JPS63262837A - Manufacture of p-type amorphous silicon - Google Patents

Manufacture of p-type amorphous silicon

Info

Publication number
JPS63262837A
JPS63262837A JP62097836A JP9783687A JPS63262837A JP S63262837 A JPS63262837 A JP S63262837A JP 62097836 A JP62097836 A JP 62097836A JP 9783687 A JP9783687 A JP 9783687A JP S63262837 A JPS63262837 A JP S63262837A
Authority
JP
Japan
Prior art keywords
substrate
type amorphous
amorphous silicon
temperature
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62097836A
Other languages
Japanese (ja)
Other versions
JPH0760802B2 (en
Inventor
Masatoshi Kitagawa
雅俊 北川
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62097836A priority Critical patent/JPH0760802B2/en
Publication of JPS63262837A publication Critical patent/JPS63262837A/en
Publication of JPH0760802B2 publication Critical patent/JPH0760802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To manufacture p-type amorphous Si for a high conversion efficiency solar cell by heating a substrate with a deposit at a higher temperature than the temperature of deposition after the p-type amorphous Si is deposited on the substrate while the substrate is kept at a specific temperature or lower. CONSTITUTION:A magnetic field is applied to a plasma generation chamber 15 by an electromagnet 16 and raw material gases such as SiH4 and B2H6 are introduced from a gas inlet 17. If the intensity of the magnetic field is set to satisfy the resonance conditions of an electron cyclotron, high degree of dissociation plasma is produced, passes a plasma drawing window 18, arrives at a substrate holder 19 and p-type amorphous Si is formed on the substrate on the holder 19. In this case, after the p-type Si is deposited on the substrate by keeping the substrate at a 60 deg.C or lower temperature, an optical gap is increased, the impurity in a layer is increased and resistance is reduced by a heat treatment at, e.g., 200-300 deg.C. This forms the p-type amorphous Si layer which has sufficiently high electric conductivity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はp型非晶質シリコンの製造方法、特に広い光学
的バンドギャップを有するp型非晶質シリコンの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing p-type amorphous silicon, and more particularly to a method for producing p-type amorphous silicon having a wide optical bandgap.

従来の技術 従来、p型非晶質シリコン(p−a−si)はガラス/
透明電極/Pin/金属電極型の太陽電池の入射側導電
性非晶質シリコン層として利用されて来た。しかしなが
ら従来のp型非晶質シリコンの製造方法では、例えばB
=)fa (モノシラン)とB2H6(ジボラン)の混
合ガスを原料ガスとしたプラズマcvn法で行なってお
り、低抵抗のp型層を得るために基板温度を200″C
以上に加熱していた。
Conventional technology Conventionally, p-type amorphous silicon (p-a-si) is made of glass/
It has been used as a conductive amorphous silicon layer on the incident side of transparent electrode/Pin/metal electrode type solar cells. However, in the conventional manufacturing method of p-type amorphous silicon, for example, B
=) The plasma CVN method uses a mixed gas of fa (monosilane) and B2H6 (diborane) as the raw material gas, and the substrate temperature is set to 200"C in order to obtain a low resistance p-type layer.
It was heating up even more.

この場合、光学的バンドギャップが1.6〜1.76V
と真性型もしくはn型非晶質シリコンの1.7〜1.8
eVと比べ狭いため高い光の利用率が得られにくかった
。そのため原料ガスとしてさらにCH4やC2H4を混
合し、p型非晶質シリコンカーバイド(p−a−5iC
)とし、光学的バンドギャップを1,9〜2.OeYに
広げてやるという手法を取っていた。
In this case, the optical bandgap is 1.6-1.76V
and 1.7 to 1.8 for intrinsic or n-type amorphous silicon.
Since it is narrower than eV, it is difficult to obtain a high light utilization rate. Therefore, CH4 and C2H4 are further mixed as raw material gas, and p-type amorphous silicon carbide (p-a-5iC
), and the optical band gap is 1,9 to 2. The method was to expand it to OeY.

発明が解決しようとする問題点 しかしながら、この方法では光の利用効率は向上するが
、このp型層上に堆積する真性(1)型非晶質シリコン
に炭素元素が汚染不純物元素として混入し、真性層の光
活性層としての性能を低下させたり、p−1接合界面特
性が悪化したシし、光利用効率の割には太陽電池として
の変換効率の向上が実現出来なかった。
Problems to be Solved by the Invention However, although this method improves the efficiency of light utilization, carbon element is mixed as a contaminating impurity element into the intrinsic (1) type amorphous silicon deposited on the p-type layer. The performance of the intrinsic layer as a photoactive layer was degraded, the p-1 junction interface properties were deteriorated, and the conversion efficiency as a solar cell could not be improved considering the light utilization efficiency.

