JPH0364973A - Photovoltaic element - Google Patents

Photovoltaic element

Info

Publication number
JPH0364973A
JPH0364973A JP1200235A JP20023589A JPH0364973A JP H0364973 A JPH0364973 A JP H0364973A JP 1200235 A JP1200235 A JP 1200235A JP 20023589 A JP20023589 A JP 20023589A JP H0364973 A JPH0364973 A JP H0364973A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
type semiconductor
amorphous
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1200235A
Other languages
Japanese (ja)
Inventor
Yoshinori Ashida
芦田 芳徳
Nobuhiro Fukuda
福田 信弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1200235A priority Critical patent/JPH0364973A/en
Publication of JPH0364973A publication Critical patent/JPH0364973A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To sharply enhance an amorphous photovoltaic element in open end voltage and shortcircuit photocurrent by a method wherein a conductive type semiconductor thin film is formed of I-III-VI2 compound semiconductor. CONSTITUTION:At least one of a first and a second conductivity type semiconductor thin film, 3 and 5, is formed of I-III-VI2 compound semiconductor. A conductive I-III-VI2 compound semiconductor thin film is a wide gap semiconductor material, and it is preferable that its forbidden bandwidth is 1.8eV or above. To put it concretely, the wide gap semiconductor material concerned is compound such as CuAlS2, CuAlSe2, CuAlTe2, CuGaS2, AgAlS2, AgAlTe2, AgGaS2, AgGaSe2, AgInS2, or the like and the mixed compounds of component elements of these compounds are effectively used. The control of these compounds in conductivity type is made through impurity doping or modulation in composition, whereby they are turned into a P-type or an N-type.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は非晶質太陽電池の高性能化に関し、とくに、開
放端電圧、短絡光電流を高めることにより、非晶質太陽
電池の高効率化を図る技術に関する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to improving the performance of amorphous solar cells, and in particular to improving the efficiency of amorphous solar cells by increasing the open circuit voltage and short-circuit photocurrent. Regarding technology.

〔背景技術〕[Background technology]

非晶質太陽電池は電卓や時計を駆動するための、出力の
小さいエネルギー供給源としてすでに実用化されている
。しかしながら、出力の大きいエネルギー供給源として
は、性能不足であり、性能向上をめざして、各種の検討
が実施されている。
Amorphous solar cells are already in practical use as low-output energy sources to power calculators and watches. However, as an energy supply source with a large output, its performance is insufficient, and various studies are being carried out with the aim of improving its performance.

太陽電池の光電変換効率は開放端電圧、短絡′gi流な
らびに曲線因子の積で表される。各種の検討の結果、短
絡光電流ならびに曲線因子については、飛躍的に改善・
向上されてきたが、開放端電圧は十分な向上は得られて
いない、太II電池の信頼性向上のために、近年、光入
射側に9層を設けた、pin型非晶質太陽電池が検討さ
れている。この非晶質太陽電池において、開放端電圧を
改善するためには、p型半導体薄膜の光電特性を改善せ
ねばならない、とくに、光学バンドギヤツブの拡大と電
気伝導率の向上を同時に行わねばならないところに、技
術の困難性があった。この理由は、光学バンドギャップ
を拡大すると、−船釣に電気伝導率が低下するからであ
った。これらを満足する材料として、微結晶薄膜が提案
されている。しかしながら、プラズマCVD法や光CV
D法のような従来技術を用いて、透明電極上にp型微結
晶薄膜の形成が試みられたが、結果的には、非晶質太陽
電池の開放端電圧は向上せず、光電変換効率の改善には
つながらなかった。この問題を解決するために、鋭意検
討をかさねて、本発明を完成するにいたった。
The photoelectric conversion efficiency of a solar cell is expressed as the product of open circuit voltage, short circuit 'gi current, and fill factor. As a result of various studies, short-circuit photocurrent and fill factor have been dramatically improved.
However, the open circuit voltage has not been sufficiently improved.In recent years, pin-type amorphous solar cells with nine layers on the light incident side have been developed to improve the reliability of thick II cells. It is being considered. In order to improve the open-circuit voltage of this amorphous solar cell, it is necessary to improve the photoelectric properties of the p-type semiconductor thin film.In particular, it is necessary to expand the optical band gear and improve the electrical conductivity at the same time. , there were technical difficulties. The reason for this was that when the optical bandgap was expanded, the electrical conductivity decreased significantly. A microcrystalline thin film has been proposed as a material that satisfies these requirements. However, plasma CVD method and photo CVD method
Attempts have been made to form a p-type microcrystalline thin film on a transparent electrode using conventional techniques such as the D method, but as a result, the open circuit voltage of amorphous solar cells did not improve and the photoelectric conversion efficiency decreased. did not lead to improvement. In order to solve this problem, we have completed the present invention after extensive research.

