JPS5935016A - Preparation of hydrogen-containing silicon layer - Google Patents

Preparation of hydrogen-containing silicon layer

Info

Publication number
JPS5935016A
JPS5935016A JP14210482A JP14210482A JPS5935016A JP S5935016 A JPS5935016 A JP S5935016A JP 14210482 A JP14210482 A JP 14210482A JP 14210482 A JP14210482 A JP 14210482A JP S5935016 A JPS5935016 A JP S5935016A
Authority
JP
Japan
Prior art keywords
temperature
silicon
hydrogen
silicon layer
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14210482A
Other languages
Japanese (ja)
Other versions
JPH0262482B2 (en
Inventor
Nobuo Nakamura
信夫 中村
Juichi Shimada
嶋田 寿一
Sunao Matsubara
松原 直
Shinichi Muramatsu
信一 村松
Masatoshi Utaka
正俊 右高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14210482A priority Critical patent/JPS5935016A/en
Publication of JPS5935016A publication Critical patent/JPS5935016A/en
Publication of JPH0262482B2 publication Critical patent/JPH0262482B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled layer capable of providing a solar cell having both merits of amorphous and crystalline silicons, by making a silicon layer at a temperature including a temperature wherein silicon is made into crystallite, treating it with hydrogen plasma at a temperature approximately the crystallite formation temperature. CONSTITUTION:In the preparation of silicon layer by vacuum metallizing of silicon-containing solid substance or chemical decomposition method or plasma decomposition method of silane-containing gas mixture under reduced pressure, the preparation consists of the first stage wherein the silicon layer is prepared at a temperature including a temperature (480-540 deg.C in the vacuum metallizing and plasma decomposition method under reduced pressure, and 560-600 deg.C in chemical decomposition method under reduced pressure) at which it is converted into crystalline, and the second stage wherein heat-treatment in a plasma atmosphere containing hydrogen or its isotope is carried out at a temperature approximately the crystallite formation temperature of silicon. By making the silicon layer containing both of amorphous and crystalline silicons, a hydrogen-containing silicon layer useful for a solar cell having characteristics of both merits is prepared.

Description

【発明の詳細な説明】 本発明は、シリコンまたはその合金の1種から成る層を
組込んだ電子デバイス、特に光子輻射線を電気エネルギ
ーに変換すべく使用し得る太陽電池に用いる含水素シリ
コン層の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrogen-containing silicon layer for use in electronic devices incorporating a layer of silicon or one of its alloys, particularly solar cells that can be used to convert photon radiation into electrical energy. The present invention relates to a manufacturing method.

従来の太陽電池の材料としては一般に結晶シリコンが使
用さ゛れてきたが、セル特性が良好な反面製造コストが
高いという欠点があった。一方、最近注目をあびている
非晶質シリコンについては、光吸収が大きいために薄く
てもよく、低温プロセスで作れるという特長を持つ反面
、成長速度が小さいために長時間の成長が必要でアシ、
長期使用の信頼性にも問題がある。また、太陽光スベク
トルからすれば波長感度幅が狭く、最適な材料とは真え
ない。
Crystalline silicon has generally been used as a material for conventional solar cells, but although it has good cell characteristics, it has the drawback of high manufacturing costs. On the other hand, amorphous silicon, which has been attracting attention recently, has the advantage of being able to be made thin due to its high light absorption and can be produced in a low-temperature process.
There are also problems with reliability in long-term use. Also, from the perspective of sunlight spectrum, the wavelength sensitivity range is narrow, so it cannot be considered an optimal material.

本発明の目的は、非晶質シリコンと微結晶シリコンとが
共に含まれるシリコン膜とすることにより両者の利点の
特性を持つ太陽電池を提供することにある。この膜は太
陽光スペクトルに近い波長感度を持ち光吸収の大きな材
料であり、局在準位が小さく易動度が大きいために高い
光電変換効率を示し、長期間安定な特性を示す様になる
An object of the present invention is to provide a solar cell having characteristics that have the advantages of both amorphous silicon and microcrystalline silicon by using a silicon film containing both amorphous silicon and microcrystalline silicon. This film is a material with wavelength sensitivity close to the sunlight spectrum and high light absorption, and because it has small localized levels and high mobility, it exhibits high photoelectric conversion efficiency and exhibits long-term stable characteristics. .

非晶質シリコンを太陽電池として用いるためには、光導
仏性を持たせるために膜中に水素を含ませることが不可
欠であυ、通常グロー放電法により形成されている。形
成温度は200〜300Cであり、これ以上の温度で形
成されたものは水素の割合が極めて低く、太陽′電池と
しては適当でない。また、シリコンJ摸形成時に水素を
含有させたものKついでij:、300C以上の熱処理
によって水素が放出されることがわかっておシ、従って
、水素含有シリコン膜は、膜形成時および形成後も30
0C以上に加熱することは悪い影響を与えるとされてき
た。
In order to use amorphous silicon as a solar cell, it is essential to include hydrogen in the film in order to give it light guiding properties, and it is usually formed by a glow discharge method. The formation temperature is 200 to 300C, and those formed at temperatures higher than this have an extremely low hydrogen content and are not suitable as solar cells. It is also known that hydrogen is released by heat treatment at 300C or higher when hydrogen is added during the formation of the silicon film. 30
Heating above 0C has been considered to have negative effects.

しかし、シリコン膜を形成した後に水素プラズマ処理を
行なった場合には、処理温度は高いほど良く最高550
Cの温度まで充分な光導伝が得られた。一方、真空蒸着
あるいは減圧下での化学分解法・プラズマ分解法によっ
てシリコン膜を形成すれば、圧力と形成温度との関係に
よって非晶質シリコンと微結晶シリコンが共に含まれる
膜を形成することは容易である。こうして形成された膜
を微結晶化温度近傍の温度で水素プラズマ処理すれば、
高い光導仏性と非晶質シリコンに近い光吸収ケ示し、そ
の波長感度は、結晶シリコンと非晶質シリコンの中間的
な値となる。史に、グロー放電法によって低温で形成さ
れたものに較べ格段に信頼性の高い膜となる。微結晶化
の温度はシリコン膜の形成方法および条件により少しず
つ異なってくるが、真空蒸着法および減圧プラズマ分解
法の場合は480Cから540C,減圧下での化学分解
法の場合は560Cから600Cであった。
However, when hydrogen plasma treatment is performed after forming a silicon film, the higher the treatment temperature, the better.
Sufficient photoconduction was obtained up to a temperature of C. On the other hand, if a silicon film is formed by vacuum evaporation or chemical decomposition or plasma decomposition under reduced pressure, it is not possible to form a film containing both amorphous silicon and microcrystalline silicon depending on the relationship between pressure and formation temperature. It's easy. If the film thus formed is treated with hydrogen plasma at a temperature near the microcrystallization temperature,
It exhibits high light guiding properties and light absorption similar to that of amorphous silicon, and its wavelength sensitivity is intermediate between that of crystalline silicon and amorphous silicon. Historically, this results in a much more reliable film than those formed at low temperatures by glow discharge methods. The temperature for microcrystallization varies slightly depending on the silicon film formation method and conditions, but it is 480C to 540C for vacuum evaporation and reduced pressure plasma decomposition, and 560C to 600C for chemical decomposition under reduced pressure. there were.

シリコン膜の光吸収の割合は、結晶粒の大きさに依存す
る。波長0.5μmにおける吸収係数値は、結晶シリコ
ンは1. I X 10’ cm−”であり、不純物を
ドープしない250Cで真空蒸着した非晶質シリコンは
2X1011Crn−’に対して、500Cで微結晶化
したシリコンは4X10’crn″″1であった。形成
温度を上げるに従ってこの値は結晶シリコンに近づいて
小さくなシ、550Gで2.5 X 10’cm−”と
なった。すなわち、これ以上の温度で形成した場合は、
太陽電池としては、膜厚が数μm以上が必要となシ利点
は小さいことになる。
The light absorption rate of a silicon film depends on the size of crystal grains. The absorption coefficient value at a wavelength of 0.5 μm is 1. I x 10'cm-'', and the amorphous silicon vacuum-deposited at 250C without doping with impurities had 2X1011Crn-', whereas the silicon microcrystallized at 500C had 4X10'crn''1. As the temperature increases, this value approaches that of crystalline silicon and becomes smaller, reaching 2.5 x 10'cm-'' at 550G. In other words, if formed at a temperature higher than this,
As a solar cell, a film thickness of several μm or more is required, so the advantage is small.

膜形成後の水素プラズマ処理の効果は膜の結晶性に依存
し、結晶粒の小さなものほど低温処理でよい。この効果
については、赤外吸収測定等による膜中の水素量の測定
および導電率の変化によって確かめられる。種々のシリ
コン膜についてこの効果を調べた結果、非晶質シリコン
膜の場合は400〜500Cの温度範囲が最も効果があ
り、その他の微結晶シリコンを含んだ膜については、微
結晶化温度Tの±50Cの温度範囲が最も効果的であっ
た。更に、この水素プラズマ処理は膜形成後に一度大気
に触れさせた場合には、表面tWのシリコンが酸化され
でしまい、水素と結合できないために効果が減少する。
The effect of hydrogen plasma treatment after film formation depends on the crystallinity of the film, and the smaller the crystal grains, the better the low temperature treatment. This effect can be confirmed by measuring the amount of hydrogen in the film by infrared absorption measurement or the like and by changing the conductivity. As a result of investigating this effect on various silicon films, it was found that for amorphous silicon films, a temperature range of 400 to 500 C was most effective, and for other films containing microcrystalline silicon, the temperature range of 400 to 500 C was the most effective. A temperature range of ±50C was most effective. Furthermore, if this hydrogen plasma treatment is once exposed to the atmosphere after film formation, the silicon on the surface tW will be oxidized and cannot bond with hydrogen, reducing its effectiveness.

実施例 1 10””’J’orrの圧力下で蒸着ソースである結晶
シリコンに電子ビームを照射し、加熱された石英基板に
シリコン膜を蒸着した。この時、基板温度が450Cの
時は蒸着されたシリコン膜は非晶質であるが、500c
では微結晶化する。まず、450Cの温度において毎秒
1nmの速度で0.5μmの厚さに非晶質シリコンを蒸
着し、次いで500Cの温度において毎秒1.5nmの
速度で0.5μmの厚さに微結晶シリコンを蒸着した。
Example 1 A silicon film was deposited on a heated quartz substrate by irradiating an electron beam onto crystalline silicon as a deposition source under a pressure of 10'''J'orr. At this time, when the substrate temperature is 450C, the deposited silicon film is amorphous;
Then it becomes microcrystalline. First, amorphous silicon is deposited to a thickness of 0.5 μm at a rate of 1 nm per second at a temperature of 450 C, and then microcrystalline silicon is deposited to a thickness of 0.5 μm at a rate of 1.5 nm per second at a temperature of 500 C. did.

次いで46(I’、 0.1’l’Orrの圧力で30
分間の水素プラズマ処理を行なった。この結果、暗導伝
率が3×10″′QΩ−”an−”に対しAMIの強さ
の光照射導伝率は5X10”’Ω−1・cln−1と1
01′倍以上の変化を示し、太陽電池として使用可能な
十分な自白キャリアが発生ずることがわかった。また、
波長0.5μmに対する吸収係数値は6.5X10’儒
−1と非晶質シリコンと結晶シリコンの中間的な値を示
した。
Then 30 at a pressure of 46 (I', 0.1'l'Orr)
Hydrogen plasma treatment was performed for 1 minute. As a result, while the dark conductivity is 3×10''QΩ−”an−”, the light irradiation conductivity at the intensity of AMI is 5×10”Ω−1·cln−1 and 1
It was found that the change was more than 0.01' times, and that sufficient self-contained carriers usable as solar cells were generated. Also,
The absorption coefficient value for a wavelength of 0.5 μm was 6.5×10′f −1, which is an intermediate value between amorphous silicon and crystalline silicon.