本発明は、このような従来技術における問題点を解決す
ることを目的とする。
The present invention aims to solve these problems in the prior art.

問題点を解決するための手段 上記の問題点を解決するため、本発明では、p型非晶質
シリコンをマイクロ波、電子サイクロトロン共鳴吸収を
用いたKCRプラズマCVD法(以下μ波EORプラズ
マcvn法を用いて基板を60’C以下にして堆積し、
しかるのちこの堆積温度以上で熱、処理するものである
Means for Solving the Problems In order to solve the above problems, in the present invention, p-type amorphous silicon is processed by KCR plasma CVD method (hereinafter referred to as μ-wave EOR plasma CVD method) using microwave and electron cyclotron resonance absorption. deposit the substrate at 60'C or less using
Afterwards, it is heated and processed at a temperature higher than this deposition temperature.

作用 この方法を用いれば、60’C以下の基板温度で5iH
aとB2H6の混合ガスを原料とし堆積した後、たとえ
ば200〜300’Cの熱処理を行なうことによって、
低抵抗で広い光学バンドギャップを有するp型非晶質シ
リコンが実現出来る事が見い出された。
Operation Using this method, 5iH can be achieved at a substrate temperature of 60'C or less.
After depositing using a mixed gas of a and B2H6 as raw materials, for example, by performing heat treatment at 200 to 300'C,
It has been discovered that p-type amorphous silicon with low resistance and a wide optical bandgap can be realized.

この方法を用いれば、60”C以下で堆積されたp型非
晶質シリコンはもともと1.90V程度の光学ギャップ
を持つが抵抗が1070傭程度と大きい。
If this method is used, p-type amorphous silicon deposited at 60"C or less originally has an optical gap of about 1.90V, but has a large resistance of about 1070V.

しかしながらこのp型非晶質シリコンを200″C〜3
00°C程度の温度で熱処理を行なうと構造緩和によっ
て2.□eV程度まで増大しさらに膜中の不純物元素が
活性化し〜104Ω硼程度まで抵抗が減少するのである
However, this p-type amorphous silicon is
When heat treatment is performed at a temperature of about 00°C, structural relaxation causes 2. The resistance increases to about □eV, and the impurity elements in the film are further activated, and the resistance decreases to about 104Ω.

実施例 以下図面に基づき、本発明の代表的な実施例を示す。第
1図は本実施例で使用するμ波11RプラズマCvD装
置の概略図である。11が真空チャンバーで排気孔12
より真空に排気される。導波管13を通してマイクロ波
発振器14からマイクロ波がプラズマ発生室16へ導入
される。電磁石16によりプラズマ発生室16に磁界が
印部される。17はガス導入口でSiH4やB2H6な
どの原料ガスが導入される。磁界の強さを、電子サイク
ロトロン共鳴条件を満すように設定することにより解離
度の高いプラズマが発生する。発生したプラズマは、プ
ラズマ引出し窓18を通過し基板ホルダ19に達し、ホ
ルダ19上の基板にp型非晶質シリコンが形成される。
EXAMPLES Below, typical examples of the present invention will be shown based on the drawings. FIG. 1 is a schematic diagram of a μ-wave 11R plasma CvD apparatus used in this example. 11 is a vacuum chamber and exhaust hole 12
It is evacuated to a more vacuum. Microwaves are introduced from a microwave oscillator 14 into a plasma generation chamber 16 through a waveguide 13 . A magnetic field is applied to the plasma generation chamber 16 by the electromagnet 16 . Reference numeral 17 denotes a gas introduction port through which source gases such as SiH4 and B2H6 are introduced. Plasma with a high degree of dissociation is generated by setting the strength of the magnetic field to satisfy electron cyclotron resonance conditions. The generated plasma passes through the plasma extraction window 18 and reaches the substrate holder 19, and p-type amorphous silicon is formed on the substrate on the holder 19.

第2図は第1図で示した装置で、60’C以下の基板温
度で形成した非晶質シリコンを300 ’Cまで熱処理
した場合の電気伝導度の変化と光学的バンドギャップの
変化を示している。熱処理によって光学的バンドギャッ
プが1,96Vからさらに2−OeVまで増大すると同
時に電気伝導度の変化を示している。この値は従来の技
術において、p型非晶質シリコンカーバイトで得られた
光学的バンドギャップ2.oevの時の電気伝導度〜1
o−6〜1o−5(Ω儂)−1よシ優れている。
Figure 2 shows the changes in electrical conductivity and optical bandgap when amorphous silicon formed at a substrate temperature of 60'C or less is heat-treated to 300'C using the apparatus shown in Figure 1. ing. The optical bandgap increases from 1,96 V to 2-OeV through heat treatment, and at the same time, the electrical conductivity changes. This value corresponds to the optical band gap of 2.5% obtained with p-type amorphous silicon carbide in the prior art. Electrical conductivity at oev ~1
o-6 to 1 o-5 (Ω儂)-1 is better.