〔発明の基本的着想〕[Basic idea of the invention]

現在の技術水準においては、■族系材料のみでの光電特
性に飛躍的な向上を得るには、多大な検討が必要であり
、先に述べたように多くの困難がある。結晶性化合物半
導体は導電率、バンドギャップを任意に制御でき、■練
材料に比べると、結晶性を得やすいことに着目した。導
電型を制御したI −m −VE を族化合物半導体薄
膜を導電型半導体薄膜に適用した非晶質光起電力素子を
形成することにより、非晶質光起電力素子の開放端電圧
・短絡光電流を高くすることができた。
At the current state of the art, a great deal of study is required to obtain a dramatic improvement in photoelectric properties using only group Ⅰ materials, and as mentioned above, there are many difficulties. We focused on the fact that the conductivity and bandgap of crystalline compound semiconductors can be controlled arbitrarily, and it is easier to obtain crystallinity than with solidified materials. By forming an amorphous photovoltaic device in which a conductivity type controlled I-m-VE group compound semiconductor thin film is applied to a conductivity type semiconductor thin film, the open end voltage and short-circuit light of the amorphous photovoltaic device can be reduced. I was able to increase the current.

〔発明の開示〕[Disclosure of the invention]

本発明は、基板、第一電極、第一の導電型半導体薄膜、
実質的に真性の非晶質半導体薄膜、第二の導電型半導体
IwA、第二電極の順に積層して形成された非晶質光起
電力素子においで、第一の導電型半導体薄膜および第二
の導電型半導体薄膜(以下、導電型半導体薄膜と略称す
る)のうち、少なくとも一方がI  m−Vlz族化合
物半導体薄膜であることを特徴とする非晶質光起電力素
子に関する。
The present invention includes a substrate, a first electrode, a first conductive type semiconductor thin film,
In an amorphous photovoltaic element formed by laminating in this order a substantially intrinsic amorphous semiconductor thin film, a second conductivity type semiconductor IwA, and a second electrode, the first conductivity type semiconductor thin film and the second conductivity type semiconductor thin film The present invention relates to an amorphous photovoltaic device characterized in that at least one of the conductive semiconductor thin films (hereinafter referred to as conductive semiconductor thin films) is an I m-Vlz group compound semiconductor thin film.

本発明の光起電力素子の構成において、導電型半導体薄
膜について、具体的には、第一の導電型半導体薄膜が正
札が多数キャリヤであるp型半導体の場合には、第二の
導電型半導体薄膜は電子が多数キャリヤであるn型半導
体である。また、第一の導電型半導体薄膜がn型半導体
の場合には、第二の導電型半導体薄膜はp型半導体を用
いる。
In the configuration of the photovoltaic device of the present invention, regarding the conductive type semiconductor thin film, specifically, when the first conductive type semiconductor thin film is a p-type semiconductor whose authentic tag is a majority carrier, the second conductive type semiconductor thin film is The thin film is an n-type semiconductor in which electrons are the majority carriers. Further, when the first conductive type semiconductor thin film is an n-type semiconductor, the second conductive type semiconductor thin film is a p-type semiconductor.

以下、図面を参照しつつ本発明の素子の構成を説明する
Hereinafter, the structure of the element of the present invention will be explained with reference to the drawings.

第1図は本発明の光起電力素子のlI戒例を示したもの
である0図中1は基板、2は第一の電極、3は第一の導
電型半導体薄膜、4は実質的に真性の非晶質半導体am
、5は第二の導電型半導体薄膜、6は第二の電極である
FIG. 1 shows the II rule of the photovoltaic device of the present invention. In the figure, 1 is the substrate, 2 is the first electrode, 3 is the first conductive type semiconductor thin film, and 4 is substantially Intrinsic amorphous semiconductor am
, 5 is a second conductive type semiconductor thin film, and 6 is a second electrode.

そして、本発明の素子は、第一の導電型半導体薄膜3お
よび第二の導を型半導体薄膜5のうち、少なくとも一方
が、1−Ul−Vlt族化合物半導体FIIlI!であ
ることを特徴とするものである。
In the device of the present invention, at least one of the first conductive type semiconductor thin film 3 and the second conductive type semiconductor thin film 5 is a 1-Ul-Vlt group compound semiconductor FIII! It is characterized by:

しかして、本発明における導電型1−m−V1g族化合
物半導体Bitl!とは、広ワイドギャップ半導体材料
であり、好ましくは禁制帯幅が1.8eV以上のもノテ
ある。具体的には、CuA]S*+ CuAlSe*+
 CuAITet* CuGa5t+ AgAl5z+
  AgAlSez+  AgAITet+AgGa5
t、  AgGa5et+ Ag1nSz等であり、ま
たこれらの化合物の構成元素の混合化合物も有効に用い
られる。
Therefore, the conductivity type 1-m-V1g group compound semiconductor Bitl in the present invention! is a wide-gap semiconductor material, preferably having a forbidden band width of 1.8 eV or more. Specifically, CuA]S*+ CuAlSe*+
CuAITet* CuGa5t+ AgAl5z+
AgAlSez+ AgAITet+AgGa5
t, AgGa5et+Ag1nSz, etc., and mixed compounds of constituent elements of these compounds are also effectively used.

これらの化合物の導電型の制御は不純物のドーピングの
他に、組成を変調することにより行われ、p型、n型と
することができる。
The conductivity type of these compounds is controlled not only by doping with impurities but also by modulating the composition, and can be made p-type or n-type.

用いる導電型半導体薄膜の厚みに関しては、30人〜1
00OA程度であり、とくに光入射側に用いる導電型半
導体薄膜は、30〜500 Aの厚みが適している。
Regarding the thickness of the conductive semiconductor thin film to be used, 30 to 1
The thickness of the conductive semiconductor thin film used on the light incident side is particularly suitable for a thickness of 30 to 500 Å.

本導電型r−nr−vxz族半導体薄膜の形成方法とし
ては、本発明を実施するに、とくに限定されるものでは
ないが、スパッタリング法、真空蒸着法、イオンブレー
ティング法、ヨウ素を用いた化学気相拡散法等があり、
実用性の観点においては、スパッタリング法が好ましい
Methods for forming the r-nr-vxz group semiconductor thin film of this conductivity type include, but are not particularly limited to, sputtering, vacuum evaporation, ion blating, and chemical methods using iodine. There are vapor phase diffusion methods, etc.
From the viewpoint of practicality, sputtering is preferred.

実質的に真性の(以下、i型と略称する〉半導体薄膜は
水素化シリコン¥US、水素化シリコンゲルマン薄膜、
水素化シリコンカーボンTRM等であり、非晶質太陽電
池の光活性領域を形成するものである。これら実質的に
真性の半導体S膜は、分子内にシリコンを有する化合物
、ゲルマン、シリルゲルマン等の分子内にゲルマニウム
を有する化合物、炭化水素ガス等から、目的の半導体薄
膜に応じて適宜選択される原料ガスに、プラズマCVD
(化学気相堆積)法や光CVD (化学気相堆積)法を
適用することにより容易に形成される。原料ガスを水素
やヘリウム等で希釈して用いることや原料ガスにごく微
量のジボランを添加すること等、i型半導体薄膜形成に
おける従来技術を併用することについては、なんら、本
発明の効果を妨げるものではない。形成条件は、形成温
度は150〜400℃、好ましくは175〜350℃で
あり、形成圧力はO,O1〜5 Torr、好ましくは
0.03〜1.5 Torrで行われる。i型半導体薄
膜の膜厚は太陽電池の用途に応じて適宜決定されるもの
であり、本発明の限定条件ではない。本発明の効果を遠
戚するためには、1000人〜1oooo入で十分であ
る。
Substantially intrinsic (hereinafter abbreviated as i-type) semiconductor thin film is hydrogenated silicon\US, hydrogenated silicon germane thin film,
Hydrogenated silicon carbon TRM, etc., and forms the photoactive region of an amorphous solar cell. These substantially intrinsic semiconductor S films are appropriately selected from compounds having silicon in the molecule, compounds having germanium in the molecule such as germane and silylgermane, and hydrocarbon gases depending on the desired semiconductor thin film. Plasma CVD for raw material gas
(Chemical Vapor Deposition) method or optical CVD (Chemical Vapor Deposition) method. The combined use of conventional techniques in forming an i-type semiconductor thin film, such as diluting the raw material gas with hydrogen, helium, etc., or adding a very small amount of diborane to the raw material gas, will not impede the effects of the present invention. It's not a thing. The forming conditions are a forming temperature of 150 to 400°C, preferably 175 to 350°C, and a forming pressure of 1 to 5 Torr, preferably 0.03 to 1.5 Torr. The thickness of the i-type semiconductor thin film is appropriately determined depending on the use of the solar cell, and is not a limiting condition of the present invention. In order to experience the effects of the present invention, it is sufficient to have 1,000 to 1000 participants.

次に、本発明の光起電力素子においては、少なくとも一
方の導電型半導体薄膜に、I−III−Vl!族化合物
半導体薄膜を適用する。具体的には、その薄膜の導電型
がP型である場合には、他方の導電型半導体薄膜は、n
型の性質を示すものであり、n型の微結晶all!やn
型のアモルファス薄膜等が有効に用いられる。具体的に
例示すると、n型の微結晶シリコン薄膜、炭素含有微結
晶シリコン薄膜、微結晶シリコンカーバイド薄膜、アモ
ルファスシリコン薄膜、アモルファスシリコンカーボン
薄膜、アモルファスシリコンゲルマン薄膜等を有効に用
いることができる。これらn型半導体薄膜は、分子内に
シリコンを有する化合物、ゲルマン、シリルゲルマン等
の分子内にゲルマニウムを有する化合物、炭化水素ガス
等から、目的とする半導体薄膜に応じて適宜選択される
原料に、ホスフィンやアルシン等の周期律表の第■族の
化合物、ならびに水素を混合して、プラズマCVD (
化学気相堆積)法や光CVD (化学気相堆積)法を適
用することにより容易に形成される。さらに、当該原料
ガスをヘリウムやアルゴン等の不活性ガスで希釈するこ
とは、なんら、本発明の効果を妨げるものではない、形
成条件は、形成温度は150〜400°C1好ましくは
175〜350°Cであり、形成圧力は0.01〜5 
Torr、好ましくは0.03〜1.5 Torrで行
われる。n型半導体薄膜の膜厚は、200人〜500人
で十分である。
Next, in the photovoltaic device of the present invention, at least one conductive type semiconductor thin film has I-III-Vl! Apply group compound semiconductor thin film. Specifically, when the conductivity type of the thin film is P type, the other conductivity type semiconductor thin film is n
It shows the nature of the n-type microcrystal all! Ya n
A type of amorphous thin film or the like can be effectively used. Specifically, n-type microcrystalline silicon thin films, carbon-containing microcrystalline silicon thin films, microcrystalline silicon carbide thin films, amorphous silicon thin films, amorphous silicon carbon thin films, amorphous silicon germane thin films, etc. can be effectively used. These n-type semiconductor thin films are made using raw materials that are appropriately selected depending on the desired semiconductor thin film from compounds having silicon in the molecule, compounds having germanium in the molecule such as germane and silylgermane, and hydrocarbon gases. Compounds from group II of the periodic table, such as phosphine and arsine, and hydrogen are mixed and plasma CVD (
It is easily formed by applying a chemical vapor deposition (chemical vapor deposition) method or a photo CVD (chemical vapor deposition) method. Furthermore, diluting the raw material gas with an inert gas such as helium or argon does not impede the effects of the present invention.The formation conditions include a formation temperature of 150 to 400°C, preferably 175 to 350°C. C, and the forming pressure is 0.01-5
Torr, preferably 0.03 to 1.5 Torr. The thickness of the n-type semiconductor thin film is sufficient for 200 to 500 people.

本発明の非晶質光起電力素子を形成するに、用いるに好
ましい原料ガスについてさらに具体的な示例をあげて説
明する。分子内にシリコンを有する化合物については、
モノシラン、ジシラン、トリシラン等の水素化シリコン
;モノメチルシラン、ジメチルシラン、トリメチルシラ
ン、テトラメチルシラン、エチルシラン、ジエチルシラ
ン等のアルキル基置換の水素化シリコン:ビニルシラン
、ジビニルシラン、トリビニルシラン、ビニルジシラン
、ジビニルジシラン、プロペニルシラン、エチニルシラ
ン等のラジカル重合可能の不飽和炭化水素基を分子内に
有する水素化シリコン;これら水素化シリコンの水素が
一部またはすべてフッ素で置換されたフン化シリコンを
有効に用いることができる。
In forming the amorphous photovoltaic device of the present invention, preferred raw material gases to be used will be explained by giving more specific examples. For compounds with silicon in the molecule,
Hydrogenated silicones such as monosilane, disilane, and trisilane; Hydrogenated silicones substituted with alkyl groups such as monomethylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, ethylsilane, and diethylsilane: vinylsilane, divinylsilane, trivinylsilane, vinyldisilane, divinyl Hydrogenated silicones that have radically polymerizable unsaturated hydrocarbon groups in their molecules such as disilane, propenylsilane, and ethynylsilane; effective use of fluorinated silicones in which some or all of the hydrogen in these hydrogenated silicones has been replaced with fluorine. be able to.

炭化水素ガスの具体的示例として、メタン、エタン、プ
ロパン、エチレン、プロピレン、アセチレン等の炭化水
素ガスが有用である。これら炭化水素ガスは、炭素含有
微結晶シリコン薄膜、微結晶シリコンカーバイドms等
の形成において、光学的バンドギャップを変更するとき
に用いると便利である。また、この目的においては、ア
ルキル基置換の水素化シリコン、ラジカル重合可能の不
飽和炭化水素基を分子内に有する水素化シリコン、これ
ら水素化シリコンの水素が一部またはすべてフッ素で置
換されたフッ化シリコン等の材料も有用である。
As specific examples of hydrocarbon gases, hydrocarbon gases such as methane, ethane, propane, ethylene, propylene, and acetylene are useful. These hydrocarbon gases are conveniently used when changing the optical band gap in forming carbon-containing microcrystalline silicon thin films, microcrystalline silicon carbide ms, and the like. For this purpose, silicon hydrides substituted with alkyl groups, silicon hydrides having a radically polymerizable unsaturated hydrocarbon group in the molecule, and silicon hydrides in which some or all of the hydrogens in these silicon hydrides are substituted with fluorine are used. Materials such as silicon oxide are also useful.

基板、第一電極、第二電極等については、とくに、限定
される条件はない、基板としては青板ガラス、ホウケイ
酸ガラス、石英ガラス等従来用いられているガラス基板
材料が有用であるが、さらに、金属やプラスチックスも
基板材料として用いることができる。プラスチックス材
料においては、100℃以上の温度に耐える材料をさら
に有効に用いることができる。第一および第二電極とし
ては、太陽光入射のために、一方あるいは両方が透光性
を有することが必要であるが、それ以外はなんら制約を
受けない。具体的には、酸化スズ、酸化インジウム、酸
化亜鉛等の金属酸化物や透光性の金属等を有効に用いる
ことができる。また、金属電極として、アルミニウム、
クロム、ニッケルークロム、銀、金、白金等のや酸化ス
ズ、酸化インジウム、酸化亜鉛等の金属酸化物の中から
適宜、選択して用いることができる。
Regarding the substrate, the first electrode, the second electrode, etc., there are no particular limitations; conventionally used glass substrate materials such as soda lime glass, borosilicate glass, and quartz glass are useful as the substrate; , metals and plastics can also be used as substrate materials. As for plastic materials, materials that can withstand temperatures of 100° C. or higher can be used more effectively. One or both of the first and second electrodes must be translucent in order to allow sunlight to enter, but there are no other restrictions. Specifically, metal oxides such as tin oxide, indium oxide, and zinc oxide, translucent metals, and the like can be effectively used. In addition, aluminum,
An appropriate material can be selected from metal oxides such as chromium, nickel-chromium, silver, gold, and platinum, and metal oxides such as tin oxide, indium oxide, and zinc oxide.

以下、実施例により、本発明の実施の態様を説明する。Hereinafter, embodiments of the present invention will be described with reference to Examples.

〔実施例1〕 光起電力素子の形成装置としては、プラズマCVD法、
スパッタリング法並びに光CVD法を適用できる成膜装
置を用いた。素子構成は第2図に示したとおりである。
[Example 1] As a forming apparatus for a photovoltaic element, a plasma CVD method,
A film forming apparatus to which sputtering method and photo-CVD method can be applied was used. The element configuration is as shown in FIG.

酸化スズ膜7が、厚み1μ被覆されたガラス基板13を
成膜装置内に設置した。第一の導電型半導体薄膜8とし
て、p型のCuAl5eaを先ず形成した。化学量論比
から5モル%過剰にAlを加えたCuAISeg焼結体
をスパッタリング用ターゲットとし、スパッタリング条
件として、圧力10mtorr 、 Arガス流量10
105c、セレン化水素2secm 、基板温度300
℃、高周波電力50Wを用いた。成膜時間100秒にて
、200人を形成した後、水素とセレン化水素混合ガス
雰囲気にて300℃加熱処理を行った6次に実質的に真
性の半導体薄膜形成室に当該基板を移送し、モノシラン
を導入して、圧力0.05↑orr、形成温度240℃
の条件でプラズマCVD法によりアモルファスシリコン
薄膜9を約7000人の膜厚に形成した。プラズマCV
D法は13.56 MHzのRF放電を利用した。この
ときの、RF電力は1ONであった。実質的に真性の半
導体薄膜9を形成後、n型半導体薄膜形成室に当該基板
を移送した。モノシラン/ホスフィン/水素からなる原
料ガスをそれぞれの流量が1010.01/100の割
合になるように導入した。圧力0.2 Torr、形成
温度240℃の条件でプラズマCVD法によりn型半導
体薄膜10を500人の膜厚に形成した。プラズマCV
D法は13.5Ei MHzのRF放電を利用した。こ
のときの、RF電力は50−であった、ついで、薄膜形
成装置から取り出し、第二の電極であるアルミニウム金
属電極11を形成し、光起電力素子を作製した。
A glass substrate 13 coated with a tin oxide film 7 having a thickness of 1 μm was placed in a film forming apparatus. As the first conductive type semiconductor thin film 8, p-type CuAl5ea was first formed. A CuAISeg sintered body to which Al was added in excess of 5 mol% from the stoichiometric ratio was used as a sputtering target, and the sputtering conditions were a pressure of 10 mtorr and an Ar gas flow rate of 10 mtorr.
105c, hydrogen selenide 2sec, substrate temperature 300
℃ and high frequency power of 50 W was used. After forming 200 layers for a film formation time of 100 seconds, the substrate was transferred to a substantially intrinsic semiconductor thin film forming chamber where it was heated at 300°C in a hydrogen and hydrogen selenide mixed gas atmosphere. , monosilane was introduced, the pressure was 0.05↑orr, and the forming temperature was 240°C.
An amorphous silicon thin film 9 was formed to a thickness of approximately 7,000 wafers by plasma CVD under these conditions. plasma CV
Method D utilized 13.56 MHz RF discharge. At this time, the RF power was 1ON. After forming the substantially intrinsic semiconductor thin film 9, the substrate was transferred to an n-type semiconductor thin film forming chamber. Raw material gases consisting of monosilane/phosphine/hydrogen were introduced such that their respective flow rates were in the ratio of 1010.01/100. The n-type semiconductor thin film 10 was formed to a thickness of 500 nm by plasma CVD under conditions of a pressure of 0.2 Torr and a formation temperature of 240°C. plasma CV
Method D utilized 13.5Ei MHz RF discharge. At this time, the RF power was 50-.Then, it was taken out from the thin film forming apparatus, and an aluminum metal electrode 11 as a second electrode was formed to produce a photovoltaic element.

〔比較例1〕 実施例1において、第一の導電型半導体薄膜として、I
  III  VI寞族化合物半導体薄膜の替わりに、
p型機結晶シリコン薄膜を形成した。素子の層構成を第
3図に示す。氷層以外は実施例1と全く同じ工程で非晶
質光起電力素子を形成した。p型機結晶薄膜の形成は、
110.05/100の割合のモノシラン/ジボラン/
水素の混合ガスをtcM室に導入し、RF電力50W5
圧力0.1torr 、基板温度250℃で放電時間2
00秒により行い、200人形成した。
[Comparative Example 1] In Example 1, I
Instead of III-VI group compound semiconductor thin film,
A p-type mechanically crystalline silicon thin film was formed. The layer structure of the device is shown in FIG. An amorphous photovoltaic device was formed using the same steps as in Example 1 except for the ice layer. Formation of p-type machine crystal thin film is as follows:
110.05/100 ratio of monosilane/diborane/
A mixed gas of hydrogen was introduced into the tcM chamber, and the RF power was 50W5.
Discharge time 2 at a pressure of 0.1 torr and a substrate temperature of 250°C.
00 seconds, and 200 people were formed.

以上により作製した非晶質光起電力素子の性能を評価し
た。評価として、AM 1.5.100 mTd/にd
の光をソーラージξユレータにより、照射して当該非晶
質光起電力素子の光電特性を測定した0本発明により実
施した光起電力素子と比較例で示した光起電力素子の性
能を比較した結果、開放端電圧において20%、短絡光
電流においても15%の向上が認めらた。結果として、
光電変換効率は35%の改善が得られた。
The performance of the amorphous photovoltaic device produced as described above was evaluated. As an evaluation, AM 1.5.100 mTd/d
The photovoltaic properties of the amorphous photovoltaic device were measured by irradiating it with light of As a result, an improvement of 20% in open-circuit voltage and 15% in short-circuit photocurrent was observed. as a result,
A 35% improvement in photoelectric conversion efficiency was obtained.

〔発明の効果〕〔Effect of the invention〕

以上の実施例ならびに比較例から明らかなように、導電
型半導体薄膜にI−nI  Vlt族化合物半導体を用
いることにより、従来技術で実用化されている非晶質光
起電力素子の性能とくに、開放端電圧、短絡光電流を著
しく向上させるものである、すなわち、本発明は実用レ
ベルにおいて、非晶質光起電力素子の光電変換効率の改
善に大きく貢献するものである。このように、本発明は
電力用太陽電池に要求される高変換効率を可能にする技
術を提供できるものであり、エネルギー産業にとって、
きわめて有用な発明であると云わざるを得ない。
As is clear from the above Examples and Comparative Examples, by using an I-nI Vlt group compound semiconductor for the conductive semiconductor thin film, the performance of the amorphous photovoltaic element that has been put into practical use with the prior art can be improved, especially when the open circuit is used. The present invention significantly improves the terminal voltage and short-circuit photocurrent, that is, the present invention greatly contributes to improving the photoelectric conversion efficiency of amorphous photovoltaic elements at a practical level. In this way, the present invention can provide a technology that enables the high conversion efficiency required for power solar cells, and is useful for the energy industry.
I have to say that this is an extremely useful invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光起電力素子の構成例を示す模式図で
ある。第2図は本発明の実施例の素子の構成を示す模式
図である。第3図は従来技術による非晶質光起電力素子
の例を示す模式図である。 図中1・−・−・・・一基板、2   第一の電極、3
・−・−・・・−・第一の導電型半導体薄膜、4   
実質的に真性の非晶質半導体薄膜、5   第二の導電
型半導体薄膜、6   第二の電極、7・・・−・・・
−・酸化スズ、8   p型CuAl5el 、9  
  i型アモルファスシリコン薄膜、10−・・−・−
・・n型微結晶シリコン薄膜、11−・−・・−・−・
アルミニウム金属電極、12・−・−・・・p型機結晶
シリコン薄膜、13−・・・−・−・ガラス基板、を示
す。
FIG. 1 is a schematic diagram showing an example of the configuration of a photovoltaic device of the present invention. FIG. 2 is a schematic diagram showing the structure of an element according to an embodiment of the present invention. FIG. 3 is a schematic diagram showing an example of an amorphous photovoltaic device according to the prior art. In the figure, 1...--1 substrate, 2 first electrode, 3
・−・−・・・−・First conductivity type semiconductor thin film, 4
Substantially intrinsic amorphous semiconductor thin film, 5 second conductivity type semiconductor thin film, 6 second electrode, 7...
-・tin oxide, 8 p-type CuAl5el, 9
i-type amorphous silicon thin film, 10-...--
・・N-type microcrystalline silicon thin film, 11−・−・・−・−・
Aluminum metal electrodes, 12...p-type mechanical crystalline silicon thin films, 13-... glass substrates are shown.

Claims (1)

【特許請求の範囲】[Claims] (1)基板、第一電極、第一の導電型半導体薄膜、実質
的に真性の非晶質半導体薄膜、第二の導電型半導体薄膜
、第二電極の順に積層して形成された非晶質光起電力素
子において、第一の導電型半導体薄膜および第二の導電
型半導体薄膜のうち、少なくとも一方が、 I −III−V
I_2族化合物半導体薄膜であることを特徴とする非晶
質光起電力素子。
(1) An amorphous material formed by laminating a substrate, a first electrode, a first conductivity type semiconductor thin film, a substantially intrinsic amorphous semiconductor thin film, a second conductivity type semiconductor thin film, and a second electrode in this order. In the photovoltaic device, at least one of the first conductive type semiconductor thin film and the second conductive type semiconductor thin film is I-III-V.
An amorphous photovoltaic device characterized by being a Group I_2 compound semiconductor thin film.
JP1200235A 1989-08-03 1989-08-03 Photovoltaic element Pending JPH0364973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1200235A JPH0364973A (en) 1989-08-03 1989-08-03 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1200235A JPH0364973A (en) 1989-08-03 1989-08-03 Photovoltaic element

Publications (1)

Publication Number Publication Date
JPH0364973A true JPH0364973A (en) 1991-03-20

Family

ID=16421059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1200235A Pending JPH0364973A (en) 1989-08-03 1989-08-03 Photovoltaic element

Country Status (1)

Country Link
JP (1) JPH0364973A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448785A (en) * 1990-06-15 1992-02-18 Fuji Electric Corp Res & Dev Ltd Thin-film solar cell
US6107562A (en) * 1998-03-24 2000-08-22 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method for manufacturing the same, and solar cell using the same
US6259016B1 (en) 1999-03-05 2001-07-10 Matsushita Electric Industrial Co., Ltd. Solar cell
US6534704B2 (en) 2000-10-18 2003-03-18 Matsushita Electric Industrial Co., Ltd. Solar cell
JP2007154670A (en) * 2005-11-30 2007-06-21 Sanyo Denki Co Ltd Axial blower
US7960306B2 (en) 2008-05-28 2011-06-14 Industrial Technology Research Institute Photo-energy transformation catalysts and methods for fabricating the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448785A (en) * 1990-06-15 1992-02-18 Fuji Electric Corp Res & Dev Ltd Thin-film solar cell
US6107562A (en) * 1998-03-24 2000-08-22 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method for manufacturing the same, and solar cell using the same
US6259016B1 (en) 1999-03-05 2001-07-10 Matsushita Electric Industrial Co., Ltd. Solar cell
US6534704B2 (en) 2000-10-18 2003-03-18 Matsushita Electric Industrial Co., Ltd. Solar cell
JP2007154670A (en) * 2005-11-30 2007-06-21 Sanyo Denki Co Ltd Axial blower
US7960306B2 (en) 2008-05-28 2011-06-14 Industrial Technology Research Institute Photo-energy transformation catalysts and methods for fabricating the same

Similar Documents

Publication Publication Date Title
US4598164A (en) Solar cell made from amorphous superlattice material
JPS6122622A (en) Method and device for producing photovoltaic power panel
JPS6239550B2 (en)
JP2008153646A (en) Manufacturing method of semiconductor device
JPH06209116A (en) Manufacture of thin film photovoltaic device
US6815788B2 (en) Crystalline silicon thin film semiconductor device, crystalline silicon thin film photovoltaic device, and process for producing crystalline silicon thin film semiconductor device
US5151255A (en) Method for forming window material for solar cells and method for producing amorphous silicon solar cell
CN116344653A (en) Solar cell and method for manufacturing same
JPH0364973A (en) Photovoltaic element
JP2688219B2 (en) Photoelectric conversion element
JP2688220B2 (en) Amorphous solar cell
JPH0376166A (en) Photoelectric converter
JPH0364974A (en) Photoelectric conversion element
JPH0393279A (en) Optoelectric transducer
JPH04192373A (en) Photovoltaic element
JPH0612835B2 (en) Manufacturing method of photoelectric conversion element
JPH0653532A (en) Photoelectric conversion element
JP2966908B2 (en) Photoelectric conversion element
JPS6150380A (en) Manufacture of photoelectric conversion element
JPH03235373A (en) Photovoltaic element
JPH02109376A (en) Amorphous solar cell
JP2688221B2 (en) Amorphous solar cell
JPH0714072B2 (en) Method for manufacturing photoelectric conversion element
JPH03235374A (en) Photoelectric conversion element
JPS6135569A (en) Photovoltaic device