極であるp層側電極(2)が
形成されており、p層側電極(2)上にはこれに固着し
てn型層導体層(4)が形成されている。そしてn型層
導体層(4)上にはこれに固着してn型層導体層(5)
が形成されており、さらにその上にはこれに固着してn
型半導体層(6)が形成されている。そしてさらにn型
半導体層(6)上にはこれに固着してn層側電極(7′
)が形成されている。そして前記ガラス基板(1)、p
層側電極(2)、n型層導体層(4)、n型層導体層(
5)、n型半導体層(6)およびn層側電極(7)とに
より半導体装置(8)が構成されている。
FIG. 2 shows a semiconductor device used in a conventional solar cell, etc., which uses a pin-type semiconductor with a three-layer structure. In the figure, (1) is a glass substrate, and a p-layer side electrode (2), which is a transparent electrode, is formed on the glass substrate (1), and is fixed to the glass substrate (1). An n-type conductor layer (4) is formed by adhering to this. Then, on the n-type layer conductor layer (4), an n-type layer conductor layer (5) is fixed to this.
is formed, and furthermore, n is fixed to this.
A type semiconductor layer (6) is formed. Further, on the n-type semiconductor layer (6), an n-layer side electrode (7') is fixedly attached.
) is formed. and the glass substrate (1), p
Layer side electrode (2), n-type layer conductor layer (4), n-type layer conductor layer (
5) A semiconductor device (8) is constituted by the n-type semiconductor layer (6) and the n-layer side electrode (7).

そしてこのような半導体装置(8)において光が第2図
矢符方向にそって進んでガラス基板(1)内に入射し、
さらにガラス基板(1)内およびp層側電極(′2J内
を透過してp型、n型およびn型半導体層(4)、(5
)、(6)に照射する。そしてこの照射によって各半導
体層(4)、(5)、(6)内に電子と正孔の対が生じ
、電子がn型層に集められ、正孔がp型層に集められる
ことによってp層側電極(2に正、n層側電極(7)に
負の電荷が生じる。このようにして光電変換が行なわれ
半導体装置(8)が光電池として機能するようになる。
In such a semiconductor device (8), light travels along the direction of the arrow in FIG. 2 and enters the glass substrate (1),
Further, it passes through the glass substrate (1) and the p-layer side electrode ('2J) to p-type, n-type, and n-type semiconductor layers (4), (5
), (6). This irradiation generates pairs of electrons and holes in each semiconductor layer (4), (5), and (6), and electrons are collected in the n-type layer and holes are collected in the p-type layer, resulting in p A positive charge is generated on the layer side electrode (2) and a negative charge is generated on the n layer side electrode (7). Photoelectric conversion is performed in this way, and the semiconductor device (8) comes to function as a photovoltaic cell.

ここでn型層導体層(4)あるいはn型半導体層(6)
の不純物の濃度分布は半導体装置の作製時およびその後
に生じる熱に起因する拡散による分布変動を除けばp型
およびn型の各半導体層(4)、(6)内において一様
となっており、その不純物濃度は通常0.O1〜1.0
原子%の範囲にある。
Here, the n-type conductor layer (4) or the n-type semiconductor layer (6)
The impurity concentration distribution is uniform in each of the p-type and n-type semiconductor layers (4) and (6), except for distribution fluctuations due to diffusion caused by heat generated during and after the fabrication of the semiconductor device. , its impurity concentration is usually 0. O1~1.0
in the atomic percent range.

[発明が解決しようとする問題点] pn型層導体層p層側電極およびn型層、導体層とn層
側電極との接触抵抗は一般に不純物濃度が大きくなるほ
ど小さくなることが知られている。そしてこの接触抵抗
はn型層導体層およびn型半導体層が太陽電池などの光
起電力素子用として使用されるばあいには光起電力素子
としての曲線因子を悪化させる原因となるので小さくす
ることが望ましい。従ってかかる観点からは不純物濃度
を大きくすることが望ましい。
[Problems to be Solved by the Invention] It is known that the contact resistance between the p-type layer conductor layer, the p-layer side electrode and the n-type layer, and the conductor layer and the n-layer side electrode generally decreases as the impurity concentration increases. . When the n-type conductor layer and the n-type semiconductor layer are used for a photovoltaic device such as a solar cell, this contact resistance should be made small because it causes deterioration of the fill factor of the photovoltaic device. This is desirable. Therefore, from this point of view, it is desirable to increase the impurity concentration.