従来のプラズマCvD法で作られるp型非晶質シリコン
はSiH4とB2H6の混合ガスを原料ガスとシフ’う
XマCvD法で作製されるが82H6ガスの混合比を増
重させてゆくとp型非晶質シリコン中に入りシリコン原
子と結合する水素量が急激に減少し、結果として光学ギ
ャップが狭くなってしまう。
P-type amorphous silicon, which is produced by the conventional plasma CVD method, is produced by the X-mass CVD method in which a mixed gas of SiH4 and B2H6 is used as the raw material gas, but as the mixing ratio of 82H6 gas is increased, The amount of hydrogen that enters the amorphous silicon and bonds with silicon atoms rapidly decreases, resulting in a narrowing of the optical gap.

このことは、μ波IC(jRプラズマCVD法で基板温
度200″C〜300 ”Cで作製しても同様である。
This is the same even if the μ-wave IC (JR plasma CVD method is used to manufacture the substrate at a temperature of 200''C to 300''C).

しかし前記した本発明の方法によると、60℃以下の室
温に近い温度で作られたp型非晶質シリコン中には充分
S1と結合した水素が存在する。したがって未処理の状
態では構造的ストレスにより光学ギャップは小さくなっ
ているが堆積温度以上の熱処理によって緩和され本発明
によれば〜2.OeV以上の光学ギャップが得られ、か
つ電気伝導度も向上するのである。なお、従来のプラズ
マCvD法において室温で形成すると確かに広い光学ギ
ャップの膜が得られるが、熱処理を行っても充分な電気
伝導を持つp型非晶質シリコンは得られなかった。また
、本発明においては、基板は通常加熱しないのが望まし
いが、基板m熱は行なわなくても一般的に堆積によって
基板は〜60°C程寂に上昇するが、この程度であれば
特に問題はなかった。これ以上上昇してしまうと前記し
た効果が消失してしまうので冷却する等を行なって基板
を60°C程度にする必要がある。
However, according to the method of the present invention described above, there is sufficient hydrogen bonded to S1 in the p-type amorphous silicon produced at a temperature of 60° C. or lower, close to room temperature. Therefore, in the untreated state, the optical gap is small due to structural stress, but it is alleviated by heat treatment above the deposition temperature, and according to the present invention ~2. An optical gap of OeV or more can be obtained, and electrical conductivity can also be improved. Note that, although it is true that a film with a wide optical gap can be obtained when formed at room temperature in the conventional plasma CVD method, p-type amorphous silicon with sufficient electrical conductivity cannot be obtained even after heat treatment. In addition, in the present invention, it is preferable that the substrate is not normally heated, but even if the substrate is not heated, the temperature of the substrate will generally rise by about 60°C due to deposition, but this is a particular problem. There was no. If the temperature rises any higher than this, the above-mentioned effect will disappear, so it is necessary to cool the substrate to about 60°C.

発明の効果 本発明の効果は次のようなものである。Effect of the invention The effects of the present invention are as follows.

従来技術で得られた非晶質シリコン、非晶質シリコンカ
ーバイドのp型層に比べ充分広い光学的バンドギャップ
を持ち充分高い電気伝導度を示すp型層が実現出来た。
A p-type layer having a sufficiently wide optical bandgap and sufficiently high electrical conductivity compared to p-type layers of amorphous silicon and amorphous silicon carbide obtained by conventional techniques was realized.

特に基板/透明電極/ Pin、/金属電極構成の非晶
質シリコン太陽電池を製造する場合p型層からの1型層
への炭素元素の汚染拡散が無く好都合である。また熱処
理が必要ではあるが、その後の1型層、n型層の堆積時
に通常200〜300’C基板w熱を行なうのでこの加
熱を利用することができ、実際に熱処理を施す必要はな
く製造工程上も好都合である。
Particularly when manufacturing an amorphous silicon solar cell having a substrate/transparent electrode/Pin/metal electrode configuration, it is advantageous because there is no contamination diffusion of carbon elements from the p-type layer to the 1-type layer. Although heat treatment is required, the substrate is usually heated to 200-300'C during the subsequent deposition of the 1-type layer and the n-type layer, so this heating can be used, and there is no need to actually perform heat treatment during manufacturing. It is also convenient in terms of process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用したμ波HORプラズマcvn装
置の概略図、第2図は本発明の実施例としてSiH4と
B2H6を原料ガスとして第1図で示した装置によって
形成したp型非晶質シリコンの電気伝導度および光学的
バンドギャップの熱処理による変化を示す図である。 11・・・・・・真空チャンバー、12・・・・・・排
気孔、13・・・・・・導波管、14・・・・・・マイ
クロ波発振器、15・・・・・・プラズマ発生室、16
・・・・・・電磁石、17・・・・・・ガス導入口、1
8・・・・・・プラズマ引き出し窓。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名駅か
C“く)−シト°)生 W’xぜと1畔曇
FIG. 1 is a schematic diagram of the μ-wave HOR plasma CVN device used in the present invention, and FIG. 2 is a p-type amorphous crystal formed by the device shown in FIG. 1 using SiH4 and B2H6 as raw material gases as an example of the present invention. FIG. 3 is a diagram showing changes in electrical conductivity and optical bandgap of pure silicon due to heat treatment. 11... Vacuum chamber, 12... Exhaust hole, 13... Waveguide, 14... Microwave oscillator, 15... Plasma Occurrence room, 16
...Electromagnet, 17...Gas inlet, 1
8...Plasma drawer window. Name of agent: Patent attorney Toshio Nakao and 1 other person

