JPS63220581A - Manufacture of photoelectric conversion element - Google Patents

Manufacture of photoelectric conversion element

Info

Publication number
JPS63220581A
JPS63220581A JP62053059A JP5305987A JPS63220581A JP S63220581 A JPS63220581 A JP S63220581A JP 62053059 A JP62053059 A JP 62053059A JP 5305987 A JP5305987 A JP 5305987A JP S63220581 A JPS63220581 A JP S63220581A
Authority
JP
Japan
Prior art keywords
thin film
type semiconductor
semiconductor thin
photoelectric conversion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62053059A
Other languages
Japanese (ja)
Inventor
Kenji Miyaji
宮地 賢司
Yutaka Ohashi
豊 大橋
Hirobumi Tanaka
博文 田中
Nobuhiro Fukuda
福田 信弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62053059A priority Critical patent/JPS63220581A/en
Publication of JPS63220581A publication Critical patent/JPS63220581A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain an element of high efficiency by a method wherein a first p-type semiconductor thin film is doped with two to five times as much impuri ties as a second p-type semiconductor thin film. CONSTITUTION:A first p-type semiconductor thin film which has been doped with high-concentration p-type impurities is formed, with 5-50 Angstrom , on an elec trode composed of a translucent conductive oxide by a glow discharge; after that, while the concentration of the p-type impurities is reduced to 1/2-1/5 and other conductions are kept to be the same, a second p-type semiconductor thin film having the required characteristics for an ordinary amorphous photoe lectric conversion element is formed with a prescribed thickness. That is to say, a p-type semiconductor thin film (a p-layer) is formed after it has been divided into a first p-layer and a second p-layer; the first p-layer is doped with two to five times as much high-concentration impurities as the second p-layer. It is preferable that the supply amount of impurities to a silane compound ranges from 1 to 20% when the first p-type semiconductor thin film of high p-concentration is formed and that the film thickness ranges from 5 to 50 Angstrom . By this setup, it is possible to obtain the photoelectric conversion element whose efficiency of photoelectric conversion is excellent.

Description

【発明の詳細な説明】 [技術分野〕 本発明は非晶質シリコン(以下a−3tsHとも略称す
る)光電変換素子の製造法に関し、特に、その高効率化
素子の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing an amorphous silicon (hereinafter also abbreviated as a-3tsH) photoelectric conversion element, and in particular, to a method for manufacturing the highly efficient element.

[従来技術およびその問題点コ 光電変換素子特に非晶質シリコン太陽電池の高効率化の
検討は専ら半導体薄膜の特性の改善およびp+t+n半
導体薄膜接合部の形成方法に対し進められている。一方
、光入射側電極として用いられている酸化錫やITO等
の透光性導電酸化物は電気的にはn型であり、この上に
p型半導体薄膜を積層して形成する通常の光電変換素子
の場合、この透光性導電酸化物とP型半導体薄膜の界面
の電気的性質を改良することが重要であるにもかかられ
ず、その検討はプラチナのシリサイドを該界面に設けた
例がある程度である(例えば、花木例−他”a−3+太
陽電池における界面特性の改善」第46回応用物理学会
学術講演会予稿集、第711頁2p−ZA−13,19
85年10月01日〜1985年10月04日)。しか
しながら、プラチナは高価な貴金属であり、また、該薄
膜の形成の工程が加わるため、産業上の実用性に乏しい
[Prior art and its problems] Investigations into improving the efficiency of photoelectric conversion elements, particularly amorphous silicon solar cells, have been focused on improving the characteristics of semiconductor thin films and forming methods for p+t+n semiconductor thin film junctions. On the other hand, the light-transmitting conductive oxide such as tin oxide or ITO used as the light-incidence side electrode is electrically n-type, and normal photoelectric conversion is performed by laminating a p-type semiconductor thin film thereon. In the case of devices, it is important to improve the electrical properties of the interface between the transparent conductive oxide and the P-type semiconductor thin film, and this study has been conducted using an example in which platinum silicide is provided at the interface. To a certain extent (for example, Hanaki et al. "Improvement of interface properties in a-3+ solar cells", Proceedings of the 46th Annual Conference of the Japan Society of Applied Physics, p. 711, 2p-ZA-13, 19)
October 1, 1985 to October 4, 1985). However, platinum is an expensive noble metal, and since a process for forming the thin film is added, it has poor industrial practicality.

そこで、本発明者らは光電変換素子におけるp型半導体
薄膜の形成方法を鋭意検討し、産業上の実用性を損なわ
ず、透光性導電酸化物とP型半導体薄膜の界面の電気的
性質を改善することができることを見出し、本発明を完
成した。
Therefore, the present inventors have intensively studied the method of forming a p-type semiconductor thin film in a photoelectric conversion element, and have improved the electrical properties of the interface between the transparent conductive oxide and the p-type semiconductor thin film without sacrificing industrial practicality. They discovered that it can be improved and completed the present invention.

[発明の開示] 本発明光電変換素子の製造法は、基本的には第1図の模
式図に示すように、透光性且つ絶縁性の基体上に、透光
性導電酸化物からなる電極、n型半導体薄膜、実質的に
真性の薄膜(i型半導体薄膜)、n型半導体薄膜、背面
金属電極の順に形成せしめるものであって、特に、n型
半導体薄膜の形成方法に特徴を有するものである。すな
わち、透光性導電酸化物からなる電極上に、高濃度のn
型不純物をドープした第一のn型半導体薄膜をグロー放
電により、5〜50 A形成した後、n型不純物の濃度
を172〜115にし、その他の条件は同一にして通常
の非晶質シリコン光電変換素子に用いられる特性を有す
る第二のP型半導体薄膜を所定の厚み形成するものであ
る。
[Disclosure of the Invention] As shown in the schematic diagram of FIG. 1, the method for manufacturing the photoelectric conversion element of the present invention basically involves forming an electrode made of a light-transmitting conductive oxide on a light-transmitting and insulating substrate. , an n-type semiconductor thin film, a substantially intrinsic thin film (i-type semiconductor thin film), an n-type semiconductor thin film, and a back metal electrode, which are formed in this order, and are particularly characterized by the method for forming the n-type semiconductor thin film. It is. That is, a high concentration of n is applied on an electrode made of a transparent conductive oxide.
After forming a first n-type semiconductor thin film doped with a type impurity of 5 to 50 A by glow discharge, the concentration of the n-type impurity was set to 172 to 115, and other conditions were the same, and a normal amorphous silicon photoconductor was deposited. A second P-type semiconductor thin film having characteristics used in a conversion element is formed to a predetermined thickness.

すなわち、n型半導体薄膜(p層)をこのように第1の
p層と第2のpNに分割して設け、かつ該第1のp層を
第2のp層に対し、2〜5倍の高濃度に不純物をドープ
して行うものである。
That is, the n-type semiconductor thin film (p layer) is divided into the first p layer and the second pN layer in this way, and the first p layer is 2 to 5 times larger than the second p layer. This is done by doping impurities to a high concentration of .

第一の高p濃度のn型半導体薄膜を形成する時の不純物
供給量はシラン化合物に対し1〜20%、膜厚は5〜5
0オングストロームの範囲が好ましい。これ以上に供給
量、膜厚が大きい場合は、該薄膜での光の損失が大きく
なるため、かえって光電変換素子の特性は低下する。
When forming the first high p-concentration n-type semiconductor thin film, the impurity supply amount is 1 to 20% with respect to the silane compound, and the film thickness is 5 to 5%.
A range of 0 angstroms is preferred. If the supply amount and film thickness are larger than this, the loss of light in the thin film will increase, and the characteristics of the photoelectric conversion element will deteriorate on the contrary.

本発明において、これら半導体薄膜は非晶質(アモルフ
ァス) (a−Si:Hまたはa−3iC:H)であり
、その形成に使用するシラン化合物としては、一般式S
i、lHz。。z(n=1〜3)で表わされる水素化シ
リコン、炭素含有化合物としては、一般式St (Cl
ls)−)14−M(m□1〜3 )で表わされるメチ
ルシラン、エチレン、アセチレン等の不飽和炭化水素、
メタン、エタン、プロパン、ブタン等の飽和炭化水素が
好適に用いられる。
In the present invention, these semiconductor thin films are amorphous (a-Si:H or a-3iC:H), and the silane compound used for their formation is of the general formula S
i, lHz. . The hydrogenated silicon and carbon-containing compounds represented by z (n=1 to 3) have the general formula St (Cl
unsaturated hydrocarbons such as methylsilane, ethylene, acetylene, etc., represented by ls)-)14-M (m□1-3);
Saturated hydrocarbons such as methane, ethane, propane, butane are preferably used.

また、n型の導電性を賦与する不純物としては、ジポラ
ン、希釈ガスとしては、水素またはヘリウムが好ましく
用いられる。
Furthermore, as the impurity imparting n-type conductivity, diporane is preferably used, and as the diluent gas, hydrogen or helium is preferably used.

なお、薄膜が形成される時の基体の温度および雰囲気圧
力は、それぞれ100〜400°Cおよび0.01〜1
0Torrの範囲で充分である。
The temperature of the substrate and the atmospheric pressure when the thin film is formed are 100 to 400°C and 0.01 to 1, respectively.
A range of 0 Torr is sufficient.

また、本発明は、これら半導体薄膜の形成手段がプラズ
マCVD法に限らず、光CVD 、熱CVD法等の他の
CVD法であっても好ましい実施の態様である。
Further, in the present invention, the means for forming these semiconductor thin films is not limited to the plasma CVD method, but is also a preferred embodiment even if other CVD methods such as optical CVD and thermal CVD are used.

第一、第二のn型半導体薄膜の形成条件以外の部分の薄
膜の形成条件は本発明に対し本質的に臨界的な条件はな
く、したがって特に限定するものではないが、念のため
以下好ましい実施の条件について説明する。
The conditions for forming thin films other than the conditions for forming the first and second n-type semiconductor thin films are not essentially critical conditions for the present invention, and therefore are not particularly limited, but the following are preferred just in case: The conditions for implementation will be explained.

本発明において、i膜の形成は上記の産業上の実用性を
更に高めるために、本発明者らがすでに提案しているよ
うに、ジシランのプラズマCVD法により形成されるこ
とが好ましい。けだし、ジシランはモノシランに比べ成
長速度が数倍以上速く、量産性に優れているという特徴
を有しているからである。特に、好ましくは、本発明者
らが既に提案しているように、ジシランに対し閾値以上
の一4= 放電エネルギーの供給下で該プラズマCvDが行われる
ことである。より具体的には、本発明者らがすでに、特
開昭58−1726号公報において提案している如くで
ある。
In the present invention, the i-film is preferably formed by a disilane plasma CVD method, as already proposed by the present inventors, in order to further enhance the above-mentioned industrial practicality. This is because disilane has a growth rate that is several times faster than monosilane and has excellent mass productivity. Particularly preferably, as already proposed by the inventors, the plasma CVD is carried out under the supply of a discharge energy above a threshold value for disilane. More specifically, the present inventors have already proposed this in Japanese Patent Laid-Open No. 1726/1983.

i膜の厚みは通常約2000 A〜1μ程度であるが、
その形成温度および形成圧力は、通常それぞれ100〜
400°Cおよび0.01〜10Torrの範囲で充分
であり、水素やヘリウム等の希釈ガスにより希釈して使
用することもまた、光電変換素子の高性能化のために好
ましいことである。
The thickness of the i-film is usually about 2000A to 1μ,
The forming temperature and forming pressure are usually 100~
A temperature of 400°C and a temperature in the range of 0.01 to 10 Torr is sufficient, and it is also preferable to use it diluted with a diluent gas such as hydrogen or helium in order to improve the performance of the photoelectric conversion element.

一方、n型半導体薄膜は、シラン化合物、n型の導電性
を賦与する不純物ガスおよび希釈ガスをプラズマCVD
法で形成される。従って、シラン化合物としてはモノシ
ランおよびジシランのいずれもが有効に用いられる。n
型の導電性を賦与する不純物ガスとしては、ホスフィン
、希釈ガスとしては、水素が好ましい。なお、n型半導
体薄膜は微結晶化させ、導電度を向上させることが好ま
しいため、水素とシラン化合物の流量比が重要である。
On the other hand, an n-type semiconductor thin film is produced by plasma CVD using a silane compound, an impurity gas that imparts n-type conductivity, and a diluent gas.
Formed by law. Therefore, both monosilane and disilane can be effectively used as the silane compound. n
Phosphine is preferred as the impurity gas that imparts conductivity to the mold, and hydrogen is preferred as the diluent gas. Note that since it is preferable to microcrystallize the n-type semiconductor thin film to improve its conductivity, the flow rate ratio of hydrogen and silane compound is important.

n型半導体薄膜の厚みは通常的100〜800 A程度
であるが、その形成温度および形成圧力は、通常それぞ
れ 100〜400’Cおよび0.01〜10Torr
好ましくは0.05〜3Torrである。また、好まし
い水素とシラン化合物の流量比は5〜100程度である
The thickness of an n-type semiconductor thin film is usually about 100 to 800 A, and the forming temperature and pressure are usually 100 to 400'C and 0.01 to 10 Torr, respectively.
Preferably it is 0.05 to 3 Torr. Further, the preferred flow rate ratio of hydrogen and silane compound is about 5 to 100.

[発明を実施するための好ましい形態]本発明を実施す
るためには、プラズマCVDが継続して実施できる成膜
装置が好適に用いられる。
[Preferred form for carrying out the invention] In order to carry out the invention, a film forming apparatus capable of continuously carrying out plasma CVD is suitably used.

すなわち、基体導入手段、基体加熱手段、基体保持手段
、ガス導入手段、真空排気手段、プラズマ放電電極およ
びプラズマ放電電源の各手段を少なくとも基本的に具備
した成膜装置であり、好ましくは、これらの装置は、基
体移送手段を介して互に連結されており、かつ必要に応
じてゲート弁等で仕切られていることが好ましい。第2
図にはこのような、本発明を実施するに適した成膜装置
の例が模式的に示されている。
That is, it is a film forming apparatus that is at least basically equipped with each of the following means: a substrate introduction means, a substrate heating means, a substrate holding means, a gas introduction means, a vacuum evacuation means, a plasma discharge electrode, and a plasma discharge power supply. Preferably, the apparatuses are connected to each other via a substrate transfer means, and are separated by a gate valve or the like as necessary. Second
The figure schematically shows an example of such a film forming apparatus suitable for carrying out the present invention.

まず、上記のごときプラズマCVD装置に透光性導電酸
化物からなる電極が設けられた基体を設置し、前述した
ような条件で第一のp型半導体薄膜、第二のp型半導体
薄膜を形成する。
First, a substrate provided with an electrode made of a transparent conductive oxide is placed in the plasma CVD apparatus as described above, and a first p-type semiconductor thin film and a second p-type semiconductor thin film are formed under the conditions described above. do.

つぎにこの薄膜を形成した基体は、基体移送手段により
、j型半導体薄膜の形成のためのプラズマCVD装置に
移送される。i型半導体薄膜形成室においてi膜を形成
した後、さらに基体移送手段により、n型半導体薄膜形
成室に移送される。n型半導体薄膜を形成した後、基体
移送手段により背面金属電極形成装置に移送され、かく
して背面金属電極が形成された後で光電変換素子として
形成装置外に取り出される。
Next, the substrate on which this thin film has been formed is transferred by a substrate transfer means to a plasma CVD apparatus for forming a J-type semiconductor thin film. After the i-film is formed in the i-type semiconductor thin film forming chamber, it is further transferred to the n-type semiconductor thin film forming chamber by the substrate transfer means. After forming the n-type semiconductor thin film, it is transferred to the back metal electrode forming apparatus by the substrate transfer means, and after the back metal electrode is thus formed, it is taken out of the forming apparatus as a photoelectric conversion element.

勿論、上記の実施態様は、基体上の透光性導電酸化物か
らなる電極を分割しておいて複数の光電変換素子、たと
えば太陽電池を形成し、背面金属電極でこれらを直列接
続した形で得る集積型太陽電池の形成においても有用で
ある。
Of course, in the above embodiment, an electrode made of a transparent conductive oxide on a substrate is divided to form a plurality of photoelectric conversion elements, such as solar cells, and these are connected in series with a back metal electrode. It is also useful in the formation of integrated solar cells.

本発明で用いる基体の材料については絶縁性且つ透光性
の性質を有するものであればよい。基本的にはガラス類
、耐熱性高分子等の物質で形成されるフィルムあるいは
板状の材料を有効に用いることができる。電極材料とし
ては、光入射側にはもちろん透明あるいは透明性の材料
を用いなければならず、■TO1酸化錫等の透光性導電
酸化物が用いられる。また、背面金属電極としては、ア
ルミニウム、モリブデン、ニッケル、クロム等の金属の
薄膜が有効に用いられる。
The material of the substrate used in the present invention may be any material as long as it has insulating and translucent properties. Basically, film or plate-shaped materials made of glass, heat-resistant polymers, or other substances can be effectively used. As for the electrode material, a transparent or transparent material must of course be used on the light incident side, and a translucent conductive oxide such as TO1 tin oxide is used. Further, as the back metal electrode, a thin film of metal such as aluminum, molybdenum, nickel, or chromium can be effectively used.

以下、実施例により、本発明の実施の態様をさらに具体
的に説明する。
Hereinafter, embodiments of the present invention will be explained in more detail with reference to Examples.

[実施例] 成膜装置として、第2図に模式的に示したものを使用し
た。基体装入室1で真空加熱された基体6は、p型半導
体薄膜形成室2に移送された。
[Example] The film forming apparatus schematically shown in FIG. 2 was used. The substrate 6 heated under vacuum in the substrate loading chamber 1 was transferred to the p-type semiconductor thin film forming chamber 2.

まず、第一のp型半導体薄膜は、原料ガスの流量比が、
ジポラン/ジシラン−10/100〜6/100、ジメ
チルシラン/ジシラン−271、ジシラン/水素=1/
20で、形成温度250°C1圧力0.2 Torrの
条件のグロー放電により、5〜15Aの厚みに形成され
た。
First, in the first p-type semiconductor thin film, the flow rate ratio of the raw material gas is
Diporane/disilane-10/100 to 6/100, dimethylsilane/disilane-271, disilane/hydrogen = 1/
No. 20 was formed to a thickness of 5 to 15 A by glow discharge at a formation temperature of 250° C. and a pressure of 0.2 Torr.

ついで、ジボランの流量を上記の115〜1/3、ジメ
チルシランの流量を172にして第二のp型半導体薄膜
を100〜115A形成した。
Next, a second p-type semiconductor thin film was formed by setting the flow rate of diborane to 115 to 1/3 of the above and the flow rate of dimethylsilane to 172A.

さらに、ゲート弁19を解放し、基体移送手段16によ
り、該基体をi型半導体薄膜形成室3に移送した。i型
半導体薄膜形成室では形成温度300°C1圧力0.0
5Torrで放電エネルギーの闇値以上の条件において
、ジシランのプラズマCVDによりi膜が形成された。
Further, the gate valve 19 was opened, and the substrate was transferred to the i-type semiconductor thin film forming chamber 3 by the substrate transfer means 16. In the i-type semiconductor thin film formation chamber, the formation temperature is 300°C and the pressure is 0.0.
An i-film was formed by plasma CVD of disilane under conditions of 5 Torr and discharge energy equal to or higher than the dark value.

次に、n型半導体薄膜形成室4に移送され、モノシラン
と水素希釈ホスフィンとから、微結晶化n型半導体薄膜
をプラズマCVDにより形成された。原料ガス流量比は
、ホスフィン/モノシラン=2/100 、モノシラン
/水素−1740であった。ついで背面金属電極形成室
5へ移送され真空蒸着により、アルミラム電極が形成さ
れた。
Next, it was transferred to the n-type semiconductor thin film forming chamber 4, and a microcrystallized n-type semiconductor thin film was formed from monosilane and hydrogen-diluted phosphine by plasma CVD. The raw material gas flow ratio was phosphine/monosilane = 2/100 and monosilane/hydrogen - 1740. Then, it was transferred to the back metal electrode forming chamber 5 and an aluminum ram electrode was formed by vacuum evaporation.

かくして得られた光発電変換素子の光電変換特性がAM
I 、 100mW/cm”の光を照射しつつ計測され
た。結果を第1表に示した。実施例1.2は第一、第二
のp型半導体薄膜の厚みを変更したもの、実施例3は実
施例2において、ガス組成比を変更したものを示してい
る。
The photoelectric conversion characteristics of the photovoltaic conversion element thus obtained are AM
The results are shown in Table 1. In Example 1.2, the thickness of the first and second p-type semiconductor thin films was changed; 3 shows Example 2 in which the gas composition ratio was changed.

第1表 [比較例] なお、第一のp型半導体薄膜を全く形成しないことを除
いては、全く同様にして実験をおこなった例を比較例1
として、第1表に示した。
Table 1 [Comparative Example] Comparative Example 1 is an example in which the experiment was conducted in exactly the same manner except that the first p-type semiconductor thin film was not formed at all.
As shown in Table 1.

第1表から明らかなように、透光性導電酸化物からなる
電極の上に第二のP型半導体薄膜に比べ高濃度の不純物
をドープした薄い第一のp型半導体薄膜を設けることに
より、11χを越える極めて高い光電変換効率を有する
光電変換素子が得られている。これは、短絡電流が顕著
に増大し、透光性導電酸化物電極とp型半導体薄膜の間
でキャリアーがスムー・ズに流れるようになったためと
推察される。
As is clear from Table 1, by providing a thin first p-type semiconductor thin film doped with impurities at a higher concentration than the second p-type semiconductor thin film on an electrode made of a transparent conductive oxide, A photoelectric conversion element having extremely high photoelectric conversion efficiency exceeding 11χ has been obtained. This is presumed to be because the short circuit current increased significantly and carriers began to flow smoothly between the transparent conductive oxide electrode and the p-type semiconductor thin film.

[発明の効果1 以上のごとく、本発明によれば、高価な貴金属等を使用
せず、また工程も簡略に透光性導電酸化物電極とp型半
導体薄膜界面の電気的特性を大幅に改善することができ
た。その結果として、光電変換効率が極めて優れた光電
変換素子の製造法が提供されるものであり、その産業上
の利用可能性は極めて大きいと云わねばならない。
[Effect of the invention 1 As described above, according to the present invention, the electrical characteristics of the interface between the transparent conductive oxide electrode and the p-type semiconductor thin film can be significantly improved without using expensive precious metals, etc., and with a simple process. We were able to. As a result, a method for manufacturing a photoelectric conversion element with extremely excellent photoelectric conversion efficiency is provided, and it must be said that its industrial applicability is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ムナ木発明より得られる光電変換素子の構成の一
例を示す断面模式図である。第2図は本発明の素子を形
成するために好ましい装置の一例を示す模式図である。 図において、1・・・・・・基体装入室、2・・・・・
・n膜形成室、3・・・・・・j膜形成室、4・・・・
・・n膜形成室、5・・・・・・第二電極形成室兼基体
取り出し室、6・・・・・・基体、9・・・・・・放電
電力印加電極、10・・・・・・設置電極、11・・・
・・・基体加熱ヒーター、12・・・・・・電極材料加
熱ヒーター、13・・・・・・金属マスク、14および
20・・・・・・真空排気ライン、15・・・・・・原
料ガス導入ライン、16・・・・・・基体移送手段、1
7・・・・・・絶縁性物質、18・・・・・・放電電力
印加電源、19・・・・・・ゲート弁特許出願人   
三井東圧化学株式会社図面の浄書 第1図 面金属電極 型半導体薄膜 二のp型半導体薄膜 −のp型半導体薄膜 光性導電酸化物からなる電極 ラス基体 手続補正書(方式) 昭和62年6り!7日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 昭和62年特許願第53059  号 2、発明の名称 光電変換素子の製造法 3、補正をする者 ゛ 事件との関係  特許出願人 住所 東京都千代田区霞が関三丁目2番5号4、補正に
より増加する発明の数   零5、補正命令の日付 昭和62年5月26日(発送) 6、補正の対象
FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a photoelectric conversion element obtained by the Munagi invention. FIG. 2 is a schematic diagram showing an example of a preferred apparatus for forming the element of the present invention. In the figure, 1...substrate loading chamber, 2...
・N film formation chamber, 3...J film formation chamber, 4...
...N film formation chamber, 5...Second electrode formation chamber and substrate removal chamber, 6...Substrate, 9...Discharge power application electrode, 10... ...Installed electrode, 11...
... Substrate heating heater, 12 ... Electrode material heating heater, 13 ... Metal mask, 14 and 20 ... Vacuum exhaust line, 15 ... Raw material Gas introduction line, 16...Substrate transfer means, 1
7... Insulating material, 18... Discharge power application power source, 19... Gate valve patent applicant
Mitsui Toatsu Chemical Co., Ltd. Engraving of Drawings 1st Drawing Metal Electrode Type Semiconductor Thin Film 2nd P-type Semiconductor Thin Film - P-type Semiconductor Thin Film Electrode Laser Substrate Made of Photoconductive Oxide Procedural Amendment (Method) June 1986 ! 7th Director General of the Patent Office Kuro 1) Mr. Akio 1, Indication of the case Patent Application No. 53059 of 1988 2, Name of the invention Method for manufacturing photoelectric conversion elements 3, Person making the amendment ゛Relationship to the case Patent applicant address 3-2-5-4 Kasumigaseki, Chiyoda-ku, Tokyo Number of inventions to be increased by the amendment 0 5 Date of amendment order May 26, 1985 (shipped) 6 Subject of amendment

Claims (2)

【特許請求の範囲】[Claims] (1)透光性且つ絶縁性の基体上に、透光性導電酸化物
からなる電極、第一のp型半導体薄膜、第二のp型半導
体薄膜、実質的に真性の薄膜、n型半導体薄膜、背面金
属電極の順に形成せしめられた光電変換素子の製造法で
あって、第一のp型半導体薄膜を第二のp型半導体薄膜
に比べ2〜5倍のp型不純物をドープして行うことを特
徴とする光電変換素子の製造法。
(1) On a transparent and insulating substrate, an electrode made of a transparent conductive oxide, a first p-type semiconductor thin film, a second p-type semiconductor thin film, a substantially intrinsic thin film, and an n-type semiconductor A method for manufacturing a photoelectric conversion element in which a thin film and a back metal electrode are formed in this order, the first p-type semiconductor thin film being doped with 2 to 5 times as much p-type impurity as the second p-type semiconductor thin film. 1. A method for manufacturing a photoelectric conversion element, characterized by:
(2)第一のp型半導体薄膜の厚みが5乃至50オング
ストロームである特許請求の範囲第1項記載の製造法。
(2) The manufacturing method according to claim 1, wherein the first p-type semiconductor thin film has a thickness of 5 to 50 angstroms.
JP62053059A 1987-03-10 1987-03-10 Manufacture of photoelectric conversion element Pending JPS63220581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62053059A JPS63220581A (en) 1987-03-10 1987-03-10 Manufacture of photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62053059A JPS63220581A (en) 1987-03-10 1987-03-10 Manufacture of photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPS63220581A true JPS63220581A (en) 1988-09-13

Family

ID=12932277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62053059A Pending JPS63220581A (en) 1987-03-10 1987-03-10 Manufacture of photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS63220581A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155680A (en) * 1989-08-25 1991-07-03 Fuji Electric Corp Res & Dev Ltd Manufacture of thin film solar cell
US5769963A (en) * 1995-08-31 1998-06-23 Canon Kabushiki Kaisha Photovoltaic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155680A (en) * 1989-08-25 1991-07-03 Fuji Electric Corp Res & Dev Ltd Manufacture of thin film solar cell
US5769963A (en) * 1995-08-31 1998-06-23 Canon Kabushiki Kaisha Photovoltaic device

Similar Documents

Publication Publication Date Title
US5730808A (en) Producing solar cells by surface preparation for accelerated nucleation of microcrystalline silicon on heterogeneous substrates
US4409605A (en) Amorphous semiconductors equivalent to crystalline semiconductors
JPH0434314B2 (en)
JPS60154521A (en) Manufacture of silicon carbide film
JP2006080557A (en) Improved stabilizing properties of amorphous silicon series element manufactured by high hydrogen dilution low temperature plasma vapor deposition
JPH0419703B2 (en)
GB2124826A (en) Amorphous semiconductor materials
JPS61287176A (en) Substrate and photovoltaic device having the same
JPH11354820A (en) Photoelectric conversion element and manufacture thereof
JP2846651B2 (en) Photovoltaic device
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US4710786A (en) Wide band gap semiconductor alloy material
US4415760A (en) Amorphous silicon solar cells incorporating an insulating layer in the body of amorphous silicon and a method of suppressing the back diffusion of holes into an N-type region
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
JPS63220581A (en) Manufacture of photoelectric conversion element
JP2698115B2 (en) Method for manufacturing photovoltaic device
JPH0121634B2 (en)
JPS6132416A (en) Manufacture of semiconductor device
JP2854083B2 (en) Semiconductor thin film and method of manufacturing the same
JPH0364973A (en) Photovoltaic element
JP2659369B2 (en) Photoelectric conversion element
Itozaki et al. Amorphous Silicon-Germanium Deposited by Photo-CVD
JP3487580B2 (en) Deposited film forming method and deposited film forming apparatus
JPH0276266A (en) Photoelectric conversion element
JP3046644B2 (en) Method for manufacturing photovoltaic element