しかしながらn型半導体層およびn型層導体層の不純物
濃度があまり大きくなりすぎると、この不純物部分での
光の吸収損失が大きくなるなどによって光起電力素子と
しての特性が悪化するという問題がある。
However, if the impurity concentration of the n-type semiconductor layer and the n-type conductor layer becomes too high, there is a problem that the characteristics as a photovoltaic element deteriorate due to increased absorption loss of light in the impurity portion.

本発明はこのような問題を解決するためになされたもの
で光電変換効率が向上した半導体装置を提供することを
目的としている。
The present invention was made to solve such problems, and an object of the present invention is to provide a semiconductor device with improved photoelectric conversion efficiency.

c問題点を解決するための手段] 本発明による半導体装置はnip型またはpin型の非
晶質を含む半導体と、該半導体中のn型層導体層に接続
されたp層側電極と前記半導体中のn型半導体層に接続
されたn層側電極とが設けられた半導体装置においてn
型層導体層とp層側電極との間および/またはn型半導
体層とn層側電極との間に各々前記n型層導体層と同じ
導電型でありかつ不純物濃度が高い高濃度n型層導体層
および/または前記n型半導体層と同じ導電型でありか
つ不純物濃度が高い高濃度n型半導体層を介装させたも
のである。
Means for Solving Problem c] A semiconductor device according to the present invention includes a nip-type or pin-type semiconductor containing amorphous, a p-layer side electrode connected to an n-type layer conductor layer in the semiconductor, and the semiconductor. In a semiconductor device provided with an n-layer side electrode connected to an n-type semiconductor layer inside
A highly doped n-type layer having the same conductivity type as the n-type conductor layer and having a high impurity concentration is placed between the type layer conductor layer and the p-layer side electrode and/or between the n-type semiconductor layer and the n-layer side electrode. A high-concentration n-type semiconductor layer having the same conductivity type as the conductive layer and/or the n-type semiconductor layer and having a high impurity concentration is interposed therebetween.

[実施例コ 本発明に用いられるpin型またはnip型の非品質を
含む半導体において、n型半導体層としては、たとえば
a−!lit:H%a−SiGe:Hs a−Ge:I
l、a−8t:F:H,a−8IN:Hla−SiSn
:Hやこれらにホウ素、リンなどの微量をドーピングし
た半導体が使用され、その層の厚さは2500〜900
0人程度である。またn型半導体層としては、たとえば
a−8IC:H、p c−Si:I、a−91:Hに周
期律表mb族の元素をドーピングした半導体が使用され
、その層の厚さは80〜300人程度である。さらにま
たn型半導体層としては、たとえばa−81:II、u
c−81:H,a−81e:IIに周期律表vb族の元
素をドーピングした半導体が使用され、その層の厚さは
80〜800人程度である。
[Example 2] In the pin type or nip type semiconductor including non-quality used in the present invention, as the n type semiconductor layer, for example, a-! lit:H%a-SiGe:Hs a-Ge:I
l, a-8t: F: H, a-8IN: Hla-SiSn
: H or a semiconductor doped with trace amounts of boron, phosphorus, etc. is used, and the thickness of the layer is 2500 to 900 mm.
Approximately 0 people. Further, as the n-type semiconductor layer, for example, a semiconductor obtained by doping a-8IC:H, pc-Si:I, or a-91:H with an element of group MB of the periodic table is used, and the thickness of the layer is 80°C. ~300 people. Furthermore, as the n-type semiconductor layer, for example, a-81:II, u
Semiconductors in which c-81:H and a-81e:II are doped with elements of Group VB of the periodic table are used, and the thickness of the layer is about 80 to 800 layers.

そして前記n型半導体層についてはa−8IC:II 
And for the n-type semiconductor layer, a-8IC:II
.

a−Si : Hに周期律表mb族の元素をドーピング
したものが電気伝導に寄与する正孔を発生する活性化エ
ネルギーの値が小さく光の吸収損失も小さいなどの点か
ら好ましい。また前記n型半導体層についてはa−8l
c:Hs μc−81:H%a−st:nに周期律表v
b族の元素をドーピングしたものが、電気伝導に寄与す
る電子を発生する活性化エネルギーが小さくまた導電率
が高いなどの点から好ましい。しかし前記n型半導体層
、n型半導体層およびn型半導体層に使用される物質は
前記のものに限定されるものではない。
a-Si:H doped with an element in Group MB of the periodic table is preferable because it has a small activation energy for generating holes that contribute to electrical conduction and a small light absorption loss. Also, regarding the n-type semiconductor layer, a-8l
c: Hs μc-81: H% a-st: n in the periodic table v
A material doped with a group b element is preferable because it has low activation energy for generating electrons that contribute to electrical conduction and has high electrical conductivity. However, the materials used for the n-type semiconductor layer, the n-type semiconductor layer, and the n-type semiconductor layer are not limited to those described above.

またp型半導体用不純物として周期律表mb族の元素(
B、 #% 08% lnx  Tlなど)を使用しま
たn型半導体用不純物として周期律表vb族の元素(N
%p、 As、 9bなど)を使用するばあいを示した
が、ドーピングすることにより半導体がp型あるいはn
型の導電性を示すものであればこれらに限定されるもの
ではない。
In addition, as an impurity for p-type semiconductors, elements of group mb of the periodic table (
B, #% 08% lnx Tl, etc.), and elements of group Vb of the periodic table (N
%p, As, 9b, etc.), but by doping the semiconductor becomes p-type or n-type.
The material is not limited to these as long as it exhibits the conductivity of the mold.

また本発明における非晶質を含む半導体とは非晶質のみ
からなる半導体または非晶質の半導体中に微細な粒状の
結晶半導体が分散する半導体または大きな粒状の結晶半
導体の間に非晶質半導体が分散する半導体のことである
In addition, in the present invention, a semiconductor containing an amorphous substance is a semiconductor consisting only of an amorphous substance, a semiconductor in which fine grains of crystalline semiconductor are dispersed in an amorphous semiconductor, or an amorphous semiconductor between large grains of crystalline semiconductor. It refers to a semiconductor in which ions are dispersed.

本発明においてn型半導体層とp層側電極の間および/
またはn型半導体層とn層側電極の間に設けられた高濃
度n型半導体層および/または高濃度n型半導体層の不
純物濃度は通常の不純物濃度の2倍以上であり、好まし
くは4倍以上である。そしてその不純物濃度は上限はな
いが通常lO原原子量以下している。またこれらの高濃
度半導体層の厚みは10〜300人であり、好ましくは
30〜150人8ある。
In the present invention, between the n-type semiconductor layer and the p-layer side electrode and/or
Alternatively, the impurity concentration of the high concentration n-type semiconductor layer and/or the high concentration n-type semiconductor layer provided between the n-type semiconductor layer and the n-layer side electrode is twice or more, preferably four times the normal impurity concentration. That's all. Although there is no upper limit to the impurity concentration, it is usually below the original atomic weight of 1O. Moreover, the thickness of these high concentration semiconductor layers is 10 to 300, preferably 30 to 150.

実施例1 以下本発明による半導体装置の実施例を図によって説明
する。
Example 1 An example of a semiconductor device according to the present invention will be described below with reference to the drawings.

第1図は本発明による半導体装置の実施例1を示ルてお
り、3層型のpin型半導体装置を示している。第1図
において第2図と同一符号は同一のものを示す。第1図
においてp層側電極(2)とn型半導体層(4)との間
にはこれらの各々上面および下面に固着して高濃度n型
半導体層(3)が形成されている。
FIG. 1 shows a first embodiment of a semiconductor device according to the present invention, and shows a three-layer pin type semiconductor device. In FIG. 1, the same reference numerals as in FIG. 2 indicate the same parts. In FIG. 1, a high concentration n-type semiconductor layer (3) is formed between the p-layer side electrode (2) and the n-type semiconductor layer (4), fixed to the upper and lower surfaces of these layers, respectively.

また本発明においてpin型半導体層の構造は非晶質半
導体系の光起電力素子やフォトダイオードなどに一般的
に用いられている構造と同じである。
Further, in the present invention, the structure of the pin type semiconductor layer is the same as that commonly used in amorphous semiconductor photovoltaic elements, photodiodes, and the like.

つぎに実施例1に係る半導体装置の製造方法について説
明する。
Next, a method for manufacturing a semiconductor device according to Example 1 will be described.

まずガラス基板(1)上に透明電極であるp層側電極(
2)をスパッタ法により蒸着して形成する。
First, place the p-layer side electrode (transparent electrode) on the glass substrate (1).
2) is formed by vapor deposition using a sputtering method.

透明電極材料としては5n02を使用する。形成される
p層側電極(2)の厚さは5000人である。
5n02 is used as the transparent electrode material. The thickness of the formed p-layer side electrode (2) is 5000 mm.

つぎにp層側電極(2)上にプラズマCVD法によりS
IC:tlの半導体にホウ素をドーピングした高濃度n
型半導体層(3)を形成する。高濃度n型半導体層(3
)の形成において使用する原料ガスは5tH4、C11
a、B2H6/H2(82H6濃度が1000ppII
lである)であり、各ガスの流量は各々IO3CCM、
30SCCM、200SCCMである。形成される高濃
度n型半導体層(3)の厚さは100人であり、この層
の不純物濃度は4%となる。
Next, S is deposited on the p-layer side electrode (2) using the plasma CVD method.
IC: high concentration n doped with boron in tl semiconductor
A type semiconductor layer (3) is formed. High concentration n-type semiconductor layer (3
) The raw material gas used in the formation is 5tH4, C11
a, B2H6/H2 (82H6 concentration is 1000 ppII
), and the flow rates of each gas are IO3CCM,
30SCCM, 200SCCM. The thickness of the high concentration n-type semiconductor layer (3) to be formed is 100 mm, and the impurity concentration of this layer is 4%.

つぎに高濃度n型半導体層(3)上にこれと同様にSi
C:flの半導体にホウ素をドーピングしたn型半導体
層(3)をプラズマCVD法により形成する。
Next, Si is similarly placed on the high concentration n-type semiconductor layer (3).
C: An n-type semiconductor layer (3) in which a fl semiconductor is doped with boron is formed by plasma CVD.

このばあいにおいては82H6/+12のガスの流量を
503CCHに変化させる以外は前記高濃度p型半導体
層(3)の形成のばあいと同様の方法でp型半導体層(
4)の形成をおこなう。そして形成されるp型半導体層
(4)の厚さは100人であり、この層の不純物濃度は
1%となる。
In this case, the p-type semiconductor layer (
4) Formation is performed. The thickness of the formed p-type semiconductor layer (4) is 100 mm, and the impurity concentration of this layer is 1%.

つぎに原料ガスとして5IHaを使用してグロー放電に
よりp型半導体層(4)上にa−81:Ifのn型半導
体層(5)を形成する。形成されるn型半導体層(5)
の厚さは5000人である。
Next, an n-type semiconductor layer (5) of a-81:If is formed on the p-type semiconductor layer (4) by glow discharge using 5IHa as a raw material gas. N-type semiconductor layer (5) formed
Its thickness is 5,000 people.

そしてつぎにn型半導体層(5)上に、原料ガスとして
5iHa、PH3/H2(P113濃度が1000pp
lである)を使用しグロー放電分解法によりn型半導体
層(6)を形成する。5IH4ガスおよびPHs/Hz
ガスの流量は各々IO8CCMおよび50SCCMであ
る。
Then, on the n-type semiconductor layer (5), 5iHa and PH3/H2 (P113 concentration of 1000 pp) are applied as source gas.
An n-type semiconductor layer (6) is formed by a glow discharge decomposition method using 1. 5IH4 gas and PHs/Hz
The gas flow rates are IO8CCM and 50SCCM, respectively.

形成されるn型半導体層(6)の厚さは300人であり
、この層の不純物濃度は0.5%となる。
The thickness of the n-type semiconductor layer (6) to be formed is 300 mm, and the impurity concentration of this layer is 0.5%.

さらにn型半導体層(6)上に真空蒸着法によりAgを
蒸着してn層側電極(7)を形成した。形成されたn層
側電極(7)の厚さは1000人である。
Further, Ag was deposited on the n-type semiconductor layer (6) by vacuum evaporation to form an n-layer side electrode (7). The thickness of the formed n-layer side electrode (7) is 1000 mm.

そしてこのようにして作製される本実施例に係る半導体
素子(pin型半導体層)の面積は1ci程度のもので
あるが、1〜500 cdのものが作製できる。しかし
かかる面積は本発明において限定されるものではない。
The area of the semiconductor element (pin-type semiconductor layer) according to this example thus manufactured is about 1 ci, but a semiconductor element with a size of 1 to 500 cd can be manufactured. However, such area is not limited in the present invention.

以上のように構成された本実施例に係る半導体装置にお
いては光が第1図で示す矢符方向にそって進み第2図で
示す半導体装置におけるばあいと同様にして第1図で示
す各半導体層(3)、(4)、(5)、(6)に電子と
正孔の対が生じp層側電極(2)に正、n層側電極(7
′)に負の電荷が生じる。そして本実施例においてはp
層側電極(2)が高濃度pIJ!!半導体層(3)と接
触しているためにこれらの間の接触抵抗が著しく低下す
るとともに高濃度p型半導体層(3)の厚さが薄いため
これによる不純物部分での光の吸収損失は大きくならな
い。
In the semiconductor device according to this embodiment configured as described above, light travels along the direction of the arrow shown in FIG. Pairs of electrons and holes are generated in the semiconductor layers (3), (4), (5), and (6);
′) a negative charge is generated. In this example, p
Layer side electrode (2) has high concentration pIJ! ! Since it is in contact with the semiconductor layer (3), the contact resistance between them is significantly reduced, and since the high concentration p-type semiconductor layer (3) is thin, the absorption loss of light in the impurity portion is large. No.

比較例1 前記実施例1における半導体装置おいて、高濃度p型半
導体層(3)に代えてp型半導体層(4)と同材質の半
導体を100人の厚さで前記実施例1のp型半導体層(
4)の形成方法と同様の方法で形成した以外は前記実施
例と同様にして作製した半導体装置を比較例1の半導体
装置とした。前記実施例1および比較例1に係る半導体
装置について 100mW/c−のソーラーシミュレー
ターとして出力電圧−電流特性を測定した。その結果が
第3図に示されている。
Comparative Example 1 In the semiconductor device of Example 1, a semiconductor made of the same material as the p-type semiconductor layer (4) was used in place of the high concentration p-type semiconductor layer (3) at a thickness of 100 mm. type semiconductor layer (
A semiconductor device of Comparative Example 1 was a semiconductor device manufactured in the same manner as in the above example except that it was formed by the same method as the formation method of 4). The output voltage-current characteristics of the semiconductor devices according to Example 1 and Comparative Example 1 were measured using a 100 mW/c solar simulator. The results are shown in FIG.

第3図に基づいて、 短絡電流×開放電圧 により曲線因子を計算すると、比較例1については曲線
因子が80%程度であるのに対し実施例1については曲
線因子が70%程度であった。
Based on FIG. 3, when the fill factor was calculated by short circuit current x open circuit voltage, the fill factor for Comparative Example 1 was about 80%, whereas the fill factor for Example 1 was about 70%.

なお前記実施例1おいてはp層側電極(2)とp型半導
体層(4)の間に高濃度p型半導体層(3)を設けたば
あいについて示したが、これはn型半導体層(6)とn
層側電極(7)の間に高濃度n型半導体層を設けたもの
であってもよい。
In Example 1, the case where the high concentration p-type semiconductor layer (3) is provided between the p-layer side electrode (2) and the p-type semiconductor layer (4) is shown, but this is not an n-type semiconductor layer. Layer (6) and n
A highly doped n-type semiconductor layer may be provided between the layer side electrodes (7).

また前記実施例1おいてはp層側電極(2)側から光が
入るように構成したがこれはn層側電極(7)を透明電
極としここから光が入るように構成してもよい。
Furthermore, in the first embodiment, the light enters from the p-layer side electrode (2) side, but the structure may be such that the n-layer side electrode (7) is a transparent electrode and the light enters from there. .

また前記実施例1おいてはp型半導体層(4)、n型半
導体層(5)およびn型半導体層(6)を各々1層づつ
設けたばあいについて示したがこれは第1図下方からp
層i層n層p層i層n層・・・・・・の順に6〜15層
積層したものであってもよく、また第1図下方からn層
i Ji!Ip層またはn層i層p層n層i層p層・・
・・・・のように積層してもよいことはもちろんである
Furthermore, in the first embodiment, the case where one layer each of the p-type semiconductor layer (4), the n-type semiconductor layer (5), and the n-type semiconductor layer (6) are provided is shown, but this is shown in the lower part of FIG. From p
It may be a layer laminated in the order of 6 to 15 layers: i-layer, n-layer, p-layer, i-layer, n-layer, etc., and the n-layer i Ji! from the bottom in FIG. Ip layer or n layer i layer p layer n layer i layer p layer...
It goes without saying that they may be laminated as shown in the following.

また前記実施例1においては透明電極の材料として5n
02を使用したばあいについて示したがこれはITOな
ど他のものであってもよく、またn層側電極(7)の材
料としてAgを使用したがこれはMSAuなどの他の導
電性金属またはシリコンと他の金属の化合物であるシリ
サイドなどの導体またはこれらを積層したようなもので
あってもよい。
In addition, in Example 1, 5n was used as the material for the transparent electrode.
02 is shown, but it may be made of other materials such as ITO. Also, although Ag was used as the material for the n-layer side electrode (7), it may be made of other conductive metals such as MSAu or It may also be a conductor such as silicide, which is a compound of silicon and other metals, or a laminate of these.

また前記実施例1においては高濃度p型半導体層(3)
がp型半導体層(4)と同一材料であるばあいを示した
が、これは同じp型のものであれば前記実施例で使用さ
れた真性半導体(SIC:H)と異なる半導体(例えば
Sl:11)を使用しこれに前記実施例で使用された不
純物(ホウ素)または他の不純物を入れたものであって
もよく、また前記高濃度p型半導体層(3)とp型半導
体層(4)の不純物のみが異なるものにしてもよいこと
はもちろんである。そしてこれは高濃度n型半導体層と
n型半導体層との関係においても同様である。
Furthermore, in the first embodiment, the high concentration p-type semiconductor layer (3)
The case is shown in which the material is the same as that of the p-type semiconductor layer (4), but if it is of the same p-type, it may be made of a semiconductor different from the intrinsic semiconductor (SIC:H) used in the previous example (for example, Sl :11) and may contain the impurity (boron) used in the above embodiment or other impurities, or the high concentration p-type semiconductor layer (3) and the p-type semiconductor layer Of course, only the impurity in 4) may be different. This also applies to the relationship between the high concentration n-type semiconductor layer and the n-type semiconductor layer.

また前記実施例1においてはp型半導体層(4)から高
濃度p型半導体層(3)へ不純物濃度が不連続的に変化
するばあいについて示したがこれはp型(またはn型)
半導体層から高濃度p型(またはn型)半導体層へ不純
物濃度が連続的にしだいに増加していくようなものであ
ってもよい。
Further, in the first embodiment, the case where the impurity concentration changes discontinuously from the p-type semiconductor layer (4) to the high concentration p-type semiconductor layer (3) is shown, but this is not a p-type (or n-type).
The impurity concentration may gradually increase continuously from the semiconductor layer to the high concentration p-type (or n-type) semiconductor layer.

また前記実施例1においては半導体装置の各層の作製方
法としてスパッタ法、真空蒸着法、プラズマCVD法な
どが使用されているがこれらに限定されるものではなく
薄層を形成できる方法であればよい。また使用される各
種CVD装置としでは平行平板容量結合型プラズマCV
D装置、導結合型プラズマCVD装置、熱CVD装置、
ECRプラズマCVD装置、光CVD装置、励起種CV
D装置などがある。
Further, in the first embodiment, sputtering, vacuum evaporation, plasma CVD, etc. are used as methods for manufacturing each layer of the semiconductor device, but the method is not limited to these, and any method that can form a thin layer may be used. . In addition, various types of CVD equipment used include parallel plate capacitively coupled plasma CVD.
D device, conductively coupled plasma CVD device, thermal CVD device,
ECR plasma CVD equipment, optical CVD equipment, excited species CV
There are devices such as D.

また各層の形成に使用される原料についても前記実施例
のものに限定される必要はない。
Furthermore, the raw materials used for forming each layer are not limited to those of the above embodiments.

[発明の効果] 以上のように本発明に係る半導体装置はp型半導体層と
p層側電極との間および/またはn型半導体層とn層側
電極との間に各々前記p型半導体層と同じ導電型であり
かつ不純物濃度が高い高濃度p型半導体層および/また
は前記n型半導体層と同じ導電型でありかつ不純物濃度
が高い高濃度n型半導体層を介装しているのでp型半導
体層とp層側電極との間および/またはn型半導体層と
n層側電極との間の接触抵抗を小さくできるとともに半
導体層における光の吸収損失が大きくならないようにで
き、従来の半導体装置と比較して光電変換効率を向上で
きる効果がある。
[Effects of the Invention] As described above, the semiconductor device according to the present invention has the p-type semiconductor layer between the p-type semiconductor layer and the p-layer side electrode and/or between the n-type semiconductor layer and the n-layer side electrode. A high concentration p-type semiconductor layer having the same conductivity type and high impurity concentration as the n-type semiconductor layer and/or a high concentration n-type semiconductor layer having the same conductivity type and high impurity concentration as the n-type semiconductor layer is interposed. It is possible to reduce the contact resistance between the type semiconductor layer and the p-layer side electrode and/or between the n-type semiconductor layer and the n-layer side electrode, and also to prevent the light absorption loss in the semiconductor layer from increasing, which is different from conventional semiconductors. This has the effect of improving photoelectric conversion efficiency compared to other devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1に係る半導体装置の断面図、
第2図は従来の半導体装置の断面図、第3図は本発明の
実施例1および比較例1に係る半導体装置の出力電圧−
電流特性を示す図である。 (図面の主要符号) (2):p層側電極 (3):高濃度p型半導体層 (4) : p型半導体層 (5)、i型半導体層 (6) : n型半導体層 (7)、n層側電極 (8)二層導体装置 特許出願人  鐘淵化学工業株式会社 代理人弁理士  朝日奈宗太 ほか1名1r−’、’、
・:F:、i、b、!−ユ: 才1 図
FIG. 1 is a cross-sectional view of a semiconductor device according to Embodiment 1 of the present invention;
FIG. 2 is a sectional view of a conventional semiconductor device, and FIG. 3 is an output voltage of semiconductor devices according to Example 1 of the present invention and Comparative Example 1.
FIG. 3 is a diagram showing current characteristics. (Main symbols in the drawing) (2): P-layer side electrode (3): High concentration p-type semiconductor layer (4): P-type semiconductor layer (5), i-type semiconductor layer (6): N-type semiconductor layer (7) ), N-layer side electrode (8) Double-layer conductor device Patent applicant Kanebuchi Chemical Industry Co., Ltd. Patent attorney Sota Asahina and one other person 1r-', ',
・:F:,i,b,! -Yu: Sai1 figure

Claims (1)

【特許請求の範囲】 1 nip型またはpin型の非晶質を含む半導体と、
該半導体中のp型半導体層に接続されたp層側電極と前
記半導体中のn型半導体層に接続されたn層側電極とが
設けられた半導体装置においてp型半導体層とp層側電
極との間および/またはn型半導体層とn層側電極との
間に各々前記p型半導体層と同じ導電型でありかつ不純
物濃度が高い高濃度p型半導体層および/または前記n
型半導体層と同じ導電型でありかつ不純物濃度が高い高
濃度n型半導体層を介装している半導体装置。 2 前記高濃度p型半導体層および高濃度n型半導体層
の厚さが各々10〜300Åである特許請求の範囲第1
項記載の半導体装置。 3 前記p型半導体層および/またはn型半導体層がα
−SiC:Hに不純物をドーピングした半導体からなる
特許請求の範囲第1項または第2項記載の半導体装置。 4 前記p型半導体層および/またはn型半導体層がα
−Siに不純物をドーピングした半導体からなる特許請
求の範囲第1項または第2項記載の半導体装置。 5 前記高濃度p型半導体層および高濃度n型半導体層
の不純物濃度が各々前記p型半導体層およびn型半導体
層の不純物濃度の2倍以上である特許請求の範囲第1項
、第2項、第3項または第4項記載の半導体装置。 6 前記高濃度p型半導体層および高濃度n型半導体層
の不純物濃度が各々前記p型半導体層およびn型半導体
層の不純物濃度の4倍以上である特許請求の範囲第5項
記載の半導体装置。
[Claims] 1. A semiconductor containing nip type or pin type amorphous;
A p-type semiconductor layer and a p-layer side electrode in a semiconductor device provided with a p-layer side electrode connected to a p-type semiconductor layer in the semiconductor and an n-layer side electrode connected to an n-type semiconductor layer in the semiconductor. and/or between the n-type semiconductor layer and the n-layer side electrode, a high-concentration p-type semiconductor layer having the same conductivity type as the p-type semiconductor layer and having a high impurity concentration, and/or the n-type semiconductor layer and/or the n-layer side electrode.
A semiconductor device in which a high-concentration n-type semiconductor layer having the same conductivity type as a type semiconductor layer and having a high impurity concentration is interposed. 2. Claim 1, wherein the high concentration p-type semiconductor layer and the high concentration n-type semiconductor layer each have a thickness of 10 to 300 Å.
1. Semiconductor device described in Section 1. 3 The p-type semiconductor layer and/or the n-type semiconductor layer is α
3. The semiconductor device according to claim 1 or 2, comprising a semiconductor in which -SiC:H is doped with an impurity. 4 The p-type semiconductor layer and/or the n-type semiconductor layer is α
3. A semiconductor device according to claim 1 or 2, comprising a semiconductor in which -Si is doped with an impurity. 5. Claims 1 and 2, wherein the impurity concentration of the high concentration p-type semiconductor layer and the high concentration n-type semiconductor layer is twice or more the impurity concentration of the p-type semiconductor layer and the n-type semiconductor layer, respectively. , the semiconductor device according to item 3 or 4. 6. The semiconductor device according to claim 5, wherein the impurity concentration of the high concentration p-type semiconductor layer and the high concentration n-type semiconductor layer is four times or more the impurity concentration of the p-type semiconductor layer and the n-type semiconductor layer, respectively. .
JP61099939A 1985-11-05 1986-04-30 Semiconductor device Pending JPS62256481A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP61099939A JPS62256481A (en) 1986-04-30 1986-04-30 Semiconductor device
CA000521602A CA1321660C (en) 1985-11-05 1986-10-28 Amorphous-containing semiconductor device with high resistivity interlayer or with highly doped interlayer
AU64619/86A AU600453B2 (en) 1985-11-05 1986-10-31 Semiconductor device
DE3650012T DE3650012T2 (en) 1985-11-05 1986-11-01 Semiconductor device.
EP86115170A EP0221523B1 (en) 1985-11-05 1986-11-01 Semiconductor device
EP92104628A EP0494088B1 (en) 1985-11-05 1986-11-01 Photovoltaic device
DE3650712T DE3650712T2 (en) 1985-11-05 1986-11-01 Photovoltaic device
EP19920104633 EP0494090A3 (en) 1985-11-05 1986-11-01 Photovoltaic device
CN86106353A CN1036817C (en) 1985-11-05 1986-11-05 Semiconductor device
KR860009364A KR870005477A (en) 1985-11-05 1986-11-05 Semiconductor devices
CN89104797A CN1018310B (en) 1985-11-05 1989-07-14 Semiconductor device
US07/477,138 US5032884A (en) 1985-11-05 1990-02-07 Semiconductor pin device with interlayer or dopant gradient
AU65966/90A AU636677B2 (en) 1985-11-05 1990-11-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61099939A JPS62256481A (en) 1986-04-30 1986-04-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62256481A true JPS62256481A (en) 1987-11-09

Family

ID=14260685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61099939A Pending JPS62256481A (en) 1985-11-05 1986-04-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62256481A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296380A (en) * 1988-09-30 1990-04-09 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPH0296382A (en) * 1988-09-30 1990-04-09 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPH02164079A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell
JPH03155680A (en) * 1989-08-25 1991-07-03 Fuji Electric Corp Res & Dev Ltd Manufacture of thin film solar cell
JP2002083984A (en) * 2000-09-08 2002-03-22 National Institute Of Advanced Industrial & Technology Solar battery and its manufacturing method
JP2012134541A (en) * 2009-02-17 2012-07-12 Korea Inst Of Industrial Technology Solar cell manufacturing method making use of inductive coupling plasma chemical vapor deposition method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162275A (en) * 1979-06-04 1980-12-17 Konishiroku Photo Ind Co Ltd Manufacture of solar battery
JPS5996775A (en) * 1982-11-25 1984-06-04 Agency Of Ind Science & Technol Amorphous silicon photoelectric conversion device
JPS59163876A (en) * 1983-03-08 1984-09-14 Agency Of Ind Science & Technol Amorphous silicon solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162275A (en) * 1979-06-04 1980-12-17 Konishiroku Photo Ind Co Ltd Manufacture of solar battery
JPS5996775A (en) * 1982-11-25 1984-06-04 Agency Of Ind Science & Technol Amorphous silicon photoelectric conversion device
JPS59163876A (en) * 1983-03-08 1984-09-14 Agency Of Ind Science & Technol Amorphous silicon solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296380A (en) * 1988-09-30 1990-04-09 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPH0296382A (en) * 1988-09-30 1990-04-09 Kanegafuchi Chem Ind Co Ltd Semiconductor device
JPH02164079A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell
JPH03155680A (en) * 1989-08-25 1991-07-03 Fuji Electric Corp Res & Dev Ltd Manufacture of thin film solar cell
JP2002083984A (en) * 2000-09-08 2002-03-22 National Institute Of Advanced Industrial & Technology Solar battery and its manufacturing method
JP2012134541A (en) * 2009-02-17 2012-07-12 Korea Inst Of Industrial Technology Solar cell manufacturing method making use of inductive coupling plasma chemical vapor deposition method

Similar Documents

Publication Publication Date Title
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US5032884A (en) Semiconductor pin device with interlayer or dopant gradient
EP0523919B1 (en) Multijunction photovoltaic device and fabrication method
KR910001742B1 (en) Photo electromotive force device
US5646050A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
US8981200B2 (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
CA1091361A (en) Semiconductor device having an amorphous silicon active region
US4398054A (en) Compensated amorphous silicon solar cell incorporating an insulating layer
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
US4396793A (en) Compensated amorphous silicon solar cell
JPS6334634B2 (en)
JP2001267598A (en) Laminated solar cell
US4415760A (en) Amorphous silicon solar cells incorporating an insulating layer in the body of amorphous silicon and a method of suppressing the back diffusion of holes into an N-type region
JPS62234379A (en) Semiconductor device
JPS62256481A (en) Semiconductor device
JPH065765B2 (en) Photoelectric conversion device
JP2680579B2 (en) Photovoltaic device
JPH0122991B2 (en)
JP2632740B2 (en) Amorphous semiconductor solar cell
JPS6152992B2 (en)
JP2744680B2 (en) Manufacturing method of thin film solar cell
JPS62106670A (en) Semiconductor device
JPH0586677B2 (en)
JPH0685291A (en) Semiconductor device and its manufacture
JP2003142705A (en) Photovoltaic element