実施例 2 第1図r;): 、シリコ/膜を形成するための減圧プ
ラズマCV I)装置の全体図である。反応管1は炉2
により外部より加熱されており、ステンレス基板3が電
極4に保持されている。5は高周波電源、6は真空ポン
プを示している。反応管1の内部を高真空に引いた後に
微結晶化する温度以下の300Cの温度においてsiH
,とPH3を8 ’ H4: P Hs=10:1の割
合で流し、全体の圧力tlTOr’とした。この状態に
おいて電極4に高周波電圧を印加し、反応管内部にプラ
ズマ放電させた。まず基板3にn型層を39nm成長さ
せた後にPH。
Example 2 Figure 1r;): Overall view of a reduced pressure plasma CVI) apparatus for forming silico/membranes. Reaction tube 1 is furnace 2
The stainless steel substrate 3 is held by the electrode 4. Reference numeral 5 indicates a high frequency power supply, and reference numeral 6 indicates a vacuum pump. After drawing the inside of the reaction tube 1 into a high vacuum, siH
, and PH3 were flowed at a ratio of 8'H4:PHs=10:1, and the total pressure was set to tlTOr'. In this state, a high frequency voltage was applied to the electrode 4 to cause plasma discharge inside the reaction tube. First, an n-type layer is grown to a thickness of 39 nm on the substrate 3, and then PH is applied.

を止め、圧力f: I Torrに調整した後にノ/ド
ープ層f:3000m成長させた。次に反応炉内の温度
を微結晶化の温度近傍の5000として引き続きノンド
ープ層を400nm成長させた。最後にこの温度におい
て8iH,とB、H6を8 ’ 84 : B x H
e=20:14)割合で流し、I Torr (D圧力
テ10nmのpm一層を成長させた。この状態で反応管
を高真空引きした後に水素を流し、0.1TOrrの圧
力にしてプラズマ放電させ、15分間の水素プラズマ処
理を行なった。
After adjusting the pressure f to I Torr, a doped layer f of 3000 m was grown. Next, the temperature in the reactor was set to 5000, which is near the microcrystallization temperature, and a non-doped layer was subsequently grown to a thickness of 400 nm. Finally, at this temperature, 8iH, and B, H6 are 8' 84: B x H
A single layer of 10 nm of pm was grown at a pressure of I Torr (D pressure). In this state, the reaction tube was evacuated to a high vacuum, and then hydrogen was flowed to a pressure of 0.1 TOrr to cause plasma discharge. , hydrogen plasma treatment was performed for 15 minutes.

反応装置から取り出した後に表面に透明導伝膜を蒸着し
太陽電池を構成したところAMIの擬似太陽光下で、開
放電圧0.81V、短絡電流7.8mA/lyn” ′
fI:得た。更に、太陽光スペクトルに対して35Qn
mから9001mまでの波長に対して感度を示し、結晶
シリコン太陽電池と非晶質太陽電池の中間的な特性を示
した。
After taking it out from the reactor, a transparent conductive film was deposited on the surface to form a solar cell, and under the simulated sunlight of AMI, the open voltage was 0.81 V and the short circuit current was 7.8 mA/lyn''
fI: Obtained. Furthermore, 35Qn for the sunlight spectrum
It exhibited sensitivity to wavelengths from m to 9001 m, and exhibited characteristics intermediate between crystalline silicon solar cells and amorphous solar cells.

本発明は化学分解法又はプラズマ分解法において有用で
ある。
The present invention is useful in chemical or plasma decomposition methods.

本発明によれば、非晶質シリコン太陽電池と結晶シリコ
ン太陽電池の両方の長所を生かした太陽電池を作ること
ができる。すなわち、光の吸収が大きいので膜厚は数μ
m以下でよく、用途によシ非晶質層と微結晶層の厚さの
割合を変えれば任意の波長感度のものが得られる。光電
変換効率の点では、表面側接合層を微結晶化することに
よって空乏層における局在準位密度の減少から結晶シリ
コン太陽電池に近い電流密度が可能となり、高い変換効
率となる。更に、微結晶化温度付近での熱処理を経てい
るので、素子の信頼性は格段に優れたものとなる。
According to the present invention, it is possible to produce a solar cell that takes advantage of the advantages of both amorphous silicon solar cells and crystalline silicon solar cells. In other words, since the absorption of light is large, the film thickness is several microns.
m or less, and by changing the ratio of the thicknesses of the amorphous layer and the microcrystalline layer depending on the application, any wavelength sensitivity can be obtained. In terms of photoelectric conversion efficiency, by microcrystallizing the surface-side junction layer, the localized level density in the depletion layer is reduced, making it possible to achieve a current density close to that of a crystalline silicon solar cell, resulting in high conversion efficiency. Furthermore, since the device is subjected to heat treatment near the microcrystallization temperature, the reliability of the device is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシリコン膜を形成するための減圧プラズマCV
D装置の全体図である。 1・・・反応炉、2・・・加熱炉、3・・・基板、4・
・・高周波電極、5・・・高周波電源。 特許出願人 工業技術院長 石 坂 誠 −− VJ  1  (2)
Figure 1 shows low-pressure plasma CV for forming a silicon film.
It is an overall view of D device. 1... Reaction furnace, 2... Heating furnace, 3... Substrate, 4...
...High frequency electrode, 5...High frequency power supply. Patent applicant Makoto Ishizaka, Director of the Agency of Industrial Science and Technology -- VJ 1 (2)

Claims (1)

【特許請求の範囲】 1、 シリコン含有固形物の真空蒸着あるいは減圧下で
のシラン含有気体混合物の化学分解法又はプラズマ分解
法によるシリコン層の製造において、シリコンが微結晶
化する温度を含む温度にてシリコン層を製造する第1段
階と、水素またはその同位元素の1種を含むプラズマ雰
囲気での熱処理をシリコンの微結晶化温度近傍の温度に
て行なう第2段階を少なくとも有することを特徴とする
含水素シリコン層の製造方法。 コツ層を製造し、前記第2段階をTからT+50dの間
の温度で製造することを特徴とする特許請求範囲第1項
記載の含水素シリコン層の製造方法。 3、前記第2段階をシリコンが微結晶化する温度をTと
しだ時T−501:’とT+5(lの温度範囲で行なう
ことを特徴とする特許請求範囲第1項記載含水素シリコ
ン層の製造方法。 4、前記第1段階と前記第2段階を大気に触れることな
く連続して行なうことを特徴とする特許請求範囲第1項
記載含水素シリコン層の製造方法。
[Claims] 1. In the production of a silicon layer by vacuum evaporation of a silicon-containing solid or by a chemical decomposition method or a plasma decomposition method of a silane-containing gas mixture under reduced pressure, a temperature including the temperature at which silicon microcrystallizes is applied. a first step of manufacturing a silicon layer using hydrogen, and a second step of performing heat treatment in a plasma atmosphere containing hydrogen or one of its isotopes at a temperature near the microcrystallization temperature of silicon. Method for manufacturing a hydrogen-containing silicon layer. The method of manufacturing a hydrogen-containing silicon layer according to claim 1, characterized in that the second step is performed at a temperature between T and T+50d. 3. The hydrogen-containing silicon layer according to claim 1, characterized in that the second step is carried out in a temperature range of T-501:' and T+5(l), where T is the temperature at which silicon microcrystallizes. Manufacturing method: 4. The method for manufacturing a hydrogen-containing silicon layer according to claim 1, characterized in that the first step and the second step are performed consecutively without exposure to the atmosphere.
JP14210482A 1982-08-18 1982-08-18 Preparation of hydrogen-containing silicon layer Granted JPS5935016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14210482A JPS5935016A (en) 1982-08-18 1982-08-18 Preparation of hydrogen-containing silicon layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14210482A JPS5935016A (en) 1982-08-18 1982-08-18 Preparation of hydrogen-containing silicon layer

Publications (2)

Publication Number Publication Date
JPS5935016A true JPS5935016A (en) 1984-02-25
JPH0262482B2 JPH0262482B2 (en) 1990-12-25

Family

ID=15307519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14210482A Granted JPS5935016A (en) 1982-08-18 1982-08-18 Preparation of hydrogen-containing silicon layer

Country Status (1)

Country Link
JP (1) JPS5935016A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169320A (en) * 1986-01-21 1987-07-25 Sharp Corp Manufacture of thin film
JPH05109638A (en) * 1988-09-30 1993-04-30 Sanyo Electric Co Ltd Method for forming polycrystalline silicon film
WO2002021588A1 (en) * 2000-09-01 2002-03-14 Japan Science And Technology Corporation Process for producing organic film by coevaporation
US7550665B2 (en) * 2003-07-24 2009-06-23 Kaneka Corporation Stacked photoelectric converter
AU2004259486B2 (en) * 2003-07-24 2010-02-18 Kaneka Corporation Silicon based thin film solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169320A (en) * 1986-01-21 1987-07-25 Sharp Corp Manufacture of thin film
JPH05109638A (en) * 1988-09-30 1993-04-30 Sanyo Electric Co Ltd Method for forming polycrystalline silicon film
WO2002021588A1 (en) * 2000-09-01 2002-03-14 Japan Science And Technology Corporation Process for producing organic film by coevaporation
US7550665B2 (en) * 2003-07-24 2009-06-23 Kaneka Corporation Stacked photoelectric converter
AU2004259486B2 (en) * 2003-07-24 2010-02-18 Kaneka Corporation Silicon based thin film solar cell
US7847186B2 (en) * 2003-07-24 2010-12-07 Kaneka Corporation Silicon based thin film solar cell
KR101024288B1 (en) * 2003-07-24 2011-03-29 가부시키가이샤 가네카 Silicon based thin film solar cell
EP1650812B2 (en) 2003-07-24 2019-10-23 Kaneka Corporation Method for making a silicon based thin film solar cell

Also Published As

Publication number Publication date
JPH0262482B2 (en) 1990-12-25

Similar Documents

Publication Publication Date Title
US4409605A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US4226898A (en) Amorphous semiconductors equivalent to crystalline semiconductors produced by a glow discharge process
US4873118A (en) Oxygen glow treating of ZnO electrode for thin film silicon solar cell
JPS5978528A (en) Amorphous semiconductor alloy using ultrashort wave energy and method of producing element thereof
JPS5990923A (en) Method and device for producing laminar amorphous semiconductor alloy using microwave energy
JPH02197117A (en) Manufacture of carbon-containing amorphous silicon thin film
KR890000478B1 (en) Method for producting amorphous alloys
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US5391893A (en) Nonsingle crystal semiconductor and a semiconductor device using such semiconductor
US4710786A (en) Wide band gap semiconductor alloy material
Raturi et al. Structural, optical and photoconducting properties of sprayed CdSe films
NL8104139A (en) METHOD FOR MAKING AMORPHIC ALLOYS WITH ENLARGED DISTANCE AND DEVICES MADE THEREFROM
US4965225A (en) Method of stabilizing amorphous semiconductors
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
US4703336A (en) Photodetection and current control devices
US7038238B1 (en) Semiconductor device having a non-single crystalline semiconductor layer
CN115663057A (en) Multilayer WSe based on hydrogen-argon mixed plasma mild treatment 2 Thin film photoelectric detector and preparation method thereof
TW201126742A (en) High-efficiency amorphous silicon photovoltaic devices
JPH03284882A (en) Semiconductor thin film and manufacture thereof
JP2590305B2 (en) Semiconductor device manufacturing method
JPS6361768B2 (en)
JP2735889B2 (en) Method for forming hydrogenated amorphous silicon film and method for forming photovoltaic device
JPH04192373A (en) Photovoltaic element
JPH07263728A (en) Manufacture of thin film solar cell