Claims (1)

【特許請求の範囲】[Claims] マイクロ波、電子サイクロトロン共鳴吸収を利用したプ
ラズマ分解によるp型非晶質シリコンの形成方法におい
て、基板を60℃以下の温度に保ち、前記基板上に前記
p型非晶質シリコンを堆積した後、この堆積温度より高
い温度で加熱することを特徴とするp型非晶質シリコン
の製造方法。
In a method for forming p-type amorphous silicon by plasma decomposition using microwaves and electron cyclotron resonance absorption, after depositing the p-type amorphous silicon on the substrate while keeping the substrate at a temperature of 60° C. or less, A method for producing p-type amorphous silicon, characterized by heating at a temperature higher than this deposition temperature.
JP62097836A 1987-04-21 1987-04-21 Method for producing p-type amorphous silicon Expired - Fee Related JPH0760802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62097836A JPH0760802B2 (en) 1987-04-21 1987-04-21 Method for producing p-type amorphous silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62097836A JPH0760802B2 (en) 1987-04-21 1987-04-21 Method for producing p-type amorphous silicon

Publications (2)

Publication Number Publication Date
JPS63262837A true JPS63262837A (en) 1988-10-31
JPH0760802B2 JPH0760802B2 (en) 1995-06-28

Family

ID=14202802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62097836A Expired - Fee Related JPH0760802B2 (en) 1987-04-21 1987-04-21 Method for producing p-type amorphous silicon

Country Status (1)

Country Link
JP (1) JPH0760802B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083984A (en) * 2000-09-08 2002-03-22 National Institute Of Advanced Industrial & Technology Solar battery and its manufacturing method
JP2020537359A (en) * 2017-10-09 2020-12-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Conformal-doped amorphous silicon as a nucleation layer for metal deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083984A (en) * 2000-09-08 2002-03-22 National Institute Of Advanced Industrial & Technology Solar battery and its manufacturing method
JP2020537359A (en) * 2017-10-09 2020-12-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Conformal-doped amorphous silicon as a nucleation layer for metal deposition

Also Published As

Publication number Publication date
JPH0760802B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
CN1029442C (en) Method and system for mfg. semiconductor devices
JPH06105691B2 (en) Method for producing carbon-doped amorphous silicon thin film
US4292343A (en) Method of manufacturing semiconductor bodies composed of amorphous silicon
CN107644805A (en) Hole passivation tunnelling film, preparation method and its application in solar cell
JPH04174517A (en) Manufacture of diamond semiconductor
JPH06224431A (en) Thin-film transistor and liquid crystal display panel
JPS63262837A (en) Manufacture of p-type amorphous silicon
JPH0195515A (en) Manufacture of heterojunction device
JPH0574707A (en) Manufacture of amorphous semiconductor thin film
Ohshita et al. Reaction of Si2H2 molecule on a silicon surface
JP3100668B2 (en) Method for manufacturing photovoltaic element
JPS62131513A (en) Multichamber isolation type plasma cvd device
JP2723513B2 (en) Method for manufacturing semiconductor device
JPS63211628A (en) Plasma treatment device
JPH06267861A (en) Method of forming semiconductor thin film
JPS5853869A (en) Preparation of photo-electric conversion apparatus
JPS6057617A (en) Manufacture of semiconductor device
JPS61256625A (en) Manufacture of thin film semiconductor element
JP2644764B2 (en) Method for manufacturing heterojunction device
JPH01295413A (en) Method and apparatus for plasma vapor growth
JPH1174550A (en) Production of amorphous silicon solar cell
JPS58102569A (en) Manufacture of amorphous silicon solar battery
JP3112796B2 (en) Chemical vapor deposition method
JPH06181330A (en) Amorphous semiconductor solar cell and manufacture thereof
CN117976769A (en) Preparation method of TOPCon battery structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees