JPH06267861A - Method of forming semiconductor thin film - Google Patents

Method of forming semiconductor thin film

Info

Publication number
JPH06267861A
JPH06267861A JP5053312A JP5331293A JPH06267861A JP H06267861 A JPH06267861 A JP H06267861A JP 5053312 A JP5053312 A JP 5053312A JP 5331293 A JP5331293 A JP 5331293A JP H06267861 A JPH06267861 A JP H06267861A
Authority
JP
Japan
Prior art keywords
thin film
substrate
semiconductor thin
hydrogen
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5053312A
Other languages
Japanese (ja)
Other versions
JP2945234B2 (en
Inventor
Manabu Sasaki
学 佐々木
Yukihiro Yoshimine
幸弘 吉嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5053312A priority Critical patent/JP2945234B2/en
Publication of JPH06267861A publication Critical patent/JPH06267861A/en
Application granted granted Critical
Publication of JP2945234B2 publication Critical patent/JP2945234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve the uniformity of hydrogen concentration distribution in the depth direction of a semiconductor thin film formed in one process, by applying hydrogen plasma process to a semiconductor thin film formed on a substrate, while applying a negative bias to the substrate or a substrate holder. CONSTITUTION:A substrate 1 composed of glass is mounted on a substrate holder 2 composed of stainless, and a heater 3 for heating the substrate 1 is installed in the substrate holder 2. An amorphous silicon thin film is formed on the substrate 1, by making SiH4 gas flow under a specific condition. After the film is formed, a negative bias (-30V) is applied to the substrate holder 2, and hydrogen gas is made to flow. Thereby the substrate is subjected to hydrogen plasma process, and the uniformity of hydrogen concentration distribution in the amorphous silicon thin film can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非晶質シリコンなどの
半導体薄膜をCVD法により形成する方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a semiconductor thin film such as amorphous silicon by a CVD method.

【0002】[0002]

【従来の技術】CVD法により形成された直後の非晶質
シリコン薄膜には、ダングリングボンドや過剰の水素等
が存在し、構造欠陥の存在することが知られている。こ
のような非晶質シリコン薄膜を、例えば光起電力素子の
活性層として用いた場合、高い変換効率を得ることがで
きない。
2. Description of the Related Art It is known that dangling bonds, excess hydrogen, etc. are present in an amorphous silicon thin film immediately after being formed by a CVD method, and structural defects are present. When such an amorphous silicon thin film is used as, for example, an active layer of a photovoltaic element, high conversion efficiency cannot be obtained.

【0003】そこで、このような構造欠陥をなくし、構
造緩和を引き起こして安定したSiネットワークを形成
させる方法として、形成直後の半導体薄膜に水素プラズ
マ処理を施し、薄膜中に水素を打ち込み膜特性を向上さ
せる方法が知られている。このような水素プラズマによ
る処理は、例えば、特開平4−299522号公報、及
び特開平4−299523号公報などに記載されてい
る。このような水素プラズマ処理では、半導体薄膜中に
水素が打ち込まれる深さに制限があるため、一般には、
300Å以下の厚みの半導体薄膜を形成した後に、水素
プラズマ処理を行い、このような工程を複数回繰り返す
ことによって、所定の厚みの半導体薄膜を形成してい
る。
Therefore, as a method of eliminating such structural defects and causing structural relaxation to form a stable Si network, the semiconductor thin film immediately after the formation is subjected to hydrogen plasma treatment, and hydrogen is implanted into the thin film to improve the film characteristics. It is known how to do this. Such treatment with hydrogen plasma is described in, for example, Japanese Patent Application Laid-Open Nos. 4-299522 and 4-299523. In such a hydrogen plasma treatment, since there is a limit to the depth at which hydrogen is implanted in the semiconductor thin film, in general,
After forming a semiconductor thin film having a thickness of 300 Å or less, hydrogen plasma treatment is performed, and such a process is repeated a plurality of times to form a semiconductor thin film having a predetermined thickness.

【0004】[0004]

【発明が解決しようとする課題】上記公報に開示された
ような、半導体薄膜の形成と水素プラズマ処理の繰り返
しによる薄膜形成方法では、上述のように水素が打ち込
まれる深さに制限があるため、一回の薄膜形成の厚みを
非常に薄くしなければならず、例えば、光起電力装置の
活性層として必要な厚みを得るためには、薄膜形成と水
素プラズマ処理の工程を多数回繰り返さなければなら
ず、製造に長時間を要するという問題があった。また、
一回の薄膜形成工程で形成する厚みを厚くすれば、水素
プラズマ処理によって打ち込まれる水素が各薄膜層の表
面近傍に偏在し、良質な薄膜を形成することができない
という問題を生じた。
In the thin film forming method by repeating the formation of the semiconductor thin film and the hydrogen plasma treatment as disclosed in the above publication, the depth at which hydrogen is implanted is limited as described above. The thickness of one thin film formation must be very thin. For example, in order to obtain the thickness required for the active layer of a photovoltaic device, the thin film formation and hydrogen plasma treatment steps must be repeated many times. However, there is a problem that it takes a long time to manufacture. Also,
If the thickness formed in one thin film forming step is increased, hydrogen implanted by the hydrogen plasma treatment is unevenly distributed in the vicinity of the surface of each thin film layer, which causes a problem that a good quality thin film cannot be formed.

【0005】本発明の目的は、このような従来の問題点
を解消し、一回の工程で形成される半導体薄膜中の深さ
方向の水素濃度分布をより均一化することのできる半導
体薄膜の形成方法を提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a semiconductor thin film capable of making the hydrogen concentration distribution in the depth direction in the semiconductor thin film formed in one step more uniform. It is to provide a forming method.

【0006】[0006]

【課題を解決するための手段】本発明の半導体薄膜の形
成方法は、基板上にCVD法により半導体薄膜を形成す
る工程と、基板又は基板ホルダに負バイアスを印加しな
がら基板上に形成した半導体薄膜に水素プラズマ処理を
施す工程とを備えることを特徴としている。本発明に従
えば、一回の工程で形成する半導体薄膜の厚みが300
Å以上であっても、その後の水素プラズマ処理により、
半導体薄膜中の深さ方向の膜特性を均一化することがで
きる。従って、本発明に従う半導体薄膜の形成方法にお
ける半導体薄膜形成工程と水素プラズマ処理工程を繰り
返すことにより、一回の工程で形成する薄膜の厚みを従
来より厚くして所定の厚みの半導体薄膜を形成すること
ができる。
A method of forming a semiconductor thin film of the present invention comprises a step of forming a semiconductor thin film on a substrate by a CVD method, and a semiconductor formed on a substrate while applying a negative bias to the substrate or a substrate holder. And a step of subjecting the thin film to hydrogen plasma treatment. According to the present invention, the thickness of the semiconductor thin film formed in one step is 300.
Even if it is more than Å, by the subsequent hydrogen plasma treatment,
The film characteristics in the depth direction in the semiconductor thin film can be made uniform. Therefore, by repeating the semiconductor thin film forming step and the hydrogen plasma treatment step in the method for forming a semiconductor thin film according to the present invention, the thickness of the thin film formed in one step is made thicker than before and a semiconductor thin film having a predetermined thickness is formed. be able to.

【0007】本発明によって形成される半導体薄膜は、
特に限定されるものではなく、水素プラズマ処理により
構造緩和が引き起こされ膜特性が向上するような半導体
薄膜であれば何れのものでもよい。このようなものとし
ては、非晶質シリコン、微結晶シリコン、ポリシリコン
およびこれらの少なくとも1つを主体とする混合物や、
非晶質シリコンカーバイトなどを挙げることができる。
The semiconductor thin film formed by the present invention is
The semiconductor thin film is not particularly limited, and any semiconductor thin film can be used as long as the structure is relaxed by the hydrogen plasma treatment and the film characteristics are improved. Examples of such a material include amorphous silicon, microcrystalline silicon, polysilicon, and a mixture mainly containing at least one of these,
Examples thereof include amorphous silicon carbide.

【0008】本発明において、半導体薄膜を形成するた
めのCVD法としては、RFプラズマCVD法やマイク
ロ波プラズマCVD法などのプラズマCVD法、光CV
D法、ECRCVD法、および熱CVD法など、半導体
薄膜の形成において一般的に用いられているCVD法を
採用することができる。
In the present invention, as a CVD method for forming a semiconductor thin film, a plasma CVD method such as an RF plasma CVD method or a microwave plasma CVD method, or an optical CV method is used.
A CVD method generally used in forming a semiconductor thin film, such as the D method, the ECRCVD method, and the thermal CVD method, can be adopted.

【0009】本発明の半導体薄膜形成工程において、一
回の工程で形成される半導体薄膜の厚みは、特に限定さ
れるものではないが、例えば、300Å以上の厚みでも
膜特性の均一な薄膜を得ることができる。また膜特性の
均一な薄膜を得ることのできる膜厚の最大値は、対象と
なる半導体薄膜やその後の水素プラズマ処理の条件およ
び水素プラズマ処理の際に基板又は基板ホルダに印加さ
れるバイアス等の条件により異なるものであるが、例え
ば非晶質シリコン薄膜を半導体薄膜として形成し、基板
バイアスを−30Vとする場合には、800Å程度の膜
厚でも膜特性のほぼ均一なものが得られる。
In the semiconductor thin film forming step of the present invention, the thickness of the semiconductor thin film formed in one step is not particularly limited, but for example, a thin film having uniform film characteristics can be obtained even if the thickness is 300 Å or more. be able to. In addition, the maximum value of the film thickness that can obtain a thin film with uniform film characteristics depends on the target semiconductor thin film, the conditions of the subsequent hydrogen plasma treatment, and the bias applied to the substrate or substrate holder during the hydrogen plasma treatment. Although depending on the conditions, for example, when an amorphous silicon thin film is formed as a semiconductor thin film and the substrate bias is -30 V, even if the film thickness is about 800 Å, almost uniform film characteristics can be obtained.

【0010】本発明において、基板が非導電性材料から
形成される場合は、導電性材料から形成される基板ホル
ダを用い、この基板ホルダに負バイアスを印加する。ま
た基板が導電性材料から形成される場合には、基板に負
バイアスを印加してもよい。基板又は基板ホルダに印加
する負バイアスの程度は、特に限定されるものではない
が、好ましくは3Vよりも絶対値の大きい負バイアスが
印加される。
In the present invention, when the substrate is made of a non-conductive material, a substrate holder made of a conductive material is used and a negative bias is applied to this substrate holder. A negative bias may be applied to the substrate when the substrate is made of a conductive material. The degree of the negative bias applied to the substrate or the substrate holder is not particularly limited, but a negative bias having an absolute value larger than 3 V is preferably applied.

【0011】本発明において、水素プラズマ処理の条件
は、形成する半導体薄膜の種類、および一回の工程で形
成する半導体薄膜の厚み等により適宜設定することがで
きる。一般的な水素プラズマ処理の条件として、基板温
度は50〜250℃が好ましく、水素ガス流量は10〜
500sccmが好ましく、RFは10〜70mW/c
2 が好ましく、圧力は0.05〜0.3torrが好
ましく、処理時間は10〜1000秒が好ましい。
In the present invention, the conditions for the hydrogen plasma treatment can be appropriately set depending on the type of the semiconductor thin film to be formed, the thickness of the semiconductor thin film formed in one step, and the like. As conditions for general hydrogen plasma treatment, the substrate temperature is preferably 50 to 250 ° C., and the hydrogen gas flow rate is 10 to 10.
500 sccm is preferable, RF is 10 to 70 mW / c
m 2 is preferable, the pressure is preferably 0.05 to 0.3 torr, and the treatment time is preferably 10 to 1000 seconds.

【0012】[0012]

【作用】本発明に従えば、水素プラズマ処理の際、基板
又は基板ホルダに負バイアスを印加している。この負バ
イアスの印加により、プラズマで励起された水素を積極
的に基板に引きつけることができ、これによって、従来
よりも深い薄膜内部まで、水素を打ち込むことができ
る。このため、半導体薄膜の深さ方向の水素濃度分布を
より均一化することができる。
According to the present invention, a negative bias is applied to the substrate or the substrate holder during the hydrogen plasma treatment. By applying this negative bias, hydrogen excited by plasma can be positively attracted to the substrate, and thus hydrogen can be implanted into a thin film deeper than in the conventional case. Therefore, the hydrogen concentration distribution in the depth direction of the semiconductor thin film can be made more uniform.

【0013】[0013]

【実施例】図1は、本発明に従う半導体薄膜の形成方法
を説明するための概略構成図であり、図1(a)はCV
D法により半導体薄膜を形成する工程を示し、図1
(b)は水素プラズマ処理の工程を示している。図1
(a)を参照して、ガラスからなる基板1は、ステンレ
スからなる基板ホルダ2の上に載置されており、基板ホ
ルダ2内には基板1を加熱するためのヒーター3が設け
られている。表1に示す条件で、SiH4 ガスを流し、
基板1上に非晶質シリコン薄膜(以下、「a−Si:H
膜」という)を形成した。一回のa−Si:H膜の厚み
は約1000Åとした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic configuration diagram for explaining a method for forming a semiconductor thin film according to the present invention. FIG.
FIG. 1 shows a process of forming a semiconductor thin film by the D method.
(B) has shown the process of hydrogen plasma processing. Figure 1
Referring to (a), a substrate 1 made of glass is placed on a substrate holder 2 made of stainless steel, and a heater 3 for heating the substrate 1 is provided in the substrate holder 2. . Under the conditions shown in Table 1, flow SiH 4 gas,
An amorphous silicon thin film (hereinafter referred to as “a-Si: H
Film). The thickness of one a-Si: H film was set to about 1000Å.

【0014】成膜後、図1(b)に示すように、基板ホ
ルダ2に負バイアス(−30V)を印加して水素ガスを
流し、水素プラズマ処理を施した。水素プラズマ処理の
条件は表1に示す条件で行った。以上のa−Si:H膜
形成工程と水素プラズマ処理の工程を5回繰り返し、ト
ータルで約5000Åの厚みのa−Si:H膜を形成し
た。
After the film formation, as shown in FIG. 1 (b), a negative bias (-30 V) was applied to the substrate holder 2 to flow hydrogen gas, and hydrogen plasma treatment was performed. The hydrogen plasma treatment was performed under the conditions shown in Table 1. The above-described a-Si: H film forming step and hydrogen plasma treatment step were repeated 5 times to form an a-Si: H film having a total thickness of about 5000Å.

【0015】[0015]

【表1】 [Table 1]

【0016】以上のようにして形成したa−Si:H膜
中の水素濃度をSIMSで分析した。この結果を図2に
示す。また比較として、基板に負バイアスを印加せず
に、すなわち表1における基板バイアスを0Vとした条
件で上記の実施例と同様にして水素プラズマ処理し、a
−Si:H膜と水素プラズマ処理の工程を同様に5回繰
り返して形成した薄膜についても、深さ方向の水素濃度
分布をSIMSで分析し図2に示した。
The hydrogen concentration in the a-Si: H film formed as described above was analyzed by SIMS. The result is shown in FIG. Further, for comparison, hydrogen plasma treatment was performed in the same manner as in the above-described example under the condition that the negative bias was not applied to the substrate, that is, the substrate bias in Table 1 was 0 V.
The hydrogen concentration distribution in the depth direction of the thin film formed by repeating the process of the —Si: H film and the hydrogen plasma treatment 5 times in the same manner was analyzed by SIMS and is shown in FIG.

【0017】図2から明らかなように、本発明に従い基
板ホルダに−30Vのバイアスを印加した実施例では、
各a−Si:H膜の薄膜層中の水素濃度分布が、基板に
バイアスを印加していない比較例に比べて、より均一化
している。
As is apparent from FIG. 2, in the embodiment in which a bias of -30 V is applied to the substrate holder according to the present invention,
The hydrogen concentration distribution in the thin film layer of each a-Si: H film is more uniform than in the comparative example in which no bias is applied to the substrate.

【0018】また、表1に示す条件で一回の薄膜形成の
厚みを500Åとし、a−Si:H薄膜形成と水素プラ
ズマ処理の工程を1サイクルとして、このサイクルを2
0回繰り返して膜厚1μmのa−Si:H膜を形成し、
その膜特性を評価した。また比較として基板ホルダにバ
イアスを印加しない基板バイアス0Vのものについても
同様にa−Si:H膜を作製し、膜特性を評価した。こ
れらの結果を表2に示した。
Under the conditions shown in Table 1, the thickness of one thin film formation is set to 500 Å, and the steps of a-Si: H thin film formation and hydrogen plasma treatment are defined as one cycle.
Repeated 0 times to form an a-Si: H film with a film thickness of 1 μm,
The film characteristics were evaluated. For comparison, an a-Si: H film was similarly prepared for a substrate holder having no substrate bias of 0 V and a film characteristic was evaluated. The results are shown in Table 2.

【0019】表2から明らかなように、本発明に従う実
施例の薄膜は、吸収係数、光導電率、および光感度にお
いて優れた膜特性を示している。また欠陥密度に関して
は、減少しているものと思われるものの、測定限界値よ
り低いため、差が認められなかった。
As is clear from Table 2, the thin films of the examples according to the present invention show excellent film characteristics in absorption coefficient, photoconductivity, and photosensitivity. Regarding the defect density, although it seems to have decreased, it was lower than the measurement limit value, so no difference was observed.

【0020】次に、図3に示すような積層構造の光起電
力装置を作製した。図3を参照して、ガラスからなる透
孔性基板11の上に、酸化インジウム錫からなる透明導
電膜12(厚さ8000Å)、非晶質シリコンからなる
半導体層13、およびアルミニウムからなる裏面電極1
4(厚み1μm)が順次積層され形成されている。半導
体層13は、p型非晶質シリコン層13p(厚み100
Å)、非晶質シリコンからなる真性半導体層13i(厚
み5000Å)、およびn型非晶質シリコン層13n
(厚み300Å)から構成されている。この実施例の光
起電力装置では、真性半導体層13iを上記実施例と同
様にして形成した。すなわち、500Åの厚みのa−S
i:H薄膜と水素プラズマ処理(基板バイアス−30
V)の工程を1サイクルとして、これを10サイクル繰
り返して膜厚5000Åの真性半導体層13iを形成し
た。また、比較として、基板ホルダにバイアスを印加せ
ずに真性半導体層13iを形成した光起電力装置を作製
した。これらの光起電力装置における曲線因子および変
換効率を表2に併せて示す。
Next, a photovoltaic device having a laminated structure as shown in FIG. 3 was produced. Referring to FIG. 3, on transparent substrate 11 made of glass, transparent conductive film 12 made of indium tin oxide (thickness 8000Å), semiconductor layer 13 made of amorphous silicon, and back electrode made of aluminum. 1
4 (thickness 1 μm) are sequentially laminated and formed. The semiconductor layer 13 is a p-type amorphous silicon layer 13p (thickness 100
Å), an intrinsic semiconductor layer 13i made of amorphous silicon (thickness 5000 Å), and an n-type amorphous silicon layer 13n
(Thickness 300Å). In the photovoltaic device of this example, the intrinsic semiconductor layer 13i was formed in the same manner as in the above example. That is, a-S with a thickness of 500Å
i: H thin film and hydrogen plasma treatment (substrate bias -30
The step V) was set as one cycle, and this was repeated 10 cycles to form an intrinsic semiconductor layer 13i having a film thickness of 5000Å. As a comparison, a photovoltaic device in which the intrinsic semiconductor layer 13i is formed without applying a bias to the substrate holder was manufactured. The fill factor and conversion efficiency of these photovoltaic devices are also shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】表2から明らかなように、本発明に従う実
施例の光起電力装置は、曲線因子が約3%向上してお
り、また変換効率も3%以上向上している。
As is apparent from Table 2, the photovoltaic devices of the examples according to the present invention have a fill factor improved by about 3% and a conversion efficiency improved by 3% or more.

【0023】[0023]

【発明の効果】本発明に従えば、基板上にCVD法によ
り半導体薄膜を形成した後、基板又は基板ホルダに負バ
イアスを印加しながら、基板上に形成した半導体薄膜に
水素プラズマ処理を施している。基板または基板ホルダ
に負バイアスを印加しているため、プラズマによって励
起された水素が積極的に基板側に引きつけられ、基板上
に形成された半導体薄膜に水素が深く打ち込まれる。こ
のため、薄膜の深さ方向に水素濃度分布をより均一化さ
せることができる。従って、本発明に従えば、一回の薄
膜形成の厚みを厚くしても、水素濃度分布の均一な薄膜
を得ることができる。このため、本発明に従えば、一回
の薄膜の形成の厚みを従来よりも厚くすることができ、
従来よりも短時間で所定の厚みの半導体薄膜を形成する
ことができる。
According to the present invention, after the semiconductor thin film is formed on the substrate by the CVD method, the semiconductor thin film formed on the substrate is subjected to hydrogen plasma treatment while applying a negative bias to the substrate or the substrate holder. There is. Since the negative bias is applied to the substrate or the substrate holder, hydrogen excited by plasma is positively attracted to the substrate side, and hydrogen is deeply implanted into the semiconductor thin film formed on the substrate. Therefore, the hydrogen concentration distribution can be made more uniform in the depth direction of the thin film. Therefore, according to the present invention, a thin film having a uniform hydrogen concentration distribution can be obtained even if the thickness of one thin film formation is increased. Therefore, according to the present invention, the thickness of one thin film formation can be made thicker than the conventional one,
A semiconductor thin film having a predetermined thickness can be formed in a shorter time than ever before.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従う半導体薄膜の形成方法を説明する
ための概略構成図であり、(a)は半導体薄膜を形成す
る工程を示す図であり、(b)は水素プラズマ処理の工
程を示す図。
FIG. 1 is a schematic configuration diagram for explaining a method for forming a semiconductor thin film according to the present invention, in which (a) is a diagram showing a step of forming a semiconductor thin film and (b) is a step of hydrogen plasma treatment. Fig.

【図2】本発明に従う実施例において得られた半導体薄
膜の深さ方向における水素濃度分布を示す図。
FIG. 2 is a diagram showing a hydrogen concentration distribution in a depth direction of a semiconductor thin film obtained in an example according to the present invention.

【図3】本発明に従う半導体薄膜の形成方法により真性
非晶質シリコン層を形成した光起電力装置を示す断面
図。
FIG. 3 is a cross-sectional view showing a photovoltaic device in which an intrinsic amorphous silicon layer is formed by the method for forming a semiconductor thin film according to the present invention.

【符号の説明】[Explanation of symbols]

1…基板 2…基板ホルダ 3…ヒーター 1 ... Substrate 2 ... Substrate holder 3 ... Heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ホルダに支持された基板上に半導体薄膜
を形成する方法であって;前記基板上にCVD法により
半導体薄膜を形成する工程と;前記基板又は基板ホルダ
に負バイアスを印加しながら、前記基板上に形成した半
導体薄膜に水素プラズマ処理を施す工程とを備える、半
導体薄膜の形成方法。
1. A method of forming a semiconductor thin film on a substrate supported by a holder; a step of forming a semiconductor thin film on the substrate by a CVD method; applying a negative bias to the substrate or the substrate holder. A step of subjecting the semiconductor thin film formed on the substrate to a hydrogen plasma treatment, the method for forming a semiconductor thin film.
JP5053312A 1993-03-15 1993-03-15 Method of forming semiconductor thin film Expired - Fee Related JP2945234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5053312A JP2945234B2 (en) 1993-03-15 1993-03-15 Method of forming semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5053312A JP2945234B2 (en) 1993-03-15 1993-03-15 Method of forming semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH06267861A true JPH06267861A (en) 1994-09-22
JP2945234B2 JP2945234B2 (en) 1999-09-06

Family

ID=12939209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5053312A Expired - Fee Related JP2945234B2 (en) 1993-03-15 1993-03-15 Method of forming semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2945234B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624873A (en) * 1993-11-12 1997-04-29 The Penn State Research Foundation Enhanced crystallization of amorphous films
JP2002203796A (en) * 2000-07-07 2002-07-19 Applied Materials Inc Deposition of amorphous silicon film by high-density plasma hdp-cvd at low temperature
JP2009099924A (en) * 2007-10-17 2009-05-07 Ind Technol Res Inst Method of fast hydrogen passivation to solar cell made of crystalline silicon
JP2021520630A (en) * 2018-04-03 2021-08-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Curing of fluid membranes using H2 plasma

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624873A (en) * 1993-11-12 1997-04-29 The Penn State Research Foundation Enhanced crystallization of amorphous films
JP2002203796A (en) * 2000-07-07 2002-07-19 Applied Materials Inc Deposition of amorphous silicon film by high-density plasma hdp-cvd at low temperature
JP2009099924A (en) * 2007-10-17 2009-05-07 Ind Technol Res Inst Method of fast hydrogen passivation to solar cell made of crystalline silicon
JP2021520630A (en) * 2018-04-03 2021-08-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Curing of fluid membranes using H2 plasma

Also Published As

Publication number Publication date
JP2945234B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
US4968384A (en) Method of producing carbon-doped amorphous silicon thin film
US5336623A (en) Process for producing integrated solar cell
US4196438A (en) Article and device having an amorphous silicon containing a halogen and method of fabrication
JP3364180B2 (en) Amorphous silicon solar cell
US4598304A (en) Thin film devices of silicon
JPS59141278A (en) Photoelectric conversion element and manufacture thereof
JP2014506005A (en) Heterojunction interface passivation method
US4799968A (en) Photovoltaic device
JP3154772B2 (en) Silicon thin film
JPH06267861A (en) Method of forming semiconductor thin film
US5358755A (en) Amorphous hydrogenated silicon-carbon alloys and solar cells and other semiconductor devices produced therefrom
JP3325793B2 (en) Amorphous semiconductor, method for manufacturing the same, and photovoltaic device
JPH08506215A (en) Microwave excitation method for manufacturing high quality semiconductor materials
JPS5864070A (en) Amorphous silicon solar battery containing fluorine
JPH0574707A (en) Manufacture of amorphous semiconductor thin film
JPS6314420A (en) Manufacture of thin film
JPH04342121A (en) Manufacture of hydrogenated amorphous silicon thin film
JP3272681B2 (en) Solar cell manufacturing method
JPH04321277A (en) Formation of amorphous silicon thin film and manufacture of photoelectromotive device using the same
JPH0345555B2 (en)
JP2644901B2 (en) Method for manufacturing pin type amorphous silicon solar cell
JP2883231B2 (en) Manufacturing method of stacked photovoltaic device
JPH01278782A (en) Manufacture of photovoltaic element
JPH0714072B2 (en) Method for manufacturing photoelectric conversion element
Dalal et al. A critical review of the growth and properties of a-(Si, Ge): H

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees