JPS5864070A - Amorphous silicon solar battery containing fluorine - Google Patents

Amorphous silicon solar battery containing fluorine

Info

Publication number
JPS5864070A
JPS5864070A JP56163684A JP16368481A JPS5864070A JP S5864070 A JPS5864070 A JP S5864070A JP 56163684 A JP56163684 A JP 56163684A JP 16368481 A JP16368481 A JP 16368481A JP S5864070 A JPS5864070 A JP S5864070A
Authority
JP
Japan
Prior art keywords
layer
type
intrinsic
amorphous silicon
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56163684A
Other languages
Japanese (ja)
Other versions
JPH0121634B2 (en
Inventor
Yoshihiro Hamakawa
圭弘 浜川
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP56163684A priority Critical patent/JPS5864070A/en
Publication of JPS5864070A publication Critical patent/JPS5864070A/en
Publication of JPH0121634B2 publication Critical patent/JPH0121634B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To enable to largely improve the efficiency of a solar battery by providing an intrinsic amorphous silicon layer hydrogenated at p-i boundary in a pin type solar battery which employs a-Si:F:H. CONSTITUTION:A substrate 1 and a transparent electrode 5 are provided, and an intrinsic a-Si:H layer 6 is obtained by diluting and glow discharge decomposing silane (SiH4) or polysilane (SinH2n+2), preferably less than 1,000Angstrom . After the intrinsic a-Si:F:H layer 3 is accumulated, it is annealed with hydrogen plasma, or said intrinsic a-Si:H may be attached between the layer 3 and the n type amorphous semiconductor layer 7. The P type layer may preferably employ a- SiC:H, a-SiC:F:H, a-SiN:H, a-SiN:F:H, a-SiCN:H, or a-SiCH:F:H, and the n type layer may preferably employ the amorphous semiconductor thereof, which have excellent chemical resistance and HF resistance. The thickness of the layer 7 is normally 100-500Angstrom , and the thickness of the layer 3 is 2,000-10,000Angstrom . The thickness of the p type amorphous semiconductor layer 8 is 70-150Angstrom .

Description

【発明の詳細な説明】 本発明はフッ素を含むアモルファスシリコン太陽電池に
関する。トリである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an amorphous silicon solar cell containing fluorine. It's a bird.

シラン(Sta4)のプラズマ分解法で得られるアモル
ファスシリコンは、W、IC,8p・ar等によって、
PH,+B、it・でドープする事により、その伝導度
を大きく変える事ができることが発見され(1976年
)、D、 1.0arlson 等によってアモルファ
スシリコンを用いた太陽電池が試作(1976年)され
て以来注目を集め、アモルファスシリコン薄膜太陽電池
の効率を改善する研究示活発に行なわれている〇シラン
のプラズマ分解で得られるアモルファスシリコンは耐熱
性に間聴があシ、又5traeblθr−Tlrona
ki効来が太陽電池の特性低下の原因になり得るという
脱がsb、B、 R,0vahinakyは811F、
のグロー放電分解で得られるフッ素を含んだアモルファ
スシリコン(a−81:F:H)は耐熱性があシ、8t
raebler−Wronski効来が小さいと報告す
ると異に、その後M工8型のa−81:F:Hの太陽電
池を製作して6.6−の効率が得られた旨を報告してい
る。
Amorphous silicon obtained by the plasma decomposition method of silane (Sta4) can be made by using W, IC, 8p・ar, etc.
It was discovered in 1976 that its conductivity could be greatly changed by doping it with PH, +B, and it, and a solar cell using amorphous silicon was prototyped by D. Arlson and others (1976). Since then, research has been actively conducted to improve the efficiency of amorphous silicon thin-film solar cells. Amorphous silicon, which is obtained by plasma decomposition of silane, has poor heat resistance and 5traeblθr-Tlrona.
sb, B, R, 0vahinaky is 811F,
Fluorine-containing amorphous silicon (a-81:F:H) obtained by glow discharge decomposition has poor heat resistance and 8t
In contrast to the report that the Raebler-Wronski efficiency was small, they subsequently fabricated a M-type 8 a-81:F:H solar cell and reported that an efficiency of 6.6- was obtained.

しかしながら、このMIB型太陽電池の構造はMo/n
fJi a−81:F:H/ iJi a−81:IF
:H/ Nb1Os/Pd−ムUであつ5. Wb、O
sの厚みが30ムと小さいものであったため、再現性に
乏しく、又製作工程が複雑で工業的生産に適していなか
った。
However, the structure of this MIB type solar cell is Mo/n
fJia-81:F:H/iJia-81:IF
:H/Nb1Os/Pd-muU5. Wb, O
Since the thickness of s was as small as 30 mm, reproducibility was poor and the manufacturing process was complicated, making it unsuitable for industrial production.

これに対し、一般的にp−1−n型の構造社、製作工程
が単純で工業生産に適しているものの、81F4のグロ
ー放電分解で得られるa−131:IF:Hを用いたp
−1−n型太陽電池の効率は、EliH,のグロー放電
分解で得られるa−8i 二H等を用いたp−1−n太
陽電池に比べて効率の低い点が問題であった。
On the other hand, although the p-1-n type structure is generally simple and suitable for industrial production, the p-1-n type structure is simple and suitable for industrial production.
The problem with the efficiency of -1-n type solar cells is that they are lower than p-1-n solar cells using a-8i 2H obtained by glow discharge decomposition of EliH.

本発明者らは81)4のグロー放電分解で得られるp−
1−n型太陽電池の効率を改善する為に鋭意研究した結
果、a−81:F:Hを用い7jpin型太陽電池にお
けるp−1界面に水素化したアモルファスシリコンの真
性層を設ける事によす効率の大巾な改善が可能であるこ
とを見出し、本発明を完成させたものである。以下にそ
の詳細を説明する。
The present inventors found that p- obtained by glow discharge decomposition of 81) 4
As a result of intensive research to improve the efficiency of 1-n type solar cells, we found that by using a-81:F:H and providing an intrinsic layer of hydrogenated amorphous silicon at the p-1 interface in 7j pin type solar cells. The present invention has been completed based on the discovery that it is possible to greatly improve the efficiency of the process. The details will be explained below.

本発明に用いるフッ素を含むアモルファスシリコン(以
下a−8i:F:Hと記述する)Fi7ツ化シジシラン
tF、)若しくはその誘導体、及び/又はこれとシラン
(81H4)若しくはその誘導体との混合物を、必4k
Kよシ、水素又社水素で希釈したアルゴン、ヘリウム等
の不活性ガスと混合し、容量結合法又は訪導結合法によ
る高周波グロー分解又は直流グロー放電分解することK
よシ得られる。
The amorphous silicon containing fluorine used in the present invention (hereinafter referred to as a-8i:F:H), Fi7 silane tF) or a derivative thereof, and/or a mixture of this and silane (81H4) or a derivative thereof, Must be 4k
Mix with inert gas such as argon or helium diluted with hydrogen and perform high frequency glow decomposition or direct current glow discharge decomposition using capacitive coupling method or conductive coupling method.
You can get good results.

本発明は、このa−8i:F:Hを1層(真性層)に用
いる種類のp−1−n型太陽電池に関するものである〇
第1図はこの種の従来品の構造を示し、■はステンレス
又はモリブデン等の基板、■はn型のa−81:H又は
a−81,’F:H,■は真性a−8i:IF:H,■
はp型のa−81:H又tja−81:F:H1■は工
TO又は5n01等の透明電極である。この構造の太陽
電池では開放電圧Voaが0.3vo1tsと小さく、
また短絡電流Jscも゛3mム/傷1と小さいために1
効率ダは0.4516程度でしか遅かった。その理由は
、次の如く考えられる0すなわち、8iF、のグロー放
電分解には水累源としてH!又は81H4が必要である
が、この為不可避的にグロー放電分解によってHIFが
発生する0このIIPは、Slの強いエツチング剤であ
る為に、基板上に堆積し九a−81:F:)Iをエツチ
ングしてしまう0従って、基板上に堆積したa−81:
F:1層の表面は欠陥が多く接合界面でのキャリヤーの
再結合が多くなっているために1効率が悪くなると推定
される0 第2図は本発明の長実施例の構造を示すものである。こ
\に、■ldn型のアモルファス半導体、■紘真性のa
−81:H1■紘真性のa−81:II:F、■はp型
のアモルフ、アス半導体、■は基板、■は透明電極であ
る。真性a−81:H層■は、シラン(B i、H,)
又はボリシラン(81nHgn+t )を、必要により
水素又は不活性ガスで希釈して、グロー放電分解して得
られるものであり、その厚みは約30ム以上必要である
。もつとも、この真性a−81:Hの厚みがあまヤ大き
くなるとセルの耐熱性に問題を生じる可能性があるので
、1000ム以下にするのが好ましい。
The present invention relates to a p-1-n type solar cell using this a-8i:F:H in one layer (intrinsic layer). Figure 1 shows the structure of this type of conventional product. ■ is a substrate made of stainless steel or molybdenum, etc., ■ is n-type a-81:H or a-81,'F:H, ■ is intrinsic a-8i:IF:H, ■
is a p-type a-81:H or tja-81:F:H1 is a transparent electrode such as TO or 5n01. In a solar cell with this structure, the open circuit voltage Voa is as small as 0.3 volts.
In addition, the short circuit current Jsc is as small as 3mm/1 scratch, so
The efficiency was only about 0.4516, which was slow. The reason for this is thought to be as follows: 0, that is, 8 iF, glow discharge decomposition requires H! or 81H4 is required, but this inevitably generates HIF due to glow discharge decomposition.Since this IIP is a strong etching agent for Sl, it is deposited on the substrate and 9a-81:F:)I Therefore, the a-81 deposited on the substrate:
F: It is estimated that the surface of the first layer has many defects and recombination of carriers at the bonding interface increases, resulting in a decrease in efficiency.0 Figure 2 shows the structure of a long embodiment of the present invention. be. In this case, ■LDN type amorphous semiconductor, ■Horotic a
-81:H1■ A-81:II:F of Hiromonicity, ■ is a p-type amorph, an assemiconductor, ■ is a substrate, and ■ is a transparent electrode. Intrinsic a-81: H layer ■ is silane (B i, H,)
Alternatively, it can be obtained by glow discharge decomposition of polysilane (81 nHgn+t), diluted with hydrogen or inert gas if necessary, and its thickness must be about 30 μm or more. However, if the thickness of this intrinsic a-81:H becomes too large, it may cause a problem in the heat resistance of the cell, so it is preferable that the thickness is 1000 μm or less.

又このa−81:H層■を得る方法としては、一旦、真
性a−81:F:1層を堆積した後に、該層を水素プラ
ズマで7ニールしてもよい。また真性a−fii:H:
P層■とn型アモルファス半導体層■との間にも、この
真性a−81:Hをつけてもよい。
Further, as a method for obtaining this a-81:H layer (1), after an intrinsic a-81:F:1 layer is deposited, this layer may be annealed with hydrogen plasma for 7 times. Also, true a-fii:H:
This intrinsic a-81:H may also be added between the P layer (1) and the n-type amorphous semiconductor layer (2).

n型層及びp型層に用いるアモルファス半導体としては
シラン又はその誘導体から得られるa−at :il。
The amorphous semiconductor used for the n-type layer and the p-type layer is a-at:il obtained from silane or a derivative thereof.

フッ化シラン又はその誘導体から得られるa−81:?
:H。
a-81 obtained from fluorinated silane or its derivative:?
:H.

シラン又は7ツ化シランとハイドロカーボンから得られ
る水素化又はフッ素化されたアモルファスシリコンカー
バイド(以下それぞれa−810:H。
Hydrogenated or fluorinated amorphous silicon carbide obtained from silane or 7-silane and hydrocarbon (hereinafter a-810:H, respectively).

a−81C:F:Hと記す)シラン又は7ツ化クランと
アンモニア、又はヒドラジン又はチッ素のグロー放電分
解で得られる水素化あるいはフッ素化されたアモルファ
スシリコンナイトライド(以下それぞれa−81N:H
,a−Elili:IF:Hと記す)又社シラン、ハイ
ドロカーボン、アンモニア等から得られる水素化又はフ
ッ素化されたアモルファスシリコンカーボンナイトライ
ド(以下a−81ON:11. a−EIiCN:F:
Hと記す)が用いられる。特に光の入射する側のp型層
4CFin−810:II、 a−810:IP:H%
a−81N:E。
a-81C:F:H) Hydrogenated or fluorinated amorphous silicon nitride obtained by glow discharge decomposition of silane or heptadide and ammonia, or hydrazine or nitrogen (hereinafter a-81N:H, respectively)
, a-Elili: IF:H) or hydrogenated or fluorinated amorphous silicon carbon nitride obtained from silane, hydrocarbon, ammonia, etc. (hereinafter a-81ON: 11. a-EIiCN:F:
(denoted as H) is used. Especially p-type layer 4CFin-810:II, a-810:IP:H% on the side where light enters
a-81N:E.

a−81N:F:H,a−81ON:H,a−81(3
N:F:Hが好ましいOn型層もこれらのアモルファス
半導体が耐薬品性にすぐれH?(C強いので好ましいO
n型アモルフ1ス半導体層■の厚みaloo〜500ム
が通常用いられ、真性a−131:F:H層■の厚みは
2000A〜10000ムである。p型アモルファス半
導体層■よい。
a-81N:F:H, a-81ON:H, a-81(3
These amorphous semiconductors have excellent chemical resistance for the On-type layer, which is preferably N:F:H. (C is strong, so O is preferable
The thickness of the n-type amorphous semiconductor layer (2) is usually from aloo to 500 μm, and the thickness of the intrinsic a-131:F:H layer (2) is from 2,000 μm to 10,000 μm. P-type amorphous semiconductor layer ■Good.

又第2図にお轄るn型層■とp型層■を置き換えて屯太
陽電池として十分に機能する。但し、この場合にL1真
性a−81:?:H層■と、これK11il接するpf
J層との間に真性a−81:H層を約30i〜1000
ムつける必要がある。
Moreover, by replacing the n-type layer (2) and the p-type layer (2) shown in FIG. 2, it can function satisfactorily as a tun solar cell. However, in this case, L1 intrinsic a-81:? : H layer■ and pf which is in contact with K11il
Between the J layer and the intrinsic a-81:H layer, approximately 30i to 1000
It is necessary to put on a good mood.

第3図は本発明の別動様の実施例を示し、■はガラス等
の透明基板0は工T O、@ l=t f?no1で[
株]■は透明電極として機能するものである。■はp型
のアモルファス半導体、■は真性a−8i:H,■は真
性a−Eli:P:H,■はn型のアモルファス半導体
、@はアルミ、モリブデン等の電極である。
FIG. 3 shows a separate embodiment of the present invention, where ■ indicates a transparent substrate 0 such as glass, etc., and @ l = t f? No. 1 [
] ■ functions as a transparent electrode. (2) is a p-type amorphous semiconductor, (2) is an intrinsic a-8i:H, (2) is an intrinsic a-Eli:P:H, (2) is an n-type amorphous semiconductor, and @ is an electrode made of aluminum, molybdenum, etc.

このようにガラス等の透明基板上に堆積する場合には、
透明t&が工To[株]だけではa−81ニア:Hを堆
積する際にエツチングされるので、SnJをp型のアモ
ルファス半導体層■としては、a−Elie:H。
When depositing on a transparent substrate such as glass,
Since the transparent t& is etched when depositing a-81Nia:H with only Koto [Co., Ltd.], when SnJ is used as a p-type amorphous semiconductor layer (2), a-Elie:H is used.

a−81N:HX  a−810:F:HS  a−8
iN:IF:H,a−81σa二m。
a-81N:HX a-810:F:HS a-8
iN:IF:H, a-81σa2m.

a−81ON:IF:Hが特に好ましい。何故ならばp
型のアモルファス半導体層としてa−81:H4)a−
Eli :F:Hを用いる場合には、その後JCa−B
1:F:II層■を堆積するときに発生するTIFでエ
ツチングされやすいからである。0社真性のa−81:
Hで厚みは30A〜1000ム、■は真性a−,Si:
F:H,■はn型のアモルファス半導体層であってa−
’81:TIXa−81:F:H。
a-81ON:IF:H is particularly preferred. Because p
a-81:H4) a- as an amorphous semiconductor layer of type
When using Eli:F:H, then JCa-B
This is because it is easily etched by TIF generated when depositing the 1:F:II layer (2). Company 0 genuine a-81:
H, thickness is 30A~1000mm, ■ is intrinsic a-, Si:
F:H, ■ is an n-type amorphous semiconductor layer, and a-
'81:TIXa-81:F:H.

a−81C:H,%a−810:F:H,a−8iN:
H,a−8in:IF:H。
a-81C:H,% a-810:F:H, a-8iN:
H, a-8in:IF:H.

a−81CN:)I、 a−1ON:IF二H等が用い
られる。
a-81CN:)I, a-1ON:IF2H, etc. are used.

これらのアモルファス半導体を堆積させるためのプラズ
マ分解は通常、200℃から400℃の基板温度で行な
われる。またn型又Up型の制御は、p型にはアルミ、
ボーン等の周期率表筒■族の元素を、n型にはリン、ヒ
素等の周期率表、第マ族の元素を、それらの水素化物あ
るいはフッ素化物として、反応ガス中忙混合してグロー
放電分解するか、それらの元素をイオンインブランチ−
シロンする仁とにより行う。
Plasma decomposition for depositing these amorphous semiconductors is typically performed at substrate temperatures of 200°C to 400°C. In addition, for n-type or up-type control, aluminum is used for p-type,
Elements from Group I of the periodic table, such as bones, and elements from Group M of the periodic table, such as phosphorus and arsenic, for N-type, as their hydrides or fluorides, are mixed in the reaction gas to glow. Discharge decomposition or ion in-branching of these elements
It is done by shiron jin.

叙上説明の如く、本発明ではp−1−n型アモルファス
シリコン系太陽電池において、1層を複層構造とし、第
1の1層として真性a−81:1P:Iliを用いると
共に1第2の1層としてp−1の界面に真性a−81:
H層を約30ム〜1000ムつけることを特徴とし、従
来のa−81:IF:Hの単層を1層とする太陽電池に
比べて大巾なる効率の改善が達成できたものである。
As described above, in the present invention, in a p-1-n type amorphous silicon solar cell, one layer has a multilayer structure, and intrinsic a-81:1P:Ili is used as the first layer, and Intrinsic a-81 at the interface of p-1 as one layer of:
It is characterized by having an H layer of approximately 30 µm to 1000 µm, and has achieved a significant improvement in efficiency compared to the conventional solar cell with a single layer of a-81:IF:H. .

次に、この画期的な効率改善効果について、実施例を用
いて説明する〇 実施例 内径11c@の石英反応管を用い13.56MHzの高
周波でグロー放電分解する。所要の各アモルファス半導
体は下記のガス組成でグロー放電分解して基板上に堆積
させた0又基板温度は270℃で固定した0 a−8i :E   (10% 8iHa / Hz)
a−131二F、’H(SiH4/ HS =6 )a
−8iO:H(口、/81H,=2)a−81N :H
(MH,/ SiH4:0.3 )a−8iON:H(
m@ 二(コクヨ[、: 81.=0. 2 : 5 
: 1)実施例として第2図の構造のものを、対照例と
して第1図の構造のものを用いた。基板■はいずれ4、
BS (ステンレススチール)である。透明電極■はい
ずれも工TOを電子ビーム蒸着した。p型層■及び■の
厚みはいずれ4100ム、真性a−81:F:H0゛ゝ 層■の厚みはいずれも4000A、n型層■及び■の厚
みはいずれも500ムである。本発明に特−有の真性a
−9i:H層(第2の1層)の厚みは500ムとした0
尚、p型アモルファス半導体は、Ba1l@をドーピン
グして得たもので、堆積した膜中のボロン撫度が匹ずれ
の場合も約0.1atom %となるようにし良。また
n型アモルファ、ス半導体はPH,をドーピングして得
たもので、堆積した膜中のリン濃度はいずれの場合も約
0.5atom %である。得られた各種の太陽電池に
ついて、AM−1ソーラーシェミレータ−(100mW
/cmりで、T−v%性を求め、これを第1表に示す如
く短絡電1et;Jaa (mム/♂)、開放電圧To
e (volts) 、曲線因子FF (−)、変換効
率ダ■で記述した。
Next, this epoch-making efficiency improvement effect will be explained using an example.〇Example A quartz reaction tube with an inner diameter of 11 cm was used for glow discharge decomposition at a high frequency of 13.56 MHz. Each of the required amorphous semiconductors was deposited on a substrate by glow discharge decomposition with the following gas composition and the substrate temperature was fixed at 270 °C.
a-131 2F,'H (SiH4/HS = 6) a
-8iO:H (mouth, /81H,=2)a-81N:H
(MH,/SiH4:0.3)a-8iON:H(
m@2 (Kokuyo[,: 81.=0. 2: 5
: 1) The structure shown in FIG. 2 was used as an example, and the structure shown in FIG. 1 was used as a control example. The board ■ will eventually be 4,
BS (stainless steel). Both transparent electrodes (1) were made of TO by electron beam evaporation. The thicknesses of the p-type layers (2) and (2) are both 4100 μm, the thickness of the intrinsic a-81:F:H0゛ layer (2) is both 4000 μm, and the thickness of the n-type layers (2) and (2) are both 500 μm. Intrinsic a specific to the present invention
-9i: The thickness of the H layer (second layer) was 500 μm.
Note that the p-type amorphous semiconductor is obtained by doping with Ba1l@, and the boron concentration in the deposited film should be approximately 0.1 atom % even if the concentration is different. Further, the n-type amorphous semiconductor is obtained by doping with PH, and the phosphorus concentration in the deposited film is about 0.5 atom % in either case. Regarding the obtained various solar cells, AM-1 solar shemulator (100mW
/cm, determine the T-v% property, and calculate this as shown in Table 1, short circuit voltage 1et; Jaa (mm/♂), open voltage To
It was described in terms of e (volts), fill factor FF (-), and conversion efficiency d.

(12頁に続く) この第1表によって明らかな如く、対照例はいずれもJ
eeが格段に小さく、またVocも0.2 vo1ts
以下と小さいので、p−1−n接合の拡散電位が充分形
成されていないことが判かる0又対照例は、IPXPも
小さい為にηaO,2%以下と極めて小さい。これに対
し、本発明の実施例では、vocが0.67 vo1t
θ以上あlJe+c、7Fとも大きな値を示し、p型ア
モルファス半導体層と真性a−8i:F:Hの層(第1
の1層)との間に真性a−8i:Hの層(第2の1層)
をわずか500ムつけるだけでダが大巾に増加すること
が判かる0特Kp層に光学的禁止帯巾の大きいa−81
0:H,a−81N : II、 a−8101:il
等を用いる事によシとの効果社さらに顕著になるもので
ある。
(Continued on page 12) As is clear from this Table 1, all of the control examples are J
ee is much smaller and Voc is also 0.2 volts
It can be seen that the diffusion potential of the p-1-n junction is not sufficiently formed because it is as small as ηaO of 2% or less because the IPXP is also small. In contrast, in the embodiment of the present invention, voc is 0.67 volt
Above θ, both lJe+c and 7F show large values, and the p-type amorphous semiconductor layer and the intrinsic a-8i:F:H layer (first
layer of intrinsic a-8i:H (second layer)
A-81, which has a large optical forbidden band in the 0 special Kp layer, shows that the DA can be greatly increased by adding only 500 μm.
0:H, a-81N: II, a-8101:il
By using the above, the effect becomes even more pronounced.

エテO/p型a−810:H/i型a−81:H/i型
a−81’yF、”H/n型a81 :F :H/ 8
 Bのタイプの太陽電池において、i fil a−8
1:Hの層(第2の1層)の厚みを変え九時の太陽電池
特性を第2表に示す。
Ete O/p type a-810: H/i type a-81: H/i type a-81'yF, "H/n type a81: F: H/ 8
In the type B solar cell, i fil a-8
Table 2 shows the solar cell characteristics at 9 o'clock when the thickness of the 1:H layer (second 1 layer) was changed.

(14真に続く) この第2表かられかるようkわずか5oムの真性a−8
i:H層(第2の1層)をつけるだけでも大「図るη、
向上効果がある。このa−81:H層の厚みが1000
ムを越えた場合でも、大きなダを示すことに変わりはな
いが、 a−81:H層(第2の1層)があtb厚くな
ると、a−81:F:H層(第1の1層)本来の耐熱性
が生かされない傾向があるので、a−81:H層は10
00ム以下1の厚みにすることが望ましい。
(Continues from 14) As can be seen from this table 2, the intrinsic a-8 of only 5om
i: Just adding the H layer (second layer) will greatly improve the
It has an improving effect. The thickness of this a-81:H layer is 1000
Even if the a-81:F:H layer (the first layer) becomes thicker than the a-81:F:H layer (the first layer), it still shows a large da. layer) Since the original heat resistance tends to not be utilized, the a-81:H layer is 10
It is desirable that the thickness be 0.00 mm or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のp−1−n型太陽電池の構造を示す略本
断面図、第2図及び第3因は本発明の実施例の構造を示
す略本断面図である0 特許出願人 鐘淵化学工業株式会社 代理人弁理士内田敏彦
FIG. 1 is a schematic sectional view showing the structure of a conventional p-1-n type solar cell, and FIGS. 2 and 3 are schematic sectional views showing the structure of an embodiment of the present invention. Toshihiko Uchida, Patent Attorney, Kanebuchi Chemical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】 i  p−1−n型のアモルファスシリコン系太陽電池
の1層に7フ化シラン(81F、)若しくはその誘゛導
体と水素、又はフッ化シラン若しくはその誘導体とシラ
ン若しくはその誘導体のグl二′放電分解で得られる真
性a−81・:IP:Hを用いる太陽゛電池において、
p層と前記1層と0閘に、シラン若しくはその誘導体か
らグロー、放電分解して得られる真性a−81:Hの層
又1ia−81:IF:Hを水素プラズマアニールして
得られるa−81:Ifの層から成る第2の1層を設け
る事を特徴とするアモルファスシリコン太陽を池。 2 前記真性a−81:Hの層の厚みが約30ムから1
000ムであることを特徴とする特許請求の範囲第1項
に記載のアモルファスシリコン太陽電池0 3 前記p層又はn層のアモルファス半導体のうち少な
くとも光が入射する側の層がa−810−:H。 a−8i(!:F:H,a−81N:H,h=B”LM
:F:B、 a−81ON:Hla−81ON:F:)
lから選ばれるアモルファス半導体から成ることを特徴
とする特許請求の範囲第1または第2項に記載のアモル
ファスシリコン太陽電池。 4 前記p−1−n型太陽電池を構成子るアモルファス
半導体が、ガラス等の透明基板に1 工TOと50ム上
に堆積されている仁とを特徴とする特許請求の範囲第1
1第2又は第3項に記載のアモルファスシリコン太ot
池。
[Claims] One layer of an i p-1-n type amorphous silicon solar cell contains heptafluoride silane (81F) or its derivative and hydrogen, or fluoride silane or its derivative and silane or its In a solar cell using intrinsic a-81.:IP:H obtained by 2' discharge decomposition of a derivative,
A layer of intrinsic a-81:H obtained by glow and discharge decomposition from silane or its derivatives, or an a- obtained by hydrogen plasma annealing of 1ia-81:IF:H in the p layer, the 1st layer and the 0th layer. 81: An amorphous silicon solar cell characterized by providing a second layer consisting of a layer of If. 2 The thickness of the layer of intrinsic a-81:H is about 30 μm to 1 μm.
Amorphous silicon solar cell according to claim 1, characterized in that the amorphous semiconductor of the p-layer or n-layer has at least a layer on the side where light enters a-810-: H. a-8i(!:F:H, a-81N:H, h=B"LM
:F:B, a-81ON:Hla-81ON:F:)
The amorphous silicon solar cell according to claim 1 or 2, characterized in that the amorphous silicon solar cell is made of an amorphous semiconductor selected from the following. 4. Claim 1, characterized in that the amorphous semiconductor constituting the p-1-n type solar cell is deposited on a transparent substrate such as glass with 1 μm TO and 50 μm thick.
1. Amorphous silicon according to item 2 or 3
pond.
JP56163684A 1981-10-13 1981-10-13 Amorphous silicon solar battery containing fluorine Granted JPS5864070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56163684A JPS5864070A (en) 1981-10-13 1981-10-13 Amorphous silicon solar battery containing fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56163684A JPS5864070A (en) 1981-10-13 1981-10-13 Amorphous silicon solar battery containing fluorine

Publications (2)

Publication Number Publication Date
JPS5864070A true JPS5864070A (en) 1983-04-16
JPH0121634B2 JPH0121634B2 (en) 1989-04-21

Family

ID=15778628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56163684A Granted JPS5864070A (en) 1981-10-13 1981-10-13 Amorphous silicon solar battery containing fluorine

Country Status (1)

Country Link
JP (1) JPS5864070A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278782A (en) * 1988-05-02 1989-11-09 Mitsui Toatsu Chem Inc Manufacture of photovoltaic element
JPH01280366A (en) * 1988-05-06 1989-11-10 Mitsui Toatsu Chem Inc Photovoltaic element
JPH01280365A (en) * 1988-05-06 1989-11-10 Mitsui Toatsu Chem Inc Photoelectric transducer
US5032884A (en) * 1985-11-05 1991-07-16 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Semiconductor pin device with interlayer or dopant gradient
JPH03177077A (en) * 1989-12-06 1991-08-01 Canon Inc Amorphous silicon pin type photoelectric transducer
EP0898303A2 (en) * 1997-08-22 1999-02-24 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Electric isolating thin film system with defined residual conduction

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032884A (en) * 1985-11-05 1991-07-16 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Semiconductor pin device with interlayer or dopant gradient
JPH01278782A (en) * 1988-05-02 1989-11-09 Mitsui Toatsu Chem Inc Manufacture of photovoltaic element
JPH01280366A (en) * 1988-05-06 1989-11-10 Mitsui Toatsu Chem Inc Photovoltaic element
JPH01280365A (en) * 1988-05-06 1989-11-10 Mitsui Toatsu Chem Inc Photoelectric transducer
JPH03177077A (en) * 1989-12-06 1991-08-01 Canon Inc Amorphous silicon pin type photoelectric transducer
EP0898303A2 (en) * 1997-08-22 1999-02-24 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Electric isolating thin film system with defined residual conduction
EP0898303A3 (en) * 1997-08-22 1999-04-07 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Electric isolating thin film system with defined residual conduction

Also Published As

Publication number Publication date
JPH0121634B2 (en) 1989-04-21

Similar Documents

Publication Publication Date Title
US4196438A (en) Article and device having an amorphous silicon containing a halogen and method of fabrication
US4719501A (en) Semiconductor device having junction formed from two different hydrogenated polycrystalline silicon layers
JPS60154521A (en) Manufacture of silicon carbide film
JPH0613638A (en) Photovoltaic device
JPS59141278A (en) Photoelectric conversion element and manufacture thereof
US5556794A (en) Method of manufacturing a semiconductor device having low sodium concentration
JP4532008B2 (en) Method for forming antireflection film
JPS5864070A (en) Amorphous silicon solar battery containing fluorine
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
US7038238B1 (en) Semiconductor device having a non-single crystalline semiconductor layer
CA1273602A (en) Method of fabricating solar cells
JPH0122991B2 (en)
JP3672471B2 (en) Method for manufacturing photoelectric conversion element
JPH0364973A (en) Photovoltaic element
JPH06181330A (en) Amorphous semiconductor solar cell and manufacture thereof
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
JPH01161777A (en) Manufacture of amorphous semiconductor solar cell
JPH06267861A (en) Method of forming semiconductor thin film
JP2001339080A (en) Method for manufacturing photovoltaic device
JPS60163429A (en) Manufacture of amorphous silicon solar cell
JPH02260666A (en) Manufacture of amorphous solar cell
CN113394309A (en) Solar cell and preparation method thereof
JPS6150380A (en) Manufacture of photoelectric conversion element
JPS62144370A (en) Manufacture of photoelectric conversion element
JP2000164904A (en) Amorphous silicon solar cell and manufacture of it