JPH0544198B2 - - Google Patents

Info

Publication number
JPH0544198B2
JPH0544198B2 JP56022690A JP2269081A JPH0544198B2 JP H0544198 B2 JPH0544198 B2 JP H0544198B2 JP 56022690 A JP56022690 A JP 56022690A JP 2269081 A JP2269081 A JP 2269081A JP H0544198 B2 JPH0544198 B2 JP H0544198B2
Authority
JP
Japan
Prior art keywords
amorphous silicon
type
silicon nitride
layer
photoelectric device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56022690A
Other languages
Japanese (ja)
Other versions
JPS57136377A (en
Inventor
Yoshihiro Hamakawa
Yoshihisa Oowada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP56022690A priority Critical patent/JPS57136377A/en
Priority to US06/266,064 priority patent/US4388482A/en
Priority to CA000391378A priority patent/CA1176740A/en
Priority to DE8181110111T priority patent/DE3176919D1/en
Priority to AT81110111T priority patent/ATE38296T1/en
Priority to AU78224/81A priority patent/AU558650B2/en
Priority to EP81110111A priority patent/EP0053402B1/en
Priority to MX81190403A priority patent/MX157367A/en
Publication of JPS57136377A publication Critical patent/JPS57136377A/en
Priority to SG65589A priority patent/SG65589G/en
Priority to HK796/89A priority patent/HK79689A/en
Publication of JPH0544198B2 publication Critical patent/JPH0544198B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • H01L31/204Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table including AIVBIV alloys, e.g. SiGe, SiC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は、アモルフアスシリコンナイトライ
ド/アモルフアスシリコンヘテロ接合光電素子に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amorphous silicon nitride/amorphous silicon heterojunction optoelectronic device.

シラン(SiH4)のプラズマ分解法で得られる
アモルフアスシリコンは、W.E.Spear等によつ
て、PH3やB2H6でドープする事により、その伝
導度を大きく変える事ができることが発見され
(1976年)、D.E.Carlson等によつてアモルフアス
シリコンを用いた太陽電池が試作(1976年)され
て以来注目を集め、アモルフアスシリコン薄膜太
陽電池の効率を改善する研究が活発に行なわれて
いる。
WESpear and others discovered that the conductivity of amorphous silicon obtained by plasma decomposition of silane (SiH 4 ) could be greatly changed by doping it with PH 3 or B 2 H 6 (1976). Since solar cells using amorphous silicon were prototyped by Carlson et al. (1976), they have attracted attention, and research has been actively conducted to improve the efficiency of amorphous silicon thin-film solar cells.

これまでの研究により、アモルフアスシリコン
薄膜光電素子の構造としてはシヨツトキーバリヤ
ー型、pin型、MIS型、ヘテロ接合型があり、そ
のうち前三者が高効率太陽電池として有望視され
ている。すなわちシヨツトキーバリヤー型で5.5
%(D.E.カールソン他、1977年)、MIS型で4.8%
(J.I.B.ウイルソン他、1978)、pin型で4.5%(浜
川圭弘 1978)の変換効率が達成されている。
Research has shown that amorphous silicon thin-film photovoltaic devices can be structured as Schottky barrier type, pin type, MIS type, or heterojunction type, of which the first three are considered to be promising as high-efficiency solar cells. i.e. 5.5 for shot key barrier type.
% (DE Carlson et al., 1977), 4.8% for MIS type
(JIB Wilson et al., 1978), and a conversion efficiency of 4.5% (Keihiro Hamakawa, 1978) has been achieved in the pin type.

pinジヤンクシヨン型太陽電池の場合、p型又
はn型アモルフアスシリコンではキヤリヤーの寿
命が短かく、有効なキヤリヤーにならず、また光
の吸収係数がi層に比べて大きい事からp層での
光の吸収ロスが大きい点に問題があつた。
In the case of pin junction type solar cells, p-type or n-type amorphous silicon has a short carrier life and is not an effective carrier, and the light absorption coefficient is larger than that of the i-layer, so light in the p-layer is The problem was that the absorption loss was large.

このような欠点を改良する為にインバーテイド
pin型の光電素子が提案されている。すなわちn
型アモルフアスシリコン側から光を照射する素子
である。この素子はp型に比べると光の吸収係数
が比較的小さい為にやや有利と考えられる。しか
しこのn型アモルフアスシリコンでも光の吸収ロ
スがある点ではp型と変りない。
Inverted to improve these shortcomings
A pin-type photoelectric element has been proposed. i.e. n
This is an element that irradiates light from the amorphous silicon side. This element is considered to be somewhat advantageous because it has a relatively small light absorption coefficient compared to the p-type element. However, this n-type amorphous silicon is no different from the p-type in that there is light absorption loss.

本発明は、光電変換効率の改善されたアモルフ
アスシリコン系ヘテロ接合光電素子を提供するこ
とを目的とする。すなわち、本発明は、シラン又
はその誘導体,フツ化シラン又はその誘導体から
選ばれる少なくとも一種以上のガスと、アンモニ
ア、ヒドラジン等のチツ素の水素化物から選ばれ
る少なくとも一種以上のガスとの混合物をプラズ
マ分解して得られるアモルフアスシリコンナイト
ライドのドープ薄膜をpin接合光電素子のp又は
n層の少なくとも一方に用いる事により効率を大
巾に改善できることを見い出したもので、太陽電
池や光スイツチ等の光電素子として用いることが
できる。以下にその詳細を説明する。
An object of the present invention is to provide an amorphous silicon-based heterojunction photoelectric device with improved photoelectric conversion efficiency. That is, the present invention uses a mixture of at least one gas selected from silane or its derivatives, fluorinated silane or its derivatives, and at least one gas selected from nitrogen hydrides such as ammonia and hydrazine to plasma. It was discovered that the efficiency can be greatly improved by using a doped thin film of amorphous silicon nitride obtained by decomposition in at least one of the p or n layer of a pin junction photoelectric device, and it can be used in solar cells, optical switches, etc. It can be used as a photoelectric element. The details will be explained below.

本発明のアモルフアスシリコンは、シラン
(SiH4)又はその誘導体又はフツ化シラン又はそ
の誘導体、又はこれらの混合物と、水素又は水素
で希釈したアルゴン、ヘリウム等の不活性ガスと
の混合ガスを、容量結合法又は誘導結合法による
高周波グロー分解又は直流グロー放電分解するこ
とにより得られる。混合ガス中のシランの濃度
は、通常0.5〜50%、好ましくは1〜20%である。
The amorphous silicon of the present invention can be produced using a mixed gas of silane (SiH 4 ) or its derivatives, fluorinated silane or its derivatives, or a mixture thereof, and hydrogen or an inert gas such as argon or helium diluted with hydrogen. It can be obtained by high frequency glow decomposition or direct current glow discharge decomposition using a capacitive coupling method or an inductive coupling method. The concentration of silane in the mixed gas is usually 0.5 to 50%, preferably 1 to 20%.

基板の温度は200〜300℃が好ましく、透明電極
(ITO,SnO2等)を蒸着したガラスや高分子フイ
ルム、金属等、太陽電池の構成に必要なあらゆる
基板が含まれる。
The temperature of the substrate is preferably 200 to 300°C, and includes any substrate necessary for the construction of a solar cell, such as glass with a transparent electrode (ITO, SnO2, etc.) deposited on it, polymer film, metal, etc.

太陽電池の基本構成は、図−1のa,bに代表
例が示される。aはp側から光を照射するタイプ
で、例えばガラス−透明電極−p−i−n−Al
の構成、bはn側から光を照射するタイプで、例
えばステンレス−p−i−n−透明電極の構成で
ある。その他、p層と透明電極の間に薄い絶縁層
をつけたり、薄い金属層をつけた構造でもよい。
要はp−i−n接合を基本とするものであればい
かなる構成でもよい。
Typical examples of the basic configuration of solar cells are shown in Figures 1a and 1b. A is a type that irradiates light from the p side, for example, glass-transparent electrode-p-i-n-Al
The structure b is a type in which light is irradiated from the n side, for example, a stainless steel pin transparent electrode structure. In addition, a structure in which a thin insulating layer or a thin metal layer is provided between the p-layer and the transparent electrode may be used.
In short, any structure may be used as long as it is based on a pin junction.

シラン若しくはその誘導体、又はフツ化シラン
若しくはその誘導体、又はこれらの混合物のグロ
ー放電分解で得られる約10-7秒以上のキヤリヤー
寿命で約1017cm-3eV-1以下の局在準位密度および
10-3cm2/V以上の易動度をもつ真性アモルフアス
シリコン(以下、i型a−Siという)をi層とし
て、p型とn型ドープ半導体で接合したpin接合
構造にするわけであるが、本発明ではp層又はn
層の少なくとも一方、すなわちすくなくとも光を
照射する側にアモルフアスシリコンナイトライド
を用いる事を特徴とする。p層とn層の両方に用
いてもよい。又アモルフアスシリコンナイトライ
ドを用いないドープ層は、上記i型a−Siをp型
で用いる場合は周期率表族の元素でドープし、
n型で用いる場合は周期率表族の元素でドープ
すればよい。
A localized level density of about 10 17 cm -3 eV -1 or less with a carrier lifetime of about 10 -7 seconds or more obtained by glow discharge decomposition of silane or its derivatives, or fluorinated silanes or its derivatives, or mixtures thereof. and
Intrinsic amorphous silicon (hereinafter referred to as i-type a-Si) with a mobility of 10 -3 cm 2 /V or more is used as the i layer, and a pin junction structure is created in which p-type and n-type doped semiconductors are joined. However, in the present invention, p layer or n
It is characterized in that amorphous silicon nitride is used in at least one of the layers, that is, at least on the side that is irradiated with light. It may be used for both the p layer and the n layer. In addition, the doped layer that does not use amorphous silicon nitride is doped with an element of the periodic table group when the above i-type a-Si is used as p-type,
When used as n-type, it may be doped with an element of the periodic table group.

本発明のアモルフアスシリコンナイトライド
は、その製法を例示するとシラン又はその誘導
体,フツ化シラン又はその誘導体から選ばれるシ
リコン化合物の少なくとも一種以上のガスと、ア
ンモニア,ヒドラジン等のチツ素の水素化物から
選ばれる少なくとも一種以上のガスとの混合物を
プラズマ分解して得られる。上記のシリコン化合
物としてはシランSiH4又はSioH2o+2で示される
シラン誘導体、又はSiFnH4-n(m=1〜4)で示
される誘導体およびSioFnH2o+2-nで示される誘
導体で代表されるシリコンの水素及び/又はフツ
化物などがある。要はアモルフアスシリコンナイ
トライドを得るためのシリコン源としては、Siの
水素及び/又はフツ素誘導体で蒸気圧のあるも
の、またチツ素源としては、Nの水素化物で蒸気
圧のあるものでありさえすればいかなるものでも
よいのである。必要により水素や不活性ガスで希
釈して用いてもよいことは言うまでもない。アモ
ルフアスシリコンナイトライドの組成について
は、グロー放電分解して得られる膜の組成を用い
Si原子数とN原子数の比a−Si(1-X)N(X)で示す。
例えば、膜中のN原子とSi原子の割合が1:1の
場合a−Si(0.5)N(0.5)と示す。膜中のN原子とSi原
子の組成比はIMA,SIMS,オージエ、エスカ、
等の電子分光によつて求める事ができる。
The amorphous silicon nitride of the present invention can be produced from at least one gas of a silicon compound selected from silane or its derivative, fluorinated silane or its derivative, and a hydrogen hydride of nitrogen such as ammonia or hydrazine. It is obtained by plasma decomposition of a mixture with at least one selected gas. The above silicon compounds include silane SiH 4 or a silane derivative represented by Si o H 2o+2 , or a derivative represented by SiF n H 4-n (m=1 to 4) and Si o F n H 2o+2- Examples include silicon hydrogen and/or fluoride represented by the derivative represented by n . In short, the silicon source for obtaining amorphous silicon nitride is a hydrogen and/or fluorine derivative of Si that has a vapor pressure, and the nitrogen source is a hydride of N that has a vapor pressure. It can be anything as long as it exists. Needless to say, it may be used after being diluted with hydrogen or an inert gas if necessary. Regarding the composition of amorphous silicon nitride, we used the composition of the film obtained by glow discharge decomposition.
The ratio of the number of Si atoms to the number of N atoms is expressed as a-Si (1-X) N (X) .
For example, when the ratio of N atoms to Si atoms in the film is 1:1, it is expressed as a-Si (0.5) N (0.5) . The composition ratio of N atoms and Si atoms in the film is IMA, SIMS, Augier, Esca,
It can be determined by electron spectroscopy such as

本発明ではa−Si(1-X)N(X)のアトミツクフラク
シヨンXが約0.05から約0.95である事が好まし
い。本発明ではa−Si(1-X)N(X)をドーピングして
n型又はp型として用いるが、n型ではリン等の
周期率表族の元素でドーピングする。具体的に
は、a−Si(1-X)N(X)を作る際にPH3を、例えばシ
ラン,アンモニアと共に混合してグロー放電分解
して得られる。ドーピング濃度については、室温
での電気伝導率が約10-7(Ω・cm)-1以上、好まし
くは10-6(Ω・cm)-1以上になるようにコントロー
ルすれば良い。通常はa−Si(1-X)N(X)中に約
0.01atom%から10atom%好ましくは0.02atom%
から2.0atom%が用いられる。p型の場合はボロ
ン等の周期率表族の元素でドーピングする。具
体的には、B2H6を、例えばシラン,アンモニア
と共に混合してグロー放電分解して得られる。ド
ーピング濃度は室温での電気伝導率が約10-8
(Ω・cm)-1以上好ましくは10-7(Ω・cm)-1以上に
なるようにコントロールすればよい。通常はa−
Si(1-X)N(X)中に約0.01atom%から10atom%好まし
くは0.02atom%から2.0atom%が用いられる。
In the present invention, the atomic fraction X of a-Si (1-X) N (X) is preferably from about 0.05 to about 0.95. In the present invention, a-Si (1-X) N (X) is doped and used as n-type or p-type, but n-type is doped with an element of the periodic table group such as phosphorus. Specifically, when producing a-Si (1-X) N (X) , PH 3 is mixed with, for example, silane and ammonia and then decomposed by glow discharge. The doping concentration may be controlled so that the electrical conductivity at room temperature is approximately 10 -7 (Ω·cm) -1 or more, preferably 10 -6 (Ω·cm) -1 or more. Usually about a-Si (1-X) N (X)
0.01atom% to 10atom% preferably 0.02atom%
2.0 atom% is used. In the case of p-type, doping is performed with an element of the periodic table group such as boron. Specifically, it is obtained by mixing B 2 H 6 with, for example, silane and ammonia and decomposing it by glow discharge. The doping concentration is such that the electrical conductivity at room temperature is approximately 10 -8
(Ω・cm) -1 or more, preferably 10 -7 (Ω・cm) -1 or more should be controlled. Usually a-
About 0.01 atom % to 10 atom % and preferably 0.02 atom % to 2.0 atom % are used in Si (1-X) N (X) .

本発明のa−Si(1-X)N(X)においてもH又はFが
重要な役割をしている。フツ化シラン,シランの
グロー放電分解で得られるアモルフアスシリコン
中のH又はFと同様に、ダングリングボンドのタ
ーミネーターとして働らく為と考えられる。H及
び/又はFの濃度は基板温度等の製作条件で大き
く変わるが、本発明では基板温度は200℃〜350℃
が好ましく、この場合、3atom%から20atom%
が膜中に含まれる。
H or F also plays an important role in a-Si (1-X) N (X) of the present invention. This is thought to be because it acts as a terminator for dangling bonds, similar to H or F in fluorinated silane and amorphous silicon obtained by glow discharge decomposition of silane. The concentration of H and/or F varies greatly depending on manufacturing conditions such as substrate temperature, but in the present invention, the substrate temperature is 200°C to 350°C.
is preferable, in this case 3atom% to 20atom%
is contained in the membrane.

上述したa−Si(1-X)N(X)とa−Siのヘテロ接合
光電素子について以下に具体的に説明すると、次
の通りである。代表的な構造は透明電極/p型a
−Si(1-X)N(X)/i型a−Si/n型a−Si/電極の
構造で、透明電極側から光を照射する。透明電極
はITOやSoO2特にSoO2が好ましく、ガラス基板
にあらかじめ蒸着して用いたりp型a−Si(1-X)
N(X)上に直接蒸着してもよい。p型a−Si(1-X)
N(X)層の厚みは約30Åから300Å好ましくは50Å
から200Å、i型a−Si層の厚みは本発明の場合
限定されないが約2500〜10000Åが用いられる。
n型a−Si層はオーミツクコンタクトをとるため
の層で厚みは限定されないが約150Å〜600Åが用
いられる。又このn型a−Siの代わりに本発明の
n型a−Si(1-X)N(X)を用いてもよい。
The above-mentioned a-Si (1-X) N (X) and a-Si heterojunction photoelectric device will be specifically explained below. Typical structure is transparent electrode/p type a
-Si (1-X) N (X) /i-type a-Si/n-type a-Si/electrode structure, and light is irradiated from the transparent electrode side. The transparent electrode is preferably ITO or S O O 2 , especially S O O 2 , and may be used by pre-evaporating on a glass substrate or p-type a-Si (1-X)
It may also be deposited directly onto N (X) . p-type a-Si (1-X)
The thickness of the N (X) layer is approximately 30 Å to 300 Å, preferably 50 Å
to 200 Å, and the thickness of the i-type a-Si layer is not limited in the case of the present invention, but approximately 2,500 to 10,000 Å is used.
The n-type a-Si layer is a layer for establishing ohmic contact, and its thickness is not limited, but is approximately 150 Å to 600 Å. Moreover, n-type a-Si (1-X) N (X) of the present invention may be used instead of this n-type a-Si.

もう1つの代表的な構造は 透明電極/n型a−Si(1-X)N(X)/i型a−Si/
p型a−Si/電極の構造で、透明電極側から光を
照射する。n型a−Si(1-X)N(X)層の厚みは約30Å
から300Å好ましくは50Å〜200Å、i型a−Si層
の厚みは限定されないが約2500Å〜10000Åが通
常用いられる。p型a−Si層の厚みは限定されな
いが約150Å〜600Åが用いられる。又このp型a
−Siの代わりに本発明のp型a−Si(1-X)N(X)を用
いても良い。透明電極の素材及び蒸着法について
は前同様である。
Another typical structure is transparent electrode/n-type a-Si (1-X) N (X) /i-type a-Si/
With a p-type a-Si/electrode structure, light is irradiated from the transparent electrode side. The thickness of the n-type a-Si (1-X) N (X) layer is approximately 30 Å
to 300 Å, preferably 50 Å to 200 Å, and the thickness of the i-type a-Si layer is not limited, but is usually about 2,500 Å to 10,000 Å. The thickness of the p-type a-Si layer is not limited, but approximately 150 Å to 600 Å is used. Also, this p type a
-Si may be replaced by p-type a-Si (1-X) N (X) of the present invention. The material and vapor deposition method for the transparent electrode are the same as before.

次に実施例により本発明の効果について説明す
る。内径11cmの石英反応管を用い14.56MHzの高
周波でグロー放電分解を行う。i型a−Siは、水
素で希釈したシランを2〜10Torrでグロー放電
分解して得られる。n型a−Siは水素で希釈した
シランとフオスフイン(PH3)(PH3/SiH4=0.5
モル%)を同様にグロー放電分解して得られる。
p型a−Si(1-X)N(X)は水素で希釈したシラン、ア
ンモニア(NH3),ジポラン(B2H6)〔B/(Si
+N)=0.50atom%〕を同様にグロー放電分解し
て得られる。ここでa−Si(1-X)N(X)は、グロー放
電時のガス組成を変量してそのアトミツクフラク
シヨンXが0.75〜0.05になるようにした。
Next, the effects of the present invention will be explained with reference to Examples. Glow discharge decomposition is performed using a high frequency of 14.56MHz using a quartz reaction tube with an inner diameter of 11cm. I-type a-Si is obtained by glow discharge decomposition of silane diluted with hydrogen at 2 to 10 Torr. N-type a-Si is made of silane diluted with hydrogen and phosphine (PH 3 ) (PH 3 /SiH 4 = 0.5
% by mole) in a similar manner by glow discharge decomposition.
p-type a-Si (1-X) N (X) is silane diluted with hydrogen, ammonia (NH 3 ), diporane (B 2 H 6 ) [B/(Si
+N)=0.50 atom%] in the same way by glow discharge decomposition. Here, a-Si (1-X) N (X) was made so that its atomic fraction X was 0.75 to 0.05 by varying the gas composition during glow discharge.

太陽電池の構成は、25Ω/□のSoO2薄膜のつい
たガラス基板のSoO2面にp型a−Si(1-X)N(X),i
型a−Si,n型a−Siの順に堆積し最後に3.3mm2
のアルミニウムを蒸着してAM−1(100mW/
cm2)のソーラーシユミレーターで太陽電池特性を
調べた。グロー放電時の基板温度は250℃で行つ
た。又i層は5000Å、n層は500Å、p型a−
Si(1-X)N(X)層の厚みは135Åである。
The structure of the solar cell is that p - type a - Si (1-X) N (X) , i
Deposit type a-Si, n-type a-Si in order, and finally 3.3mm 2
AM-1 (100mW/
cm 2 ) solar simulator to investigate solar cell characteristics. The substrate temperature during glow discharge was 250°C. Also, the i-layer is 5000 Å, the n-layer is 500 Å, and the p-type a-
The thickness of the Si (1-X) N (X) layer is 135 Å.

p型a−Si(1-X)N(X)の膜組成による太陽電池特
性を図−2に示す。この図から判るようにシラン
100%(Si1N0)の場合、変換効率(以下、ηと
いう)4.6%であるのに対して本発明のa−Si(1-X)
N(X)を用いるとX=0.05でもη=5.45%と増加し、
X=0.2ではη=6.5%にも改善される。X=0.4で
はη=6.75%にも達しシラン100%の時に比し極
めて高い値が得られる。ここで注目すべき点はa
−Si(1-X)N(X)は光学的禁止帯巾がa−Siより大き
くなることから短絡電流(Jsc)の増加は当然で
あるにしても開放電圧(Voc)の増加は予想外
で、この両者の改良によつてこのような効率の改
善がなされているのである。
Figure 2 shows the solar cell characteristics depending on the film composition of p-type a-Si (1-X) N (X) . As you can see from this figure, silane
In the case of 100% (Si 1 N 0 ), the conversion efficiency (hereinafter referred to as η) is 4.6%, whereas the a-Si (1-X) of the present invention
When N (X) is used, even when X = 0.05, it increases to η = 5.45%,
At X=0.2, it is improved to η=6.5%. When X=0.4, η=6.75%, which is an extremely high value compared to when silane is 100%. The point to note here is a.
-Si (1-X) N (X) has a larger optical forbidden band than a-Si, so although it is natural that the short circuit current (Jsc) will increase, the increase in the open circuit voltage (Voc) is unexpected. These improvements in efficiency have been achieved by improving both of these aspects.

Xが0.5以上で効率は低下傾向を示すが、これ
はp型a−Si(1-X)N(X)の抵抗が大きくなる事によ
るフイルフアクター(以下、FFと言う)の低下
であり、短絡電流Jscと開放電圧Vocはほとんど
変りなく、本発明のa−Si(1-X)N(X)を用いる事に
よつて、p層での光吸収ロスの減少によるJscの
増加と開放電圧Vocの増加により、効率の改良が
できたものと考えられる。
The efficiency tends to decrease when X is 0.5 or more, but this is due to a decrease in the film factor (hereinafter referred to as FF) due to the increased resistance of p-type a-Si (1-X) N (X ). , the short circuit current Jsc and the open circuit voltage Voc are almost unchanged, and by using the a-Si (1-X) N (X) of the present invention, Jsc increases and the open circuit voltage decreases due to the reduction of optical absorption loss in the p layer. It is thought that the efficiency was improved by increasing the voltage Voc.

これらの結果はSiF4とNH3を用いても全く同
様であつた。
These results were exactly the same even when SiF 4 and NH 3 were used.

次にn型a−Si(1-X)N(X)を用いる実施例につい
て説明する。ステンレス基板上にB2H6を1モル
%ドープしたp型a−Siを200Å、その上にi型
a−Siを5000Å、さらにPH3でドープしたn型a
−Si(1-X)N(X)を100Åグロー放電分解して堆積させ
る。a−SiはシランSiH4を、a−Si(1-X)N(X)
SiH4とNH3を夫々用いてグロー放電分解した。
さらにITOを電子ビーム蒸着して同様に太陽電池
特性を調べた。n型a−Si(1-X)N(X)のPのドープ
量をP/(Si+N)=0.5atom%としてアトミツ
クフラクシヨンXを0.05から0.75まで変量した場
合の太陽電池特性を図−3に示す。Xが0.4まで
はほぼ連続的にJscが増加し、FF,Vocも増加す
る。一方FFはX>0.3で低下している為にηも低
下するがX=0.2では変換効率は6.5%にも改良さ
れている。n型a−Si(図3中でX=0)の場合
η=4.9%でありX=0.05〜0.95の間で著しい改良
を示す。
Next, an example using n-type a-Si (1-X) N (X) will be described. On a stainless steel substrate, 200 Å of p-type a-Si doped with 1 mol% of B 2 H 6 , 5000 Å of i-type a-Si on top of that, and n-type a doped with PH 3 .
−Si (1-X) N (X) is decomposed and deposited by 100 Å glow discharge. a-Si is silane SiH 4 , a-Si (1-X) N (X) is
Glow discharge decomposition was performed using SiH 4 and NH 3 , respectively.
Furthermore, ITO was deposited by electron beam evaporation and the solar cell characteristics were similarly investigated. The figure shows the solar cell characteristics when the atomic fraction Shown in 3. Jsc increases almost continuously until X reaches 0.4, and FF and Voc also increase. On the other hand, since FF decreases when X>0.3, η also decreases, but when X=0.2, the conversion efficiency is improved to 6.5%. In the case of n-type a-Si (X=0 in FIG. 3), η=4.9%, which shows a significant improvement between X=0.05 and 0.95.

シランのグロー放電分解でアンモニアを混合し
てグロー放電分解してアモルフアスシリコンナイ
トライドの得られる事は既に知られている。しか
しながら、a−Si1-XNXは絶縁物であり、光電素
子に応用した例は全くなかつた。
It is already known that amorphous silicon nitride can be obtained by glow discharge decomposition of silane with ammonia mixed therein. However, a-Si 1-X N X is an insulator, and there have been no examples of its application to photoelectric devices.

本発明は、光学的バンドギヤツプが1.85eV以
上で、20℃における電気伝導率が10-8(Ω・cm)-1
以上であるアモルフアスシリコンナイトライドの
p型又はn型ドープ薄膜をpin接合光電素子の窓
材料に利用することにより、大巾な効率を改善し
たものであり、その効果は驚くべきものである。
The present invention has an optical band gap of 1.85 eV or more and an electrical conductivity of 10 -8 (Ω cm) -1 at 20°C.
By using the above p-type or n-type doped thin film of amorphous silicon nitride as a window material for a pin junction photoelectric device, the efficiency has been greatly improved, and the effect is surprising.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1aはp層側から光を照射するタイプの光
電素子を示す構造図であつて、図中9はガラス、
10は透明電極、11はp型a−Si(1-X)N(X)、1
2はi型a−Si、13はn型半導体(例えばn型
a−Si)、14は電極である。同bはn層側から
光を照射するタイプを示す構造図で、15は電極
基板、16はp型a−Si、17はi型a−Si、1
8はn型a−Si(1-X)N(X)、19は透明電極である。
図−2はp型a−Si(1-X)N(X)/i−n a−Siヘ
テロ接合光電素子において、Bのドープ量をB/
(Si+N)=0.5atom%とした時のXの変化による
太陽電池特性を示すグラフである。このグラフに
おいて、1は短絡電流Jsc(mA/cm2)、2はフイ
ルフアクターFF、3は開放電圧Voc(volts)、4
は変換効率η(%)である。図−3は、n型a−
Si(1-X)N(X)/i−p a−Siヘテロ接合光電素子
においてリン(P)のドープ量をP/(Si+N)
=0.5atom%とした時のXによる太陽電池特性の
変化を示すグラフである。5はJsc、6はFF、7
はVoc、8はηを示す。
Figure 1a is a structural diagram showing a type of photoelectric element that irradiates light from the p-layer side.
10 is a transparent electrode, 11 is p-type a-Si (1-X) N (X) , 1
2 is an i-type a-Si, 13 is an n-type semiconductor (for example, n-type a-Si), and 14 is an electrode. 1B is a structural diagram showing a type in which light is irradiated from the n-layer side, 15 is an electrode substrate, 16 is a p-type a-Si, 17 is an i-type a-Si, 1
8 is an n-type a-Si (1-X) N (X) , and 19 is a transparent electrode.
Figure 2 shows the doping amount of B in a p-type a-Si (1-X) N (X) /i-n a-Si heterojunction photoelectric device.
It is a graph showing solar cell characteristics depending on changes in X when (Si+N)=0.5 atom%. In this graph, 1 is the short circuit current Jsc (mA/cm 2 ), 2 is the film factor FF, 3 is the open circuit voltage Voc (volts), and 4
is the conversion efficiency η (%). Figure 3 shows n-type a-
Si (1-X) N (X) /i-p The doping amount of phosphorus (P) in a-Si heterojunction photoelectric device is P/(Si+N)
It is a graph showing changes in solar cell characteristics due to X when =0.5atom%. 5 is Jsc, 6 is FF, 7
indicates Voc, and 8 indicates η.

Claims (1)

【特許請求の範囲】 1 i層に真性アモルフアスシリコンを用いたp
−i−n接合素子の表裏両面に電極を設けてなる
アモルフアス太陽電池において、少なくとも光を
照射する側のドープ層に、光学的バンドギヤツプ
が1.85eV以上で、20℃における電気伝導率が10-8
(Ω・cm)-1以上である一般式a−Si(1-X)N(X)で示
されるアモルフアス半導体のp型又はn型ドープ
薄膜を用いることを特徴とするアモルフアスシリ
コンナイトライド/アモルフアスシリコンヘテロ
接合光電素子。 2 前記の一般式a−Si(1-X)N(X)で表わされるア
モルフアスシリコンナイトライドは、そのアトミ
ツクフラクシヨンXが約0.05から約0.95である事
を特徴とする特許請求の範囲第1項記載のアモル
フアスシリコンナイトライド/アモルフアスシリ
コンヘテロ接合光電素子。 3 前記アモルフアスシリコンナイトライドは、
周期率表族の元素でドープしたp型層である事
を特徴とする特許請求の範囲第1項又は第2項記
載のアモルフアスシリコンナイトライド/アモル
フアスシリコンヘテロ接合光電素子。 4 前記アモルフアスシリコンナイトライドは、
その厚みが約30Åから約300Åのp型ドープ層で
ある事を特徴とする特許請求の範囲第1項、第2
項又は第3項記載のアモルフアスシリコンナイト
ライド/アモルフアスシリコンヘテロ接合光電素
子。 5 前記アモルフアスシリコンナイトライドは、
周期率表族の元素でドープしたn型層である事
を特徴とする特許請求の範囲第1項又は第2項記
載のアモルフアスシリコンナイトライド/アモル
フアスシリコンヘテロ接合光電素子。 6 前記アモルフアスシリコンナイトライドは、
その厚みが約30Åから約300Åのn型ドープ層で
ある事を特徴とする特許請求の範囲第1項、第2
項又は第5項記載のアモルフアスシリコンナイト
ライド/アモルフアスシリコンヘテロ接合光電素
子。
[Claims] 1. A p-type film using intrinsic amorphous silicon in the i-layer.
In an amorphous solar cell in which electrodes are provided on both the front and back surfaces of a -i-n junction element, at least the doped layer on the side to which light is irradiated has an optical band gap of 1.85 eV or more and an electrical conductivity of 10 -8 at 20°C.
cm) -1 or more, amorphous silicon nitride/ Amorphous silicon heterojunction photoelectric device. 2. Claims characterized in that the amorphous silicon nitride represented by the general formula a-Si (1-X) N (X) has an atomic fraction X of about 0.05 to about 0.95. 2. The amorphous silicon nitride/amorphous silicon heterojunction photoelectric device according to item 1. 3 The amorphous silicon nitride is
The amorphous silicon nitride/amorphous silicon heterojunction photoelectric device according to claim 1 or 2, characterized in that the p-type layer is doped with a periodic table group element. 4 The amorphous silicon nitride is
Claims 1 and 2 are characterized in that the p-type doped layer has a thickness of about 30 Å to about 300 Å.
The amorphous silicon nitride/amorphous silicon heterojunction photoelectric device according to item 1 or 3. 5 The amorphous silicon nitride is
The amorphous silicon nitride/amorphous silicon heterojunction photoelectric device according to claim 1 or 2, characterized in that the n-type layer is doped with an element of the periodic table group. 6 The amorphous silicon nitride is
Claims 1 and 2 are characterized in that the layer is an n-type doped layer with a thickness of about 30 Å to about 300 Å.
6. The amorphous silicon nitride/amorphous silicon heterojunction photoelectric device according to item 5.
JP56022690A 1980-02-04 1981-02-17 Amorphous silicon nitride/amorphous silicon heterojunction photoelectric element Granted JPS57136377A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP56022690A JPS57136377A (en) 1981-02-17 1981-02-17 Amorphous silicon nitride/amorphous silicon heterojunction photoelectric element
US06/266,064 US4388482A (en) 1981-01-29 1981-05-19 High-voltage photovoltaic cell having a heterojunction of amorphous semiconductor and amorphous silicon
CA000391378A CA1176740A (en) 1980-12-03 1981-12-02 High-voltage photovoltaic cell having a hetero junction of amorphous semiconductor and amorphous silicon
AU78224/81A AU558650B2 (en) 1980-12-03 1981-12-03 Amorphous semiconductor high-voltage photovoltaic cell
AT81110111T ATE38296T1 (en) 1980-12-03 1981-12-03 PIN TYPE PHOTOVOLTIC CELL WITH HETEROJUNION BETWEEN AN AMORPHOUS SILICON COMPOUND AND AMORPHEN SILICON.
DE8181110111T DE3176919D1 (en) 1980-12-03 1981-12-03 Pin photovoltaic cell having a hetero junction of amorphous siliconcompound and amorphous silicon
EP81110111A EP0053402B1 (en) 1980-12-03 1981-12-03 Pin photovoltaic cell having a hetero junction of amorphous siliconcompound and amorphous silicon
MX81190403A MX157367A (en) 1980-02-04 1981-12-03 IMPROVEMENTS TO AMORPHO P-I-N SILICON PHOTOVOLTAIC CELL
SG65589A SG65589G (en) 1980-12-03 1989-09-20 Pin photovoltaic cell having a hetero junction of amorphous silicon compound and amorphous silicon
HK796/89A HK79689A (en) 1980-12-03 1989-10-05 Pin photovoltaic cell having a hetero junction of amorphous silicon compound and amorphous silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56022690A JPS57136377A (en) 1981-02-17 1981-02-17 Amorphous silicon nitride/amorphous silicon heterojunction photoelectric element

Publications (2)

Publication Number Publication Date
JPS57136377A JPS57136377A (en) 1982-08-23
JPH0544198B2 true JPH0544198B2 (en) 1993-07-05

Family

ID=12089863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56022690A Granted JPS57136377A (en) 1980-02-04 1981-02-17 Amorphous silicon nitride/amorphous silicon heterojunction photoelectric element

Country Status (1)

Country Link
JP (1) JPS57136377A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160175A (en) * 1981-03-28 1982-10-02 Semiconductor Energy Lab Co Ltd Photoelectric converter
JPS5868046U (en) * 1981-11-02 1983-05-09 工業技術院長 photovoltaic element
US4726851A (en) * 1984-11-27 1988-02-23 Toa Nenryo Kogyo K.K. Amorphous silicon semiconductor film and production process thereof
JPH07105513B2 (en) * 1986-09-26 1995-11-13 三洋電機株式会社 Photovoltaic device
JPH0370185A (en) * 1989-08-09 1991-03-26 Sanyo Electric Co Ltd Amorphous semiconductor device
DE102005013537A1 (en) 2004-03-24 2005-10-20 Sharp Kk Photoelectric converter and manufacturing method for such
JP2009158667A (en) * 2007-12-26 2009-07-16 Mitsubishi Heavy Ind Ltd Photoelectric converter and method of producing the same
JP4864077B2 (en) * 2008-12-22 2012-01-25 シャープ株式会社 Photoelectric conversion device and manufacturing method thereof
JP2010118695A (en) * 2010-02-22 2010-05-27 Mitsubishi Heavy Ind Ltd Photoelectric conversion apparatus, and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464981A (en) * 1977-10-12 1979-05-25 Energy Conversion Devices Inc High temperature amorphous semiconductor member and method of producing same
JPS5513939A (en) * 1978-07-17 1980-01-31 Shunpei Yamazaki Photoelectronic conversion semiconductor device
JPS5513938A (en) * 1978-07-17 1980-01-31 Shunpei Yamazaki Photoelectronic conversion semiconductor device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464981A (en) * 1977-10-12 1979-05-25 Energy Conversion Devices Inc High temperature amorphous semiconductor member and method of producing same
JPS5513939A (en) * 1978-07-17 1980-01-31 Shunpei Yamazaki Photoelectronic conversion semiconductor device
JPS5513938A (en) * 1978-07-17 1980-01-31 Shunpei Yamazaki Photoelectronic conversion semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JPS57136377A (en) 1982-08-23

Similar Documents

Publication Publication Date Title
US9812599B2 (en) Method of stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys
US4388482A (en) High-voltage photovoltaic cell having a heterojunction of amorphous semiconductor and amorphous silicon
EP0070509B1 (en) Amorphous semiconductor and amorphous silicon photovoltaic device
US4385200A (en) Photovoltaic cell having a hetero junction of amorphous silicon carbide and amorphous silicon
US4544423A (en) Amorphous silicon semiconductor and process for same
JP2006080557A (en) Improved stabilizing properties of amorphous silicon series element manufactured by high hydrogen dilution low temperature plasma vapor deposition
US4398054A (en) Compensated amorphous silicon solar cell incorporating an insulating layer
US4396793A (en) Compensated amorphous silicon solar cell
US4415760A (en) Amorphous silicon solar cells incorporating an insulating layer in the body of amorphous silicon and a method of suppressing the back diffusion of holes into an N-type region
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
US4409424A (en) Compensated amorphous silicon solar cell
JPH0544198B2 (en)
JPH0340515B2 (en)
JPH0122991B2 (en)
US4845043A (en) Method for fabricating photovoltaic device having improved short wavelength photoresponse
JPH0363229B2 (en)
Szydlo et al. Post‐hydrogenated chemical vapor deposited amorphous silicon Schottky diodes
JPH0447453B2 (en)
JPH0554272B2 (en)
JP2744680B2 (en) Manufacturing method of thin film solar cell
JPH06260665A (en) Amorphous solar cell
JPH041511B2 (en)
JP2530408B2 (en) Method of manufacturing amorphous silicon photoelectric device
JPH0722633A (en) High voltage amorphous semiconductor/amorphous silicon hetero junction semiconductor device
US4670762A (en) Amorphous silicon semiconductor and process for same