JPH0760802B2 - Method for producing p-type amorphous silicon - Google Patents

Method for producing p-type amorphous silicon

Info

Publication number
JPH0760802B2
JPH0760802B2 JP62097836A JP9783687A JPH0760802B2 JP H0760802 B2 JPH0760802 B2 JP H0760802B2 JP 62097836 A JP62097836 A JP 62097836A JP 9783687 A JP9783687 A JP 9783687A JP H0760802 B2 JPH0760802 B2 JP H0760802B2
Authority
JP
Japan
Prior art keywords
amorphous silicon
type amorphous
substrate
temperature
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62097836A
Other languages
Japanese (ja)
Other versions
JPS63262837A (en
Inventor
雅俊 北川
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62097836A priority Critical patent/JPH0760802B2/en
Publication of JPS63262837A publication Critical patent/JPS63262837A/en
Publication of JPH0760802B2 publication Critical patent/JPH0760802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はp型非晶質シリコンの製造方法、特に広い光学
的バンドギャップを有するp型非晶質シリコンの製造方
法に関する。
TECHNICAL FIELD The present invention relates to a method for producing p-type amorphous silicon, and more particularly to a method for producing p-type amorphous silicon having a wide optical band gap.

従来の技術 従来、p型非晶質シリコン(p−a−Si)はガラス/透
明電極/Pin/金属電極型の太陽電池の入射側導電性非晶
質シリコン層として利用されて来た。しかしながら従来
のp型非晶質シリコンの製造方法では、例えばSiH4(モ
ノシラン)とB2H6(ジボラン)の混合ガスを原料ガスと
したプラズマCVD法で行なっており、低抵抗のp型層を
得るために基板温度を200℃以上に加熱していた。この
場合、光学的バンドギャップが1.6〜1.7eVと真性型もし
くはn型非晶質シリコンの1.7〜1.8eVと比べ狭いため高
い光の利用率が得られにくかった。そのため原料ガスと
してさらにCH4やC2H4を混合し、p型非晶質シリコンカ
ーバイド(p−a−SiC)とし、光学的バンドギャップ
を1.9〜2.0eVに広げてやるという手法を取っていた。
2. Description of the Related Art Conventionally, p-type amorphous silicon (pa-Si) has been used as an incident side conductive amorphous silicon layer of a glass / transparent electrode / Pin / metal electrode type solar cell. However, in the conventional method for producing p-type amorphous silicon, for example, a plasma CVD method using a mixed gas of SiH 4 (monosilane) and B 2 H 6 (diborane) as a source gas is used, and a low-resistance p-type layer is formed. In order to obtain the above, the substrate temperature was heated to 200 ° C. or higher. In this case, since the optical band gap is 1.6 to 1.7 eV, which is narrower than 1.7 to 1.8 eV of intrinsic type or n-type amorphous silicon, it is difficult to obtain a high light utilization rate. Therefore, CH 4 and C 2 H 4 are mixed as a raw material gas to form p-type amorphous silicon carbide (pa-SiC), and the optical band gap is expanded to 1.9 to 2.0 eV. It was

発明が解決しようとする問題点 しかしながら、この方法では光の利用効率は向上する
が、このp型層上に堆積する真性(i)型非晶質シリコ
ンに炭素元素が汚染不純物元素として混入し、真性層の
光活性層としての性能を低下させたり、p−i接合界面
特性が悪化したりし、光利用効率の割には太陽電池とし
ての変換効率の向上が実現出来なかった。
Problems to be Solved by the Invention However, although the light utilization efficiency is improved by this method, carbon element is mixed into the intrinsic (i) type amorphous silicon deposited on the p-type layer as a contamination impurity element, Since the performance of the intrinsic layer as a photoactive layer is deteriorated and the p-i junction interface characteristics are deteriorated, the conversion efficiency as a solar cell cannot be improved for the light utilization efficiency.

本発明は、このような従来技術における問題点を解決す
ることを目的とする。
The present invention aims to solve the problems in the prior art.

問題点を解決するための手段 上記の問題点を解決するため、本発明では、p型非晶質
シリコンをマイクロ波,電子サイクロトロン共鳴吸収を
用いたECRプラズマCVD法(以下μ波ECRプラズマCVD法を
用いて基板を60℃以下にして堆積し、しかるのちこの堆
積温度以上で熱処理するものである。
Means for Solving the Problems In order to solve the above problems, in the present invention, an ECR plasma CVD method (hereinafter referred to as μ wave ECR plasma CVD method) using p-type amorphous silicon using microwave and electron cyclotron resonance absorption is used. Is used to deposit the substrate at a temperature of 60 ° C. or lower, and then heat treatment is performed at the deposition temperature or higher.

作用 この方法を用いれば、60℃以下の基板温度でSiH4とB2H6
の混合ガスを原料とし堆積した後、たとえば200〜300℃
の熱処理を行なうことによって、低抵抗で広い光学バン
ドギャップを有するp型非晶質シリコンが実現出来る事
が見い出された。
Action Using this method, SiH 4 and B 2 H 6
After depositing the mixed gas of
It has been found that p-type amorphous silicon having a low resistance and a wide optical band gap can be realized by carrying out the heat treatment of.

この方法を用いれば、60℃以下で堆積されたp型非晶質
シリコンはもともと1.9eV程度の光学ギャップを持つが
抵抗が107Ωcm程度と大きい。しかしながらこのp型非
晶質シリコンを200℃〜300℃程度の温度で熱処理を行な
うと構造緩和によって2.0eV程度まで増大しさらに膜中
の不純物元素が活性化し〜104Ωcm程度まで抵抗が減少
するのである。
Using this method, p-type amorphous silicon deposited at 60 ° C. or lower originally has an optical gap of about 1.9 eV, but has a large resistance of about 10 7 Ωcm. However, when this p-type amorphous silicon is heat-treated at a temperature of about 200 ° C. to 300 ° C., it is increased to about 2.0 eV due to structural relaxation, and the impurity element in the film is activated to reduce the resistance to about 10 4 Ωcm. Of.

実施例 以下図面に基づき、本発明の代表的な実施例を示す。第
1図は本実施例で使用するμ波ECRプラズマCVD装置の概
略図である。11が真空チャンバーで排気孔12より真空に
排気される。導波管13を通してマイクロ波発振器14から
マイクロ波がプラズマ発生室15へ導入される。電磁石16
によりプラズマ発生室15に磁界が印加される。17はガス
導入口でSiH4やB2H6などの原料ガスが導入される。磁界
の強さを、電子サイクロトロン共鳴条件を満すように設
定することにより解離度の高いプラズマが発生する。発
生したプラズマは、プラズマ引出し窓18を通過し基板ホ
ルダ19に達し、ホルダ19上の基板にp型非晶質シリコン
が形成される。
Examples Representative examples of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a μ wave ECR plasma CVD apparatus used in this embodiment. A vacuum chamber 11 is evacuated to a vacuum through an exhaust hole 12. Microwaves are introduced from the microwave oscillator 14 into the plasma generation chamber 15 through the waveguide 13. Electromagnet 16
As a result, a magnetic field is applied to the plasma generation chamber 15. Reference numeral 17 is a gas inlet, into which raw material gas such as SiH 4 and B 2 H 6 is introduced. By setting the strength of the magnetic field so as to satisfy the electron cyclotron resonance condition, plasma with a high degree of dissociation is generated. The generated plasma passes through the plasma extraction window 18 and reaches the substrate holder 19, and p-type amorphous silicon is formed on the substrate on the holder 19.

第2図は第1図で示した装置で、60℃以下の基板温度で
形成した非晶質シリコンを300℃まで熱処理した場合の
電気伝導度の変化と光学的バンドギャップの変化を示し
ている。熱処理によって光学的バンドギャップが1.9eV
からさらに2.0eVまで増大すると同時に電気伝導度の変
化を示している。この値は従来の技術において、p型非
晶質シリコンカーバイトで得られた光学的バンドギャッ
プ2.0eVの時の電気伝導度〜10-6〜10-5(Ωcm)-1より
優れている。
FIG. 2 shows the change in electrical conductivity and the change in optical band gap when the amorphous silicon formed at a substrate temperature of 60 ° C. or lower is heat-treated to 300 ° C. in the apparatus shown in FIG. . Optical bandgap of 1.9 eV due to heat treatment
Shows a change in electrical conductivity at the same time as increasing from 1.0 to 2.0 eV. This value is superior to the electrical conductivity ˜10 −6 to 10 −5 (Ωcm) −1 at the optical band gap of 2.0 eV obtained with p-type amorphous silicon carbide in the prior art.

従来のプラズマCVD法で作られるp型非晶質シリコンはS
iH4とB2H6の混合ガスを原料ガスとしプラズマCVD法で作
製されるがB2H6ガスの混合比を増加させてゆくとp型非
晶質シリコン中に入りシリコン原子と結合する水素量が
急激に減少し、結果として光学ギャップが狭くなってし
まう。このことは、μ波ECRプラズマCVD法で基板温度20
0℃〜300℃で作製しても同様である。
The p-type amorphous silicon produced by the conventional plasma CVD method is S
It is produced by plasma CVD method using iH 4 and B 2 H 6 mixed gas as source gas, but when the mixing ratio of B 2 H 6 gas is increased, it enters into p-type amorphous silicon and bonds with silicon atoms. The amount of hydrogen decreases sharply, resulting in a narrow optical gap. This means that substrate temperature 20
The same is true even if it is manufactured at 0 ° C to 300 ° C.

しかし前記した本発明の方法によると、60℃以下の室温
に近い温度で作られたp型非晶質シリコン中には充分Si
と結合した水素が存在する。したがって未処理の状態で
は構造的ストレスにより光学ギャップは小さくなってい
るが堆積温度以上の熱処理によって緩和され本発明によ
れば〜2.0eV以上の光学ギャップが得られ、かつ電気伝
導度も向上するのである。なお、従来のプラズマCVD法
において室温で形成すると確かに広い光学ギャップの膜
が得られるが、熱処理を行っても充分な電気伝導を持つ
p型非晶質シリコンは得られなかった。また、本発明に
おいては、基板は通常加熱しないのが望ましいが、基板
加熱は行なわなくても一般的に堆積によって基板は〜60
℃程度に上昇するが、この程度であれば特に問題はなか
った。これ以上上昇してしまうと前記した効果が消失し
てしまうので冷却する等を行なって基板を60℃程度にす
る必要がある。
However, according to the above-mentioned method of the present invention, Si is sufficiently contained in p-type amorphous silicon formed at a temperature close to room temperature of 60 ° C. or less.
There is hydrogen bound to. Therefore, in the untreated state, the optical gap is reduced due to structural stress, but is relaxed by heat treatment at a deposition temperature or higher, and according to the present invention, an optical gap of ~ 2.0 eV or higher is obtained and the electrical conductivity is also improved. is there. Although a film having a wide optical gap can be obtained by forming the film at room temperature in the conventional plasma CVD method, p-type amorphous silicon having sufficient electric conductivity could not be obtained even by heat treatment. In addition, in the present invention, it is desirable that the substrate is not usually heated, but even if the substrate is not heated, the substrate is generally heated to about 60% by deposition.
Although it rises to about 0 ° C, there was no particular problem at this temperature. If the temperature is further increased, the above effect disappears, so it is necessary to cool the substrate to about 60 ° C. by cooling.

発明の効果 本発明の効果は次のようなものである。Effects of the Invention The effects of the present invention are as follows.

従来技術で得られた非晶質シリコン,非晶質シリコンカ
ーバイドのp型層に比べ充分広い光学的バンドギャップ
を持ち充分高い電気伝導度を示すp型層が実現出来た。
特に基板/透明電極/Pin/金属電極構成の非晶質シリコ
ン太陽電池を製造する場合p型層からのi型層への炭素
元素の汚染拡散が無く好都合である。また熱処理が必要
ではあるが、その後のi型層,n型層の堆積時に通常200
〜300℃基板加熱を行なうのでこの加熱を利用すること
ができ、実際に熱処理を施す必要はなく製造工程上も好
都合である。
It was possible to realize a p-type layer having a sufficiently wide optical band gap and a sufficiently high electric conductivity as compared with the p-type layers of amorphous silicon and amorphous silicon carbide obtained by the conventional technique.
In particular, when an amorphous silicon solar cell having a substrate / transparent electrode / Pin / metal electrode structure is manufactured, it is convenient because there is no diffusion of carbon element contamination from the p-type layer to the i-type layer. Although heat treatment is required, it is usually 200 at the time of subsequent deposition of i-type layer and n-type layer.
Since the substrate is heated to 300 ° C., this heating can be utilized, and it is not necessary to actually perform the heat treatment, which is convenient in the manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明で使用したμ波ECRプラズマCVD装置の概
略図、第2図は本発明の実施例としてSiH4とB2H6を原料
ガスとして第1図で示した装置によって形成したp型非
晶質シリコンの電気伝導度および光学的バンドギャップ
の熱処理による変化を示す図である。 11……真空チャンバー、12……排気孔、13……導波管、
14……マイクロ波発振器、15……プラズマ発生室、16…
…電磁石、17……ガス導入口、18……プラズマ引き出し
窓。
FIG. 1 is a schematic view of a μ wave ECR plasma CVD apparatus used in the present invention, and FIG. 2 is an example of the present invention in which SiH 4 and B 2 H 6 are used as source gases and are formed by the apparatus shown in FIG. It is a figure which shows the electric conductivity of p-type amorphous silicon, and the change of the optical band gap by heat processing. 11 ... vacuum chamber, 12 ... exhaust hole, 13 ... waveguide,
14 ... Microwave oscillator, 15 ... Plasma generation chamber, 16 ...
… Electromagnet, 17 …… Gas inlet, 18 …… Plasma extraction window.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】p型非晶質シリコン形成方法において、マ
イクロ波電子サイクロトロン共鳴吸収を利用したプラズ
マ分解により、基板を60℃以下の温度で保持し、SiH4
B2H6の混合ガスを原料として前記基板上に堆積形成した
後、200℃〜300℃の範囲の温度により熱処理を行うこと
を特徴とするp型非晶質シリコンの製造方法。
1. A method for forming p-type amorphous silicon, in which a substrate is held at a temperature of 60 ° C. or lower by plasma decomposition utilizing microwave electron cyclotron resonance absorption to obtain SiH 4
A method for producing p-type amorphous silicon, which comprises depositing and forming a mixed gas of B 2 H 6 as a raw material on the substrate and then performing heat treatment at a temperature in the range of 200 ° C. to 300 ° C.
JP62097836A 1987-04-21 1987-04-21 Method for producing p-type amorphous silicon Expired - Fee Related JPH0760802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62097836A JPH0760802B2 (en) 1987-04-21 1987-04-21 Method for producing p-type amorphous silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62097836A JPH0760802B2 (en) 1987-04-21 1987-04-21 Method for producing p-type amorphous silicon

Publications (2)

Publication Number Publication Date
JPS63262837A JPS63262837A (en) 1988-10-31
JPH0760802B2 true JPH0760802B2 (en) 1995-06-28

Family

ID=14202802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62097836A Expired - Fee Related JPH0760802B2 (en) 1987-04-21 1987-04-21 Method for producing p-type amorphous silicon

Country Status (1)

Country Link
JP (1) JPH0760802B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5123444B2 (en) * 2000-09-08 2013-01-23 独立行政法人産業技術総合研究所 Manufacturing method of solar cell
SG11202002270RA (en) * 2017-10-09 2020-04-29 Applied Materials Inc Conformal doped amorphous silicon as nucleation layer for metal deposition

Also Published As

Publication number Publication date
JPS63262837A (en) 1988-10-31

Similar Documents

Publication Publication Date Title
US4409605A (en) Amorphous semiconductors equivalent to crystalline semiconductors
JPH06105691B2 (en) Method for producing carbon-doped amorphous silicon thin film
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US4710786A (en) Wide band gap semiconductor alloy material
CN107644805A (en) Hole passivation tunnelling film, preparation method and its application in solar cell
JPH0760802B2 (en) Method for producing p-type amorphous silicon
JPS6132416A (en) Manufacture of semiconductor device
JP2003158078A (en) Method for forming silicon semiconductor
JPH0574707A (en) Manufacture of amorphous semiconductor thin film
JP3040247B2 (en) Manufacturing method of silicon thin film
JPH04355970A (en) Manufacture of solar cell
JPH0732135B2 (en) Method for manufacturing heterojunction element
JPS59107575A (en) Manufacture of solar cell
JP2659369B2 (en) Photoelectric conversion element
JP3416546B2 (en) Method and apparatus for forming deposited film
JP2575397B2 (en) Method for manufacturing photoelectric conversion element
JP2723513B2 (en) Method for manufacturing semiconductor device
JP2680702B2 (en) Method for producing amorphous alloy semiconductor thin film
CN117976769A (en) Preparation method of TOPCon battery structure
JPS63220581A (en) Manufacture of photoelectric conversion element
JPS61256625A (en) Manufacture of thin film semiconductor element
JPH07263728A (en) Manufacture of thin film solar cell
JP2728874B2 (en) Semiconductor device manufacturing method
JPH1174550A (en) Production of amorphous silicon solar cell
JPH0815220B2 (en) Method for manufacturing photoelectric conversion element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees