JPH0122991B2 - - Google Patents

Info

Publication number
JPH0122991B2
JPH0122991B2 JP56112571A JP11257181A JPH0122991B2 JP H0122991 B2 JPH0122991 B2 JP H0122991B2 JP 56112571 A JP56112571 A JP 56112571A JP 11257181 A JP11257181 A JP 11257181A JP H0122991 B2 JPH0122991 B2 JP H0122991B2
Authority
JP
Japan
Prior art keywords
sno
type
ito
amorphous silicon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56112571A
Other languages
Japanese (ja)
Other versions
JPS5814582A (en
Inventor
Yoshihiro Hamakawa
Yoshihisa Oowada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP56112571A priority Critical patent/JPS5814582A/en
Priority to EP82106293A priority patent/EP0070509B2/en
Priority to DE8888117644T priority patent/DE3280418T2/en
Priority to EP88117644A priority patent/EP0309000B1/en
Priority to DE8282106293T priority patent/DE3280112D1/en
Priority to US06/399,312 priority patent/US4450316A/en
Publication of JPS5814582A publication Critical patent/JPS5814582A/en
Priority to US06/552,952 priority patent/US4491682A/en
Priority to US06/552,951 priority patent/US4499331A/en
Publication of JPH0122991B2 publication Critical patent/JPH0122991B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高効率のアモルフアスシリコン系太
陽電池に関する。 シラン(SiH4)のプラズマ分解法で得られる
アモルフアスシリコンは、W.E.Spear等によつ
て、PH3やB2H6でドープする事により、その伝
導度を大きく変える事ができることが発見され
(1976年)、D.E.Carlson等によつてアモルフアス
シリコンを用いた太陽電池が試作(1976年)され
て以来注目を集め、アモルフアスシリコン薄膜太
陽電池の効率を改善する研究が活発に行なわれて
いる。 これまでの研究により、アモルフアスシリコン
薄膜光電素子の構造としてはシヨツトキーバリヤ
ー型、pin型、MIS型、ヘテロ接合型があり、そ
のうち前三者が高効率太陽電池として有望視され
ている。すなわちシヨツトキーバリヤー型で5.5
%(D.E.カールソン他、1977年)、MIS型で4.8%
(J.I.B.ウイルソン他、1978)、pin型で4.5%(浜
川圭弘 1978)の変換効率が達成されている。 pinジヤンクシヨン型太陽電池の場合、光を入
射する側に透明電極をつける必要があり、透明電
極としてITO(In2O3+SnO2)やSnO2が用いられ
てきた。しかしながら、ITOの場合はフイルフア
クターは良いが開放電圧が低く、SnO2の場合は
開放電圧は大きいが、フイルフアクターが悪いと
いう欠点があつた。 本発明者は、pin型光電変換の効率を改善する
為に鋭意研究した結果、ITO―SnO2―p―i―
n又はITO―SnO2―n―i―pの構造で、かつ
SnO2の厚みが約50Åから500Åであるアモルフア
スシリコン系太陽電池の構造を用いる事によりフ
イルフアクターと開放電圧とを大巾に改善できる
ことを見い出したもので、太陽電池や光スイツチ
等の光起電力素子として用いることができる。 以下にその詳細を説明する。 本発明のアモルフアスシリコンは、シラン
(SiH4)又はその誘導体又はフツ化シラン又はそ
の誘導体、又はこれらの混合物と、水素又は水素
で希釈したアルゴン、ヘリウム等の不活性ガスと
の混合ガスを、容量結合法又は誘導結合法による
高周波グロー分解又は直流グロー放電分解するこ
とにより得られる。混合ガス中のシランの濃度
は、通常0.5〜50%、好ましくは1〜20%である。 基板の温度は200〜300℃が好ましく、透明電極
を蒸着したガラスや高分子フイルム、金属等、太
陽電池の構成に必要なあらゆる基板が含まれる。 太陽電池の基本構成は、図―1のa,bに代表
例が示される。aはp側から光を照射するタイプ
で、例えばガラス―ITO―SnO2―p―i―n―
Alの構成、bはn側から光を照射するタイプで、
例えばステンレス―p―i―n―SnO2―ITOの
構成である。その他、p層と透明電極の間に薄い
絶縁層をつけたり、薄い金属層をつけた構造でも
よい。要はITO―SnO2―p―i―n又はITO―
SnO2―n―i―pの構造で、かつSnO2の厚みが
約50Åから500Åであるアモルフアスシリコン系
太陽電池を基本とするものであればいかなる構成
でもよい。 シラン若しくはその誘導体、又はフツ化シラン
若しくはその誘導体、又はこれらの混合物のグロ
ー放電分解で得られる約10-7秒以上のキヤリヤー
寿命で約1017cm-3eV-1以下の局在準位密度および
10-3cm2/V以上の易動度をもつ真性アモルフアス
シリコン(以下、i型a―Siという)をi層とし
て、p型とn型ドーブ半導体で接合したpin接合
構造にするわけであるが、本発明では好ましくは
p層又はn層の少なくとも一方、すなわち、すく
なくともSnO2と接する側に、好ましくは一般式
a―Si(1-xy)CxNyまたはa―Si(1-x)Cx若しくは
a―Si(1-y)Nyで示されるアモルフアス半導体
(以下、特定アモルフアス半導体という)を用い
るのがよい。勿論p層とn層の両方に用いてもよ
い。 これらの特定アモルフアス半導体については、
本発明者らの発明に係り、本日同時に出願した特
願昭56− 号、並びに先に出願した特願昭56
−12313号、特願昭56−22690号を参照のこと。又
特定アモルフアス半導体を用いないドープ層は、
上記i型a―Siをp型で用いる場合は周期率表
族の元素でドープし、n型で用いる場合は周期率
表族の元素でドープすればよい。 本発明のITO膜は3〜15wt%のSnO2を含む
In2O3を電子ビーム蒸着又はスパツタ蒸着して作
られる。又本発明のSnO2膜は通常少量のSbをド
ープしたもので、電子ビーム蒸着、スパツタ蒸着
又はCVDによつて製膜される。 第1図aの透明基板1につける場合は、例えば
ガラス板の上にITO膜を蒸着し、さらにSnO2
を30Å〜500Åの厚みにつけて用いられる。 ITO膜の厚みは任意であるが600Å〜4000Åが
好ましい。特に600〜2000Åが好ましい。第1図
bの金属基板13を用いる場合には、12,1
1,10のアモルフアス半導体をつけた後、その
上に30〜500ÅのSnO2をつけ、さらにITOを蒸着
する。 次に比較試験の結果を用いて本発明の効果を説
明する。 <比較試験 1> アモルフアス半導体を堆積すべき基板として
は、 ガラス/ITO(1000Å,15Ω/口)、 ガラス/SnO2(2500Å,25Ω/口)、 ガラス/ITO(1000Å)/SnO2(30Å)(15
Ω/口)、 ガラス/ITO(1000Å)/SnO2(50Å)(15
Ω/口)、 ガラス/ITO(1000Å)/SnO2(100Å)(15
Ω/口)、 ガラス/ITO(1000Å)/SnO2(300Å)(15
Ω/口)、 ガラス/ITO(1000Å)/SnO2(500Å)(15
Ω/口) の7種類を用いた。これらのITO,SnO2はいず
れもスパツター法により蒸着したものである。内
径11cmの石英反応管を用い、基板温度を250℃に
保つて、13.56MHzの高周波でグロー放電分解を
行い、アモルフアス半導体を下記の条件に従つて
p,i,nの順に堆積し、最後に1cm2の面積に
Alを蒸着してpin型太陽電池を製作した。 p,i,n層の製造条件は次のとおりである。 Γ 真性アモルフアスシリコン(i,a―Si:
H) SiH4/H2 3Torr、厚み5000Å Γ n型アモルフアスシリコン(n、a―Si:
H) PH3/SiH4=0.5%、3Torr、厚み500Å Γ p型アモルフアスシリコン(p、a―Si:
H) B2H6/SiH4=0.2%、3Torr、厚み100Å Γ p型アモルフアスシリコン・カーバイト
(p、a―SiC:H) B2H6/(SiH4+CH4)=0.1% SiH4/CH4=3/7、3Torr、厚み100Å Γ p型アモルフアスシリコン・ナイトライド
(p、a―SiN:H) B2H6/(SiH4+NH3)=0.1% SiH4/NH3=1/1、3Torr、厚み100Å 製作したpin型太陽電池の変換効率が基板の相
違に応じて如何に異なるかを、AM―1
(100mW/cm2)のソーラーシユミレーターを用い
て測定した。 その結果は、表1―1、1―2、1―3に示す
とおりである。これらの表においてJSc、Voc、
FF及びηは、夫々短絡電流、開放電圧、フイル
フアクター及び変換効率を示す。
The present invention relates to a highly efficient amorphous silicon solar cell. WESpear and others discovered that the conductivity of amorphous silicon obtained by plasma decomposition of silane (SiH 4 ) could be greatly changed by doping it with PH 3 or B 2 H 6 (1976). Since solar cells using amorphous silicon were prototyped by Carlson et al. (1976), they have attracted attention, and research has been actively conducted to improve the efficiency of amorphous silicon thin-film solar cells. Research has shown that amorphous silicon thin-film photovoltaic devices can be structured as Schottky barrier type, pin type, MIS type, or heterojunction type, of which the first three are considered to be promising as high-efficiency solar cells. i.e. 5.5 for shot key barrier type.
% (DE Carlson et al., 1977), 4.8% for MIS type
(JIB Wilson et al., 1978), and a conversion efficiency of 4.5% (Keihiro Hamakawa, 1978) has been achieved in the pin type. In the case of pin junction solar cells, it is necessary to attach a transparent electrode to the side where light enters, and ITO (In 2 O 3 + SnO 2 ) and SnO 2 have been used as the transparent electrode. However, in the case of ITO, the film factor is good but the open circuit voltage is low, and in the case of SnO 2 , the open circuit voltage is high but the film factor is poor. As a result of intensive research to improve the efficiency of pin-type photoelectric conversion, the present inventor discovered ITO-SnO 2 -p-i-
n or ITO-SnO 2 -n-i-p structure, and
It was discovered that the film factor and open circuit voltage can be greatly improved by using an amorphous silicon solar cell structure in which the SnO 2 thickness is approximately 50 Å to 500 Å. It can be used as an electromotive force element. The details will be explained below. The amorphous silicon of the present invention can be produced using a mixed gas of silane (SiH 4 ) or its derivatives, fluorinated silane or its derivatives, or a mixture thereof, and hydrogen or an inert gas such as argon or helium diluted with hydrogen. It can be obtained by high frequency glow decomposition or direct current glow discharge decomposition using a capacitive coupling method or an inductive coupling method. The concentration of silane in the mixed gas is usually 0.5 to 50%, preferably 1 to 20%. The temperature of the substrate is preferably 200 to 300°C, and includes any substrate necessary for the construction of a solar cell, such as glass with a transparent electrode deposited, polymer film, metal, etc. Typical examples of the basic configuration of solar cells are shown in Figures 1a and 1b. A is a type that irradiates light from the p side, for example, glass-ITO-SnO 2 -p-i-n-
The configuration of Al, b is the type that irradiates light from the n side,
For example, it has a structure of stainless steel-pin-SnO 2 -ITO. In addition, a structure in which a thin insulating layer or a thin metal layer is provided between the p-layer and the transparent electrode may be used. Basically ITO-SnO 2 -p-i-n or ITO-
Any structure may be used as long as it is based on an amorphous silicon solar cell having a SnO 2 -nip structure and a SnO 2 thickness of approximately 50 Å to 500 Å. A localized level density of about 10 17 cm -3 eV -1 or less with a carrier lifetime of about 10 -7 seconds or more obtained by glow discharge decomposition of silane or its derivatives, or fluorinated silanes or its derivatives, or mixtures thereof. and
Intrinsic amorphous silicon (hereinafter referred to as i-type a-Si) with a mobility of 10 -3 cm 2 /V or more is used as the i layer, and a pin junction structure is created in which p-type and n-type doped semiconductors are joined. However, in the present invention , preferably at least one of the p layer or the n layer , that is, at least the side in contact with SnO ) It is preferable to use an amorphous semiconductor represented by Cx or a-Si (1-y) Ny (hereinafter referred to as a specific amorphous semiconductor). Of course, it may be used for both the p layer and the n layer. Regarding these specific amorphous semiconductors,
Regarding the invention of the present inventors, the patent application No. 1982 filed simultaneously today and the patent application filed earlier in 1982
See No.-12313 and Japanese Patent Application No. 56-22690. Also, doped layers that do not use specific amorphous semiconductors are
When the i-type a-Si is used as a p-type, it may be doped with an element of the periodic table group, and when it is used as an n-type, it may be doped with an element of the periodic table group. The ITO film of the present invention contains 3-15wt% SnO2
It is made by electron beam evaporation or sputter deposition of In 2 O 3 . Further, the SnO 2 film of the present invention is usually doped with a small amount of Sb and is formed by electron beam evaporation, sputter evaporation, or CVD. When attaching to the transparent substrate 1 shown in FIG. 1a, for example, an ITO film is deposited on a glass plate, and a SnO 2 film is further applied to a thickness of 30 Å to 500 Å. The thickness of the ITO film is arbitrary, but preferably 600 Å to 4000 Å. Particularly preferred is 600 to 2000 Å. When using the metal substrate 13 of FIG. 1b, 12,1
After applying an amorphous semiconductor of 1.10 nm, SnO 2 of 30 to 500 Å is applied thereon, and ITO is further deposited. Next, the effects of the present invention will be explained using the results of a comparative test. <Comparative Test 1> The substrates on which amorphous semiconductors are to be deposited are: glass/ITO (1000Å, 15Ω/hole), glass/SnO 2 (2500Å, 25Ω/hole), glass/ITO (1000Å)/SnO 2 (30Å). (15
Ω/mouth), Glass/ITO (1000Å)/SnO 2 (50Å) (15
Ω/mouth), Glass/ITO (1000Å)/SnO 2 (100Å) (15
Ω/mouth), Glass/ITO (1000Å)/SnO 2 (300Å) (15
Ω/mouth), Glass/ITO (1000Å)/SnO 2 (500Å) (15
Seven types of Ω/mouth) were used. Both ITO and SnO 2 were deposited by sputtering. Using a quartz reaction tube with an inner diameter of 11 cm, the substrate temperature was maintained at 250 °C, glow discharge decomposition was performed at a high frequency of 13.56 MHz, and amorphous semiconductors were deposited in the order of p, i, and n according to the following conditions. in an area of 1 cm 2
A pin-type solar cell was fabricated by depositing Al. The manufacturing conditions for the p, i, and n layers are as follows. Γ Intrinsic amorphous silicon (i,a-Si:
H) SiH 4 /H 2 3Torr, thickness 5000Å Γ n-type amorphous silicon (n, a-Si:
H) PH 3 /SiH 4 =0.5%, 3Torr, thickness 500Å Γ p-type amorphous silicon (p, a-Si:
H) B 2 H 6 /SiH 4 =0.2%, 3Torr, thickness 100Å Γ p-type amorphous silicon carbide (p, a-SiC:H) B 2 H 6 /(SiH 4 +CH 4 ) = 0.1% SiH 4 /CH 4 =3/7, 3Torr, thickness 100Å Γ p-type amorphous silicon nitride (p, a-SiN:H) B 2 H 6 / (SiH 4 +NH 3 ) = 0.1% SiH 4 /NH 3 = 1/1, 3Torr, thickness 100Å AM-1 shows how the conversion efficiency of the manufactured pin-type solar cell varies depending on the substrate.
(100 mW/cm 2 ) using a solar simulator. The results are shown in Tables 1-1, 1-2, and 1-3. In these tables, JSc, Voc,
FF and η represent short circuit current, open circuit voltage, foil factor, and conversion efficiency, respectively.

【表】 池の場合のデータである。
[Table] Data for ponds.

【表】 陽電池の場合のデータである。
[Table] Data for solar cells.

【表】 陽電池の場合のデータである。
上記表1―1によれば、p層にa―Si:Hを用
いたPin接合太陽電池の場合でも、基板すなわ
ちガラス/ITO(1000Å)/SnO2(100Å)(15
Ω/口)を用いると変換効率η(%)の向上する
こが判かるが、この効率ηの向上効果は、ガラ
ス/ITO/SnO2タイプの基板をp型a―SiC:H
やp型a―SiN:Hに直接接触させた場合に特に
顕著に生じるものである(表1―2,及び1―3
参照)。また表1―2から、同じガラス/ITO/
SnO2タイプの基板であつても、SnO2の厚みが50
Å以上ある基板()の方が、50Åより薄い
基板()よりも好ましいことが判かる。また
SnO2の厚みが500Åの基板()の場合、変換効
率がやゝ低下することも判明した。 <比較試験 2> 金属基板としてステンレススチール板を用い、
比較試験1と同様のグロー放電分解を行い、下記
の条件に従つてアモルフアス半導体をp―i―n
の順にステンレススチール板の上に堆積し、次い
でn層に接して透明電極を電子ビーム蒸着してイ
ンバーテツドpin型太陽電池を製作した。 透明電極としては ○イ ITO(1000Å、15Ω/口) ○ロ SnO2(2500Å、25Ω/口) ○ハ SnO2(100Å)+ITO(1000Å)(15Ω/口) を用いた。但し、○ハの場合n層と接するのはITO
膜ではなくて、SnO2膜である。 各層の製造条件は次のとおりである。 Γ 真性アモルフアスシリコン
(i、a―Si:H) 厚み4000Å Γ p型アモルフアスシリコン
(p、a―Si:H) B2H6/SiH4=1.0%、厚み300Å Γ n型アモルフアスシリコン
(n、a―Si:H) PH3/SiH4=0.5%、厚み100Å Γ n型アモルフアスシリコン・カーバイト
(n、a―SiC:H) PH3/(SiH4+CH4)=0.5% SiH4/CH4=1/1、厚み100Å Γ n型アモルフアスシリコン・ナイトライド
(n、a―SiN:H) PH3/(SiH4+NH3)=0.5% SiH4/NH3=1/1、厚み100Å 製作した逆pin型太陽電池の変換効率が、透明
電極の相違に応じて如何に異なるかを、前述のソ
ーラーシユミレーターを用いて測定した。その結
果は表2―1、2―2、2―3に示す通りであ
る。
[Table] Data for solar cells.
According to Table 1-1 above, even in the case of a pin junction solar cell using a-Si:H for the p layer, the substrate, that is, glass/ITO (1000 Å)/SnO 2 (100 Å) (15
It can be seen that the conversion efficiency η (%) is improved by using a glass/ITO/SnO 2 type substrate with a p-type a-SiC:H
This phenomenon is particularly noticeable when it comes into direct contact with p-type a-SiN:H (Tables 1-2 and 1-3).
reference). Also, from Table 1-2, the same glass /ITO/
Even if it is a SnO 2 type substrate, the thickness of SnO 2 is 50
It can be seen that a substrate () with a thickness of Å or more is preferable to a substrate () with a thickness of less than 50 Å. Also
It was also found that in the case of a substrate () with a SnO 2 thickness of 500 Å, the conversion efficiency decreased slightly. <Comparative test 2> Using a stainless steel plate as the metal substrate,
The same glow discharge decomposition as in Comparative Test 1 was carried out, and the amorphous semiconductor was p-i-n according to the following conditions.
A transparent electrode was deposited on a stainless steel plate in this order, and then a transparent electrode was deposited by electron beam evaporation in contact with the n-layer to fabricate an inverted pin type solar cell. As the transparent electrodes, ○A ITO (1000Å, 15Ω/hole) ○B SnO 2 (2500Å, 25Ω/hole) ○C SnO 2 (100Å) + ITO (1000Å) (15Ω/hole) were used. However, in the case of ○C, the material in contact with the n layer is ITO.
It's not a film, but a SnO 2 film. The manufacturing conditions for each layer are as follows. Γ True amorphous silicon
(i, a-Si:H) Thickness 4000Å Γ p-type amorphous silicon
(p, a-Si:H) B 2 H 6 /SiH 4 =1.0%, thickness 300Å Γ n-type amorphous silicon
(n,a-Si:H) PH 3 /SiH 4 =0.5%, thickness 100Å Γ n-type amorphous silicon carbide (n,a-SiC:H) PH 3 /(SiH 4 +CH 4 ) = 0.5% SiH 4 /CH 4 = 1/1, thickness 100Å Γ n-type amorphous silicon nitride (n, a-SiN:H) PH 3 / (SiH 4 +NH 3 ) = 0.5% SiH 4 /NH 3 = 1/ 1. Thickness: 100 Å We used the solar simulator described above to measure how the conversion efficiency of the fabricated inverted pin type solar cells differed depending on the transparent electrode. The results are shown in Tables 2-1, 2-2, and 2-3.

【表】【table】

【表】【table】

【表】 上記表2―1、2―2、2―3によれば、n層
側から光を入射する逆pin型の太陽電池において
も、n層の次にSnO2膜をつけたのち、ITOをつ
けた構造の透明電極(○ハ)を用いることにより、
著しい効率の向上を実現できることが認められ
る。 以上を要するに、本発明は各種のアモルフアス
シリコン系太陽電池の変換効率を極めて容易に向
上させ得る点で斯界に画期的な寄与をなすもので
ある。
[Table] According to Tables 2-1, 2-2, and 2-3 above, even in reverse pin type solar cells in which light enters from the n-layer side, after attaching a SnO 2 film next to the n-layer, By using a transparent electrode with an ITO structure (○c),
It is recognized that significant efficiency improvements can be achieved. In summary, the present invention makes an epoch-making contribution to the field in that it can extremely easily improve the conversion efficiency of various amorphous silicon solar cells.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは、いずれも本発明に係る太陽電
池の基本構成を示す略示側面図であつて、同aは
透明電極を用いるタイプの基本構成、同bは金属
基板を用いるタイプの基本構成を示すものであ
る。 1……透明基板、2……ITO膜、3……SnO2
膜、4……p型アモルフアス半導体、5……真性
アモルフアスシリコン、6……n型アモルフアス
シリコン、7……アルミニユーム電極、8……
ITO膜、9……SnO2膜、10……n型アモルフ
アス半導体、11……真性アモルフアスシリコ
ン、12……p型アモルフアスシリコン、13…
…金属基板。
Figures 1a and 1b are schematic side views showing the basic configuration of a solar cell according to the present invention, in which figure 1a is the basic configuration of a type using transparent electrodes, and figure 1b is a schematic side view of the type using a metal substrate. This shows the basic configuration. 1...Transparent substrate, 2...ITO film, 3...SnO 2
Film, 4... p-type amorphous semiconductor, 5... intrinsic amorphous silicon, 6... n-type amorphous silicon, 7... aluminum electrode, 8...
ITO film, 9... SnO 2 film, 10... n-type amorphous semiconductor, 11... intrinsic amorphous silicon, 12... p-type amorphous silicon, 13...
...Metal substrate.

Claims (1)

【特許請求の範囲】 1 p―i―n接合アモルフアスシリコン系太陽
電池において、ITO―SnO2―p―i―n又は
ITO―SnO2―n―i―pの構造で、かつSnO2
の厚みが約30Åから500Åであることを特徴とす
る高効率のアモルフアスシリコン系太陽電池。 2 前記の電池構造において、SnO2膜と接する
p層又はn層のアモルフアス半導体が、一般式a
―Si(1-x)Cx:H又はa―Si(1-y)Ny:H、又はa
―Si(1-x-y)CxNyであることを特徴とする特許請
求の範囲第1項に記載の高効率のアモルフアスシ
リコン系太陽電池。
[Claims] 1. In a p-i-n junction amorphous silicon solar cell, ITO-SnO 2 -p-i-n or
A highly efficient amorphous silicon solar cell characterized by an ITO-SnO 2 -n-i-p structure and a SnO 2 film thickness of about 30 Å to 500 Å. 2 In the above battery structure, the p-layer or n-layer amorphous semiconductor in contact with the SnO 2 film has the general formula a
-Si (1-x) Cx:H or a-Si (1-y) Ny:H or a
-Si (1-xy) CxNy Highly efficient amorphous silicon solar cell according to claim 1.
JP56112571A 1981-07-17 1981-07-17 Highly efficient amorphous silicon solar cell Granted JPS5814582A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP56112571A JPS5814582A (en) 1981-07-17 1981-07-17 Highly efficient amorphous silicon solar cell
EP82106293A EP0070509B2 (en) 1981-07-17 1982-07-14 Amorphous semiconductor and amorphous silicon photovoltaic device
DE8888117644T DE3280418T2 (en) 1981-07-17 1982-07-14 AMORPHOUS SEMICONDUCTOR AND PHOTOVOLTAIC DEVICE MADE OF AMORPHOUS SILICON.
EP88117644A EP0309000B1 (en) 1981-07-17 1982-07-14 Amorphous semiconductor and amorphous silicon photovoltaic device
DE8282106293T DE3280112D1 (en) 1981-07-17 1982-07-14 AMORPHOUS SEMICONDUCTOR AND PHOTOVOLTAIC DEVICE MADE OF AMORPHIC SILICON.
US06/399,312 US4450316A (en) 1981-07-17 1982-07-19 Amorphous silicon photovoltaic device having two-layer transparent electrode
US06/552,952 US4491682A (en) 1981-07-17 1983-11-17 Amorphous silicon photovoltaic device including a two-layer transparent electrode
US06/552,951 US4499331A (en) 1981-07-17 1983-11-17 Amorphous semiconductor and amorphous silicon photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112571A JPS5814582A (en) 1981-07-17 1981-07-17 Highly efficient amorphous silicon solar cell

Publications (2)

Publication Number Publication Date
JPS5814582A JPS5814582A (en) 1983-01-27
JPH0122991B2 true JPH0122991B2 (en) 1989-04-28

Family

ID=14590036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112571A Granted JPS5814582A (en) 1981-07-17 1981-07-17 Highly efficient amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPS5814582A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958874A (en) * 1982-09-29 1984-04-04 Toshiba Corp Amorphous silicon solar cell
JPS58151072A (en) * 1983-02-08 1983-09-08 Konishiroku Photo Ind Co Ltd Solar battery and manufacture thereof
JPS58151073A (en) * 1983-02-08 1983-09-08 Konishiroku Photo Ind Co Ltd Manufacture of solar battery
JPS59161881A (en) * 1983-03-07 1984-09-12 Semiconductor Energy Lab Co Ltd Manufacture of photoelectric conversion device
IN165761B (en) * 1983-07-28 1990-01-06 Energy Conversion Devices Inc
JPS60103683A (en) * 1983-11-10 1985-06-07 Kanegafuchi Chem Ind Co Ltd Substrate for semiconductor device
JPS61168272A (en) * 1985-01-21 1986-07-29 Semiconductor Energy Lab Co Ltd Manufacture of non-single crystal silicon solar battery
JPS6472570A (en) * 1987-09-11 1989-03-17 Sanyo Electric Co Photovoltaic device

Also Published As

Publication number Publication date
JPS5814582A (en) 1983-01-27

Similar Documents

Publication Publication Date Title
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US5942049A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
US4388482A (en) High-voltage photovoltaic cell having a heterojunction of amorphous semiconductor and amorphous silicon
JP3490964B2 (en) Photovoltaic device
US4499331A (en) Amorphous semiconductor and amorphous silicon photovoltaic device
US5730808A (en) Producing solar cells by surface preparation for accelerated nucleation of microcrystalline silicon on heterogeneous substrates
US6288325B1 (en) Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts
US4385200A (en) Photovoltaic cell having a hetero junction of amorphous silicon carbide and amorphous silicon
JPH05243596A (en) Manufacture of laminated type solar cell
US4398054A (en) Compensated amorphous silicon solar cell incorporating an insulating layer
US4396793A (en) Compensated amorphous silicon solar cell
JPS62234379A (en) Semiconductor device
JPH0122991B2 (en)
JPH0544198B2 (en)
JPH0340515B2 (en)
JPS58215083A (en) Hetero-junction photoelectric element and device therefor
JPH0121634B2 (en)
Yang et al. Microcrystalline Silicon in a-SI: H Based Multljunction Solar Cells
JP2744680B2 (en) Manufacturing method of thin film solar cell
JPH0363229B2 (en)
JPS62256481A (en) Semiconductor device
JPS6152992B2 (en)
JPH0586677B2 (en)
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
JPH0554272B2 (en)