JPH0376166A - Photoelectric converter - Google Patents

Photoelectric converter

Info

Publication number
JPH0376166A
JPH0376166A JP1211348A JP21134889A JPH0376166A JP H0376166 A JPH0376166 A JP H0376166A JP 1211348 A JP1211348 A JP 1211348A JP 21134889 A JP21134889 A JP 21134889A JP H0376166 A JPH0376166 A JP H0376166A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
type
conductivity type
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1211348A
Other languages
Japanese (ja)
Inventor
Yoshinori Ashida
芦田 芳徳
Nobuhiro Fukuda
福田 信弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1211348A priority Critical patent/JPH0376166A/en
Publication of JPH0376166A publication Critical patent/JPH0376166A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enhance the open terminal voltage and a short-circuiting photocurrent of an amorphous photovoltaic element by forming at least one of first and second conductivity type semiconductor thin films of II-VI-V2 compound semiconductor thin film. CONSTITUTION:A conductivity type II-VI-V2 semiconductor thin film 3 is formed of compound semiconductor of P such as ZnSiP3nGeP2, etc. The conductivity type of the compound is controlled to be p-type or n-type by modulating a composition in addition to doping of impurity. In the case of a ZnSiP2 film, high frequency power is independently controlled by using three types of target of Zn, Si and P metals, composition in the film is controlled, and sputtered. If the conductivity type of the thin film is p-type, the other conductivity type semiconductor thin film 5 exhibits n-type properties. The substrate 1 is made of blue plate glass quartz, etc., and the second electrode is made of meal oxide such as tin oxide 2, indium oxide, etc., or light transmission metal, etc. As a result, the open terminal voltage and short-circuiting current of an amorphous photoelectric converter can be improved.

Description

【発明の詳細な説明】 (技術分野) 本発明は非晶質太陽電池の高性能化に関し、とくに、開
放端電圧、短絡光電流を高めることにより、非晶質太陽
電池の高効率化を図る技術に関する。
[Detailed description of the invention] (Technical field) The present invention relates to improving the performance of amorphous solar cells, and in particular, aims to improve the efficiency of amorphous solar cells by increasing open circuit voltage and short-circuit photocurrent. Regarding technology.

〔背景技術〕[Background technology]

非晶質太陽電池(非晶質光電変換素子)は電卓や時計を
駆動するための、出力の小さいエネルギー供給源として
すでに実用化されている。しかしながら、出力の大きい
エネルギー供給源としては、性能不足であり、性能向上
をめざして、各種の検討が実施されている。太陽電池の
光電変換効率は開放端電圧、短絡電流ならびに曲線因子
の積で表される。各種の検討の結果、短絡光電流ならび
に曲線因子については、飛躍的に改善・向上されてきた
が、開放端電圧は十分な向上は得られていない、太陽電
池の信頼性向上のために、近年、光入射側に9層を設け
た、pin型非晶質太陽電池が検討されている。この非
晶質太陽電池において、開放端電圧を改善するためには
、p型半導体薄膜の光電特性を改善せねばならない、と
くに、光学バンドギャップの拡大と電気伝導率の向上を
同時に行わねばならないところに、技術の困難性があっ
た。この理由は、光学バンドギャップを拡大すると、−
a的に電気伝導率が低下するからであった。これらを満
足する材料として、微結晶薄膜が提案されている。しか
しながら、プラズマCvD法や光CVD法のような従来
技術を用いて、透明電極上にp型機結晶薄膜の形成が試
みられたが、結果的には、非晶質太陽電池の開放端電圧
は向上せず、充電変換効率の改善にはつながらなかった
。この問題を解決するために、鋭意検討をかさねて、本
発明を完成するにいたった。
Amorphous solar cells (amorphous photoelectric conversion elements) are already in practical use as low-output energy sources to power calculators and watches. However, as an energy supply source with a large output, its performance is insufficient, and various studies are being carried out with the aim of improving its performance. The photoelectric conversion efficiency of a solar cell is expressed as the product of open circuit voltage, short circuit current, and fill factor. As a result of various studies, the short-circuit photocurrent and fill factor have been dramatically improved and improved, but the open-circuit voltage has not been sufficiently improved.In recent years, efforts have been made to improve the reliability of solar cells. , a pin-type amorphous solar cell with nine layers on the light incident side has been studied. In order to improve the open-circuit voltage of this amorphous solar cell, it is necessary to improve the photoelectric properties of the p-type semiconductor thin film.In particular, it is necessary to expand the optical band gap and improve the electrical conductivity at the same time. However, there were technical difficulties. The reason for this is that when the optical bandgap is expanded, −
This is because the electrical conductivity decreases in a significant manner. A microcrystalline thin film has been proposed as a material that satisfies these requirements. However, attempts have been made to form p-type organic crystalline thin films on transparent electrodes using conventional techniques such as plasma CVD and photoCVD, but as a result, the open circuit voltage of amorphous solar cells is This did not lead to an improvement in charging conversion efficiency. In order to solve this problem, we have completed the present invention after extensive research.

〔発明の基本的着想〕[Basic idea of the invention]

■族系材料のみで光電特性に飛躍的な向上を得るには、
多大な検討が必要であり、先に述べたように多くの困難
がある0本発明者らは、結晶性化合物半導体は導電率、
バンドギャップを任意に制御でき、■族材料に比較して
、結晶性を得やすいことに着目した。導電型を制御した
n−■−vz族化合物半導体薄膜を導電型半導体薄膜に
適用した非晶質光起電力素子を形成することにより、非
晶質光起電力素子の開放端電圧・短絡−光電流を高くす
ることができた。
■To obtain dramatic improvements in photoelectric properties using only group-based materials,
A great deal of study is required and there are many difficulties as mentioned above.
We focused on the fact that the bandgap can be controlled arbitrarily, and crystallinity can be easily obtained compared to Group Ⅰ materials. By forming an amorphous photovoltaic device in which an n-■-VZ group compound semiconductor thin film with a controlled conductivity type is applied to a conductivity type semiconductor thin film, the open circuit voltage and short circuit of the amorphous photovoltaic device can be reduced. I was able to increase the current.

〔発明の開示〕[Disclosure of the invention]

本発明は、基板、第一電極、第一の導電型半導体薄膜、
実質的に真性の非晶質半導体薄膜、第二の導電型半導体
薄膜、第二電極の順に積層して形成された非晶質光を変
換素子において、第一の導電型半導体薄膜および第二の
導電型半導体薄膜(以下、導電型半導体薄膜と略称する
)のうち、少なくとも一方がn−■−vz族化合物半導
体薄膜であることを特徴とする非晶質光起電力素子を要
旨とするものである。
The present invention includes a substrate, a first electrode, a first conductive type semiconductor thin film,
In an amorphous light converting element formed by laminating a substantially intrinsic amorphous semiconductor thin film, a second conductivity type semiconductor thin film, and a second electrode in this order, the first conductivity type semiconductor thin film and the second conductivity type semiconductor thin film are stacked. The gist is an amorphous photovoltaic device characterized in that at least one of the conductive semiconductor thin films (hereinafter abbreviated as conductive semiconductor thin films) is an n-■-vz group compound semiconductor thin film. be.

本発明の光電変換素子の構成において、導電型半導体薄
膜について、具体的には、第一の導電型半導体薄膜が正
孔が多数キャリヤであるp型半導体の場合には、第二の
導電型半導体薄膜は電子が多数キャリヤであるn型半導
体である。また、第一の導電型半導体薄膜がn型半導体
の場合には、第二の導電型半導体薄膜はP型半導体を用
いる。
In the configuration of the photoelectric conversion element of the present invention, regarding the conductive type semiconductor thin film, specifically, when the first conductive type semiconductor thin film is a p-type semiconductor in which holes are majority carriers, the second conductive type semiconductor thin film is a p-type semiconductor in which holes are majority carriers. The thin film is an n-type semiconductor in which electrons are the majority carriers. Furthermore, when the first conductive type semiconductor thin film is an n-type semiconductor, the second conductive type semiconductor thin film is a p-type semiconductor.

以下、図面を参照しつつ本発明の光電変換素子の構成例
を説明する。
Hereinafter, a configuration example of a photoelectric conversion element of the present invention will be described with reference to the drawings.

第1図は本発明の素子の層構成例を示す模式図であり、
第2図は従来技術による非晶質光電変換素子の層構成例
を示す模式図である。
FIG. 1 is a schematic diagram showing an example of the layer structure of the element of the present invention,
FIG. 2 is a schematic diagram showing an example of the layer structure of an amorphous photoelectric conversion element according to the prior art.

図中1・−・−−−−−・−・ガラス基板、2−・−・
−・−・酸化スズ、3・・−・・・−・・−P型導電型
半導体′iR膜、4・・・−・・−・−実質的に真性の
非晶質半導体薄膜、5   n型導電型半導体薄膜、6
   アルミニウム金属電極、7・・−・−・・−・P
型機結晶シリコン薄膜、である。
In the figure, 1.-------Glass substrate, 2--.
--- Tin oxide, 3 --- P-type conductivity type semiconductor 'iR film, 4 --- Substantially intrinsic amorphous semiconductor thin film, 5 n type conductivity type semiconductor thin film, 6
Aluminum metal electrode, 7・・・・−・・・・P
The mold is a crystalline silicon thin film.

本発明は、第1図中におけるP型導電型半導体FRH3
またはn型導電型半導体薄膜5の少なくとも一つをn−
R/−Vg族化合物半導体薄膜とするものである。しか
して、本発明における導電型■−IV−V、族化合物半
導体薄膜とは、塩ワイドギャップ半導体材料であり、好
ましくは禁制帯幅が1.8eV以上のものである。具体
的には、P系の化合物半導体であり、Zn5iPz、Z
nGePz、CdS iPz 、ZnS 1Ast等で
あり、またこれらの化合物の構成元素の混合化合物も有
効に用いられる。なお、後記実施例においては、p型導
電型半導体薄膜3として、p型Z n S i A S
 zを用いた例を示した。
The present invention is directed to the P-type conductivity type semiconductor FRH3 in FIG.
or at least one of the n-type conductivity type semiconductor thin films 5 is n-
This is an R/-Vg group compound semiconductor thin film. Accordingly, the conductivity type 1-IV-V group compound semiconductor thin film in the present invention is a salt wide gap semiconductor material, and preferably has a forbidden band width of 1.8 eV or more. Specifically, it is a P-based compound semiconductor, such as Zn5iPz, Z
nGePz, CdS iPz, ZnS 1Ast, etc., and mixtures of constituent elements of these compounds are also effectively used. In addition, in the examples described later, the p-type conductivity type semiconductor thin film 3 is a p-type Z n S i A S
An example using z was shown.

これらの化合物の導電型の制御は不純物のドーピングの
他に、組成を変調することにより行われ・p型、n型と
することができる。
The conductivity type of these compounds is controlled not only by doping with impurities but also by modulating the composition, and can be made p-type or n-type.

用いる導電型半導体薄膜の厚みに関しては、30λ〜1
000人であり、とくに、光入射側に用いる導電型半導
体薄膜は、30〜500人の厚みが適している。
The thickness of the conductive semiconductor thin film used is 30λ~1
In particular, the conductive semiconductor thin film used on the light incident side has a thickness of 30 to 500 mm.

本導電型n−1v−vつ族半導体薄膜の形成方法として
は、本発明を実施するに、とくに限定されるものではな
いが、スパッタリング法、真空蒸着法、イオンブレーテ
ィング法、ヨウ素を用いた化学気相拡散法等があり、実
用性の観点においては、スパッタリング法が好ましい。
Methods for forming the present conductivity type n-1v-v group semiconductor thin film are not particularly limited when carrying out the present invention, but include sputtering, vacuum evaporation, ion blating, and methods using iodine. There are chemical vapor diffusion methods, etc., and from the viewpoint of practicality, sputtering method is preferable.

スパッタリングによる具体的な化合物半導体薄膜の形成
方法として、例えば、Zn5iP、の成膜について説明
する。Zn金属、St金金属P金属の三種のターゲット
を用い、高周波電力を独立に制御し、膜中組成を制御し
、スパッタリングする。導入するガスは、A r 10
5CCI1% Hl 2sccm 。
As a specific method for forming a compound semiconductor thin film by sputtering, the formation of a Zn5iP film, for example, will be described. Sputtering is performed using three types of targets: Zn metal, St gold metal, and P metal, by independently controlling high frequency power and controlling the composition in the film. The gas to be introduced is A r 10
5CCI 1% Hl 2sccm.

圧力は10+torr 、高周波電力をZnに50W、
Teに30W、Pに60W投入する。また、1源スパツ
タリング方法を用い、ターゲットにZn5iPzを用い
る方法も有効である。
Pressure is 10+torr, high frequency power is 50W to Zn,
Input 30W into Te and 60W into P. Furthermore, a method using a one-source sputtering method and using Zn5iPz as a target is also effective.

実質的に真性の(以下、i型と略称する)半導体薄膜は
水素化シリコン薄膜、水素化シリコンゲルマン薄膜、水
素化シリコンカーボン薄膜等であり、非晶質太陽電池の
光活性領域を形成するものである。これら実質的に真性
の半導体薄膜は、分子内にシリコンを有する化合物、ゲ
ルマン、シリルゲルマン等の分子内にゲルマニウムを有
する化合物、炭化水素ガス等から、目的の半導体薄膜に
応じて適宜選択される原料ガスに、プラズマcvD(化
学気相堆積)法や光CVD (化学気相堆積)法を適用
することにより容易に形成される。原料ガスを水素やヘ
リウム等で希釈して用いることや原料ガスにごく微量の
ジポランを添加すること等、i型半導体薄膜形成におけ
る従来技術を併用することについては、なんら、本発明
の効果を妨げるものではない、形成条件は、形成温度は
150〜400℃、好ましくは175〜350℃であり
、形成圧力は0.01〜5 Torr、好ましくは0.
03〜1.5 Torrで行われる。i型半導体薄膜の
膜厚は太陽電池の用途に応じて適宜決定されるものであ
り、本発明の限定条件ではない0本発明の効果を達成す
るためには、1000人〜10000人で十分である。
Substantially intrinsic (hereinafter abbreviated as i-type) semiconductor thin films include hydrogenated silicon thin films, hydrogenated silicon germane thin films, hydrogenated silicon carbon thin films, etc., which form photoactive regions of amorphous solar cells. It is. These substantially intrinsic semiconductor thin films are made from raw materials that are appropriately selected depending on the desired semiconductor thin film from compounds containing silicon in the molecule, compounds containing germanium in the molecule such as germane and silylgermane, and hydrocarbon gases. It is easily formed by applying a plasma CVD (chemical vapor deposition) method or a photo CVD (chemical vapor deposition) method to a gas. The effects of the present invention are not hindered in any way by using conventional techniques in forming an i-type semiconductor thin film, such as diluting the raw material gas with hydrogen, helium, etc., or adding a very small amount of diporane to the raw material gas. Regarding the forming conditions, the forming temperature is 150 to 400°C, preferably 175 to 350°C, and the forming pressure is 0.01 to 5 Torr, preferably 0.5 Torr.
Performed at 0.03 to 1.5 Torr. The thickness of the i-type semiconductor thin film is appropriately determined depending on the use of the solar cell, and is not a limiting condition of the present invention. In order to achieve the effects of the present invention, 1000 to 10000 people is sufficient. be.

次に、本発明の光起電力素子においては、少なくとも一
方の導電型半導体薄膜に、II−IV−V。
Next, in the photovoltaic device of the present invention, at least one conductive type semiconductor thin film contains II-IV-V.

族化合物半導体薄膜を適用する。具体的には、その薄膜
の導電型がp型である場合には、他方の導電型半導体薄
膜は、n型の性質を示すものであり、n型の微結晶Ti
IW14やn型のアモルファス薄膜等が有効に用いられ
る。具体的に例示すると、n型の微結晶シリコン薄膜、
炭素含有微結晶シリコン薄膜、微結晶シリコンカーバイ
ド薄膜、アモルファスシリコン薄膜、アモルファスシリ
コンカーボン薄膜、アモルファスシリコンゲルマン薄膜
等を有効に用いることができる。これらn型半導体薄膜
は、分子内にシリコンを有する化合物、ゲルマン、シリ
ルゲルマン等の分子内にゲルマニウムを有する化合物、
炭化水素ガス等から、目的とする半導体薄膜に応じて適
宜選択される原料に、ホスフィンやアルシン等の周期律
表の第■族の化合物、ならびに水素を混合して、プラズ
マCVD (化学気相堆積)法や光CVD (化学気相
堆積)法を適用することにより容易に形成される。さら
に、当該原料ガスをヘリウムやアルゴン等の不活性ガス
で希釈することは、なんら、本発明の効果を妨げるもの
ではない、形成条件は、形成温度は150〜400℃、
好ましくは175〜35o′cであり、形成圧力は0.
01〜5 Torr、好ましくは0.03〜1.5 T
orrで行われる。n型半導体薄膜の膜厚は、200人
〜500人程庇上十分である。
Apply group compound semiconductor thin film. Specifically, when the conductivity type of the thin film is p-type, the other conductivity type semiconductor thin film exhibits n-type properties, and is made of n-type microcrystalline Ti.
IW14, n-type amorphous thin film, etc. can be effectively used. To give a concrete example, an n-type microcrystalline silicon thin film,
Carbon-containing microcrystalline silicon thin films, microcrystalline silicon carbide thin films, amorphous silicon thin films, amorphous silicon carbon thin films, amorphous silicon germane thin films, and the like can be effectively used. These n-type semiconductor thin films are made of compounds containing silicon in the molecule, compounds containing germanium in the molecule such as germane, silylgermane, etc.
A raw material selected from hydrocarbon gas, etc., depending on the desired semiconductor thin film, is mixed with compounds from group Ⅰ of the periodic table, such as phosphine and arsine, and hydrogen, and then plasma CVD (chemical vapor deposition) is performed. ) method or photo-CVD (chemical vapor deposition) method. Furthermore, diluting the raw material gas with an inert gas such as helium or argon does not impede the effects of the present invention in any way.The formation conditions include a formation temperature of 150 to 400°C;
Preferably it is 175 to 35 o'c, and the forming pressure is 0.
01-5 Torr, preferably 0.03-1.5 T
It is done in orr. The thickness of the n-type semiconductor thin film is sufficient to cover 200 to 500 people.

本発明の非晶質光電変換素子を形成するに、用いるに好
ましい原料ガスについてさらに具体的な示例をあげて説
明する0分子内にシリコンを有する化合物については、
モノシラン、ジシラン、トリシラン等の水素化シリコン
;モノメチルシラン、ジメチルシラン、トリメチルシラ
ン、テトラメチルシラン、エチルシラン、ジエチルシラ
ン等のアルキル基置換の水素化シリコン;ビニルシラン
、ジビニルシラン、トリビニルシラン、ビニルジシラン
、ジビニルジシラン、プロペニルシラン、エチニルシラ
ン等のラジカル重合可能の不飽和炭化水素基を分子内に
有する水素化シリコン:これら水素化シリコンの水素が
一部またはすべてフッ素で1F換されたフン化シリコン
を有効に用いることができる。
For forming the amorphous photoelectric conversion element of the present invention, the preferred raw material gases to be used will be explained with further specific examples.For compounds having silicon in the molecule,
Hydrogenated silicones such as monosilane, disilane, trisilane; hydrogenated silicones substituted with alkyl groups such as monomethylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, ethylsilane, diethylsilane; vinylsilane, divinylsilane, trivinylsilane, vinyldisilane, divinyl Hydrogenated silicones that have radically polymerizable unsaturated hydrocarbon groups in their molecules such as disilane, propenylsilane, ethynylsilane, etc.: Effectively use fluorinated silicones in which some or all of the hydrogen in these hydrogenated silicones has been converted to 1F with fluorine. Can be used.

炭化水素ガスの具体的示例として、メタン、エタン、プ
ロパン、エチレン、プロピレン、アセチレン等の炭化水
素ガスが有用である。これら炭化水素ガスは、炭素含有
微結晶シリコン薄膜、微結晶シリコンカーバイド薄膜等
の形成において、光学的バンドギャップを変更するとき
に用いると便利である。また、この目的においては、ア
ルキル基置換の水素化シリコン、ラジカル重合可能の不
飽和炭化水素基を分子内に有する水素化シリコン、これ
ら水素化シリコンの水素が一部またはすべてフッ素で置
換されたフン化シリコン等の材料も有用である。
As specific examples of hydrocarbon gases, hydrocarbon gases such as methane, ethane, propane, ethylene, propylene, and acetylene are useful. These hydrocarbon gases are conveniently used to change the optical bandgap in forming carbon-containing microcrystalline silicon thin films, microcrystalline silicon carbide thin films, and the like. In addition, for this purpose, silicon hydrides substituted with alkyl groups, silicon hydrides having a radically polymerizable unsaturated hydrocarbon group in the molecule, and silicon hydrides in which hydrogen in these silicon hydrides has been partially or completely replaced with fluorine are also used. Materials such as silicon oxide are also useful.

基板、第一電極、第二電極等については、とくに、限定
される条件はない。基板としては青板ガラス、ホウケイ
酸ガラス、石英ガラス等従来用いられているガラス基板
材料が有用であるが、さらに、金属やプラスチックスも
基板材料として用いることかできる、プラスチックス材
料においては、100℃以上の温度に耐える材料をさら
に有効に用いることができる。第一および第二電極とし
ては、太陽光入射のために、一方あるいは両方が透光性
を有することが必要であるが、それ以外はなんら制約を
受けない、具体的には、酸化スズ、酸化インジウム、酸
化亜鉛等の金属酸化物や透光性の金属等を有効に用いる
ことができる。また、金属電極として、アル逅ニウム、
クロム、ニッケルークロム、銀、金、白金等のや酸化ス
ズ、酸化インジウム、酸化亜鉛等の金属酸化物の中から
適宜、選択して用いることができる。
There are no particular limitations on the substrate, first electrode, second electrode, etc. Conventionally used glass substrate materials such as blue plate glass, borosilicate glass, and quartz glass are useful as substrates, but metals and plastics can also be used as substrate materials. Materials that can withstand temperatures above can be used more effectively. For the first and second electrodes, one or both must be translucent for sunlight to enter, but there are no other restrictions.Specifically, tin oxide, oxide Metal oxides such as indium and zinc oxide, translucent metals, and the like can be effectively used. In addition, as a metal electrode, aluminum,
An appropriate material can be selected from metal oxides such as chromium, nickel-chromium, silver, gold, and platinum, and metal oxides such as tin oxide, indium oxide, and zinc oxide.

〔実施例1〕 光電変換素子の形成装置としては、プラズマCVD法、
スパッタリング法並びに光CVD法を適用できる成膜装
置を用いた。素子構成は第1図に示したとおりである。
[Example 1] As a forming apparatus for a photoelectric conversion element, a plasma CVD method,
A film forming apparatus to which sputtering method and photo-CVD method can be applied was used. The element configuration is as shown in FIG.

酸化スズ膜2が厚み1μ被覆されたガラス基板1を成膜
装置内に設置した。
A glass substrate 1 coated with a tin oxide film 2 having a thickness of 1 μm was placed in a film forming apparatus.

第一の導電型半導体薄膜3として、p型のZn5i A
 s zを先ず形成した。Zn金属、St金金属Asを
スパッタリング用ターゲットとし、スパッタリング条件
として、圧力10mtorr 、 Arガス流量101
05e、各高周波電カフ0W、40W、80W基板温度
250℃、を用いた。tc膜時間250秒にて、100
人を形成した後、水素ガス雰囲気にて300 ’C加熱
処理を行った0次に実質的に真性の半導体薄膜形成室に
当該基板を移送し、モノシランを導入して、圧力0.0
8Torr、形成温度250℃の条件でプラズマCVD
法により、アモルファスシリコン薄膜4を5000人の
膜厚に形成した。プラズマCVD法は13.56 MH
zの高周波放電を利用した。このときの、RF電力は3
0内であった。実質的に真性の半導体薄膜形成後、n型
半導体薄膜形成室に当該基板を移送した。モノシラン/
ホスフィン/水素からなる原料ガスをそれぞれの流量が
1010.1/100の割合になるように導入した。圧
力0.5 Torr、形成温度240℃の条件でプラズ
マCVD法によりn型半導体薄膜5を500人の膜厚に
形成した。プラズマCVD法は13.56 MHzのR
F放電を利用した。コノときの、RF電力は15曲であ
った。ついで、薄膜形成装置から取り出し、第二の電極
であるアルミニウム金属電極を形成し、光1を変換素子
を作製した。
As the first conductivity type semiconductor thin film 3, p-type Zn5i A
s z was first formed. Zn metal and St gold metal As were used as sputtering targets, and the sputtering conditions were a pressure of 10 mtorr and an Ar gas flow rate of 101 mtorr.
05e, high-frequency electric cuffs of 0W, 40W, and 80W and a substrate temperature of 250°C were used. TC film time 250 seconds, 100
After forming the substrate, the substrate was transferred to a 0-order substantially intrinsic semiconductor thin film forming chamber where heat treatment was performed at 300'C in a hydrogen gas atmosphere, monosilane was introduced, and the pressure was 0.0
Plasma CVD at 8 Torr and formation temperature of 250°C
An amorphous silicon thin film 4 was formed to a thickness of 5,000 wafers by a method. Plasma CVD method is 13.56 MH
The high-frequency discharge of z was used. At this time, the RF power is 3
It was within 0. After forming the substantially intrinsic semiconductor thin film, the substrate was transferred to an n-type semiconductor thin film forming chamber. Monosilane/
Raw material gases consisting of phosphine/hydrogen were introduced such that their respective flow rates were at a ratio of 1010.1/100. The n-type semiconductor thin film 5 was formed to a thickness of 500 nm by plasma CVD under conditions of a pressure of 0.5 Torr and a formation temperature of 240°C. Plasma CVD method uses R of 13.56 MHz.
F discharge was used. At Kono, the RF power was 15 songs. Then, it was taken out from the thin film forming apparatus, and an aluminum metal electrode serving as a second electrode was formed to produce a light 1 conversion element.

〔比較例1〕 実施例1において、第一の導電型半導体薄膜として、I
I−■ Vz族化合物半導体薄膜の替わりに、P型機結
晶シリコン薄膜7を形成した。素子構成を第2図に示し
た。該9層以外は実施例1と全く同じ工程で非晶質光電
変換素子を形成した。
[Comparative Example 1] In Example 1, I
I-① In place of the Vz group compound semiconductor thin film, a P-type machine crystalline silicon thin film 7 was formed. The device configuration is shown in FIG. 2. An amorphous photoelectric conversion element was formed using the same steps as in Example 1 except for the nine layers.

P型機結晶薄膜の形成は、110.03/200の割合
のモノシラン/ジボラン/水素の混合ガスを成膜室に導
入し、R’F電力50W、圧力0.1torr 、基板
温度250″Cで放電時間150秒により行い、100
人形成した。
To form a P-type mechanical crystal thin film, a mixed gas of monosilane/diborane/hydrogen in the ratio of 110.03/200 was introduced into the film forming chamber, and the R'F power was 50 W, the pressure was 0.1 torr, and the substrate temperature was 250''C. Conducted with a discharge time of 150 seconds, 100
Formed a person.

以上により作製した非晶質光電変換素子の性能を評価し
た。評価として、AMl、5.100 mW/ cdの
光をソーラーシミュレータにより、照射して当該非晶質
充電変換素子の光電特性を測定した0本発明により実施
した光起電力素子と比較例で示した光起電力素子の性能
を比較した結果、開放端電圧において5%、短絡光電流
においても15%の向上が認めらた。結果として、光電
変換効率は20%の改善が得られた。
The performance of the amorphous photoelectric conversion element produced as described above was evaluated. For evaluation, the photovoltaic characteristics of the amorphous charge conversion element were measured by irradiating it with AMl, 5.100 mW/cd light using a solar simulator. As a result of comparing the performance of the photovoltaic elements, an improvement of 5% in open circuit voltage and 15% in short circuit photocurrent was observed. As a result, the photoelectric conversion efficiency was improved by 20%.

〔発明の効果〕〔Effect of the invention〕

以上の実施例ならびに比較例から明らかなように、導電
型半導体薄膜の少なくとも一方に■−■−v2族化合物
半導体を用いることにより、従来技術で実用化されてい
る非晶質光電変換素子の性能とくに、開放端電圧、短絡
光電流を著しく向上させるものである。すなわち、本発
明は実用レベルにおいて、非晶質光電変換素子の光電変
換効率の改善に大きく貢献するものである。このように
、本゛発明は電力用太陽電池に要求される高変換効率を
可能にする技術を提供できるものであり、エネルギー産
業にとって、きわめて有用な発明であると云わざるを得
ない。
As is clear from the above Examples and Comparative Examples, the performance of the amorphous photoelectric conversion element that has been put to practical use in the prior art is improved by using a ■-■-v2 group compound semiconductor in at least one of the conductive semiconductor thin films. In particular, the open-circuit voltage and short-circuit photocurrent are significantly improved. That is, the present invention greatly contributes to improving the photoelectric conversion efficiency of amorphous photoelectric conversion elements at a practical level. In this way, the present invention can provide a technology that enables the high conversion efficiency required for power solar cells, and it cannot be said that it is an extremely useful invention for the energy industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明またはその実施例の層構成例を示す模式
図であり、第2図は従来技術または比較例における非晶
質光電変換素子の層構成例を示す模式図である。 図中l   ガラス基板、2−・−・・・−−−−一酸
化スズ、3p型Zn5jAst、4    実質的に真
性の非晶質半導体薄膜、5   n型微結晶シリコン薄
膜、6   アルミニウム金属電極、7・−・−・−・
−・−・p型機結晶シリコン薄膜。 第1図
FIG. 1 is a schematic diagram showing an example of the layer structure of the present invention or an example thereof, and FIG. 2 is a schematic diagram showing an example of the layer structure of an amorphous photoelectric conversion element in the prior art or a comparative example. In the figure: 1 Glass substrate, 2 - Tin monoxide, 3 P-type Zn5jAst, 4 Substantially intrinsic amorphous semiconductor thin film, 5 N-type microcrystalline silicon thin film, 6 Aluminum metal electrode, 7・−・−・−・
−・−・P-type crystalline silicon thin film. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)基板、第一電極、第一の導電型半導体薄膜、実質
的に真性の非晶質半導体薄膜、第二の導電型半導体薄膜
、第二電極の順に積層して形成された非晶質光電変換素
子において、第一の導電型半導体薄膜および第二の導電
型半導体薄膜のうち、少なくとも一方が、II−IV−V_
2族化合物半導体薄膜であることを特徴とする非晶質光
電変換素子。
(1) An amorphous material formed by laminating a substrate, a first electrode, a first conductivity type semiconductor thin film, a substantially intrinsic amorphous semiconductor thin film, a second conductivity type semiconductor thin film, and a second electrode in this order. In the photoelectric conversion element, at least one of the first conductive type semiconductor thin film and the second conductive type semiconductor thin film is II-IV-V_
An amorphous photoelectric conversion element characterized by being a Group 2 compound semiconductor thin film.
JP1211348A 1989-08-18 1989-08-18 Photoelectric converter Pending JPH0376166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1211348A JPH0376166A (en) 1989-08-18 1989-08-18 Photoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1211348A JPH0376166A (en) 1989-08-18 1989-08-18 Photoelectric converter

Publications (1)

Publication Number Publication Date
JPH0376166A true JPH0376166A (en) 1991-04-02

Family

ID=16604483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1211348A Pending JPH0376166A (en) 1989-08-18 1989-08-18 Photoelectric converter

Country Status (1)

Country Link
JP (1) JPH0376166A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563617U (en) * 1992-01-31 1993-08-24 三洋電機株式会社 Air supply device
RU2624831C2 (en) * 2015-11-27 2017-07-07 федеральное государственное бюджетное учреждение высшего образования и науки "Санкт-Петербургский национальный исследовательский Академический университет Российской академии наук" Photoelectric converter based on semiconductor compounds a2b4c5 2 formed on silicon substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563617U (en) * 1992-01-31 1993-08-24 三洋電機株式会社 Air supply device
RU2624831C2 (en) * 2015-11-27 2017-07-07 федеральное государственное бюджетное учреждение высшего образования и науки "Санкт-Петербургский национальный исследовательский Академический университет Российской академии наук" Photoelectric converter based on semiconductor compounds a2b4c5 2 formed on silicon substrate

Similar Documents

Publication Publication Date Title
EP0206585B1 (en) Thin film photovoltaic device
JPH04267568A (en) Photovoltaic element
JP2006080557A (en) Improved stabilizing properties of amorphous silicon series element manufactured by high hydrogen dilution low temperature plasma vapor deposition
US5151255A (en) Method for forming window material for solar cells and method for producing amorphous silicon solar cell
US4749588A (en) Process for producing hydrogenated amorphous silicon thin film and a solar cell
JPH0364973A (en) Photovoltaic element
JPH0376166A (en) Photoelectric converter
JP2003188400A (en) Crystalline silicon carbide film and manufacturing method thereof, and solar cell
JPH0122991B2 (en)
JP2688219B2 (en) Photoelectric conversion element
JP2688220B2 (en) Amorphous solar cell
Ohashi et al. High performance hydrogenated amorphous silicon solar cells made at a high deposition rate by glow discharge of disilane
JPH0363229B2 (en)
JP2905004B2 (en) Method for manufacturing photovoltaic element
JP2784820B2 (en) Photovoltaic element
JPH0364974A (en) Photoelectric conversion element
JPH0653532A (en) Photoelectric conversion element
JPH03235374A (en) Photoelectric conversion element
JPH06260665A (en) Amorphous solar cell
JP3063326B2 (en) Solar cell and manufacturing method thereof
JPH03235373A (en) Photovoltaic element
JPH02109376A (en) Amorphous solar cell
JPH03235375A (en) Amorphous solar battery
JP2784821B2 (en) Photovoltaic element
JP3061338B2 (en) Solar cell and method of manufacturing the same