JPS6361768B2 - - Google Patents

Info

Publication number
JPS6361768B2
JPS6361768B2 JP57186754A JP18675482A JPS6361768B2 JP S6361768 B2 JPS6361768 B2 JP S6361768B2 JP 57186754 A JP57186754 A JP 57186754A JP 18675482 A JP18675482 A JP 18675482A JP S6361768 B2 JPS6361768 B2 JP S6361768B2
Authority
JP
Japan
Prior art keywords
silicon film
type silicon
doping
doped
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57186754A
Other languages
Japanese (ja)
Other versions
JPS5976419A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57186754A priority Critical patent/JPS5976419A/en
Publication of JPS5976419A publication Critical patent/JPS5976419A/en
Publication of JPS6361768B2 publication Critical patent/JPS6361768B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は、プラズマグロー放電法でp型シリコ
ン膜を製造する際にドープ剤に金属ガリウムを用
いたp型シリコン膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a p-type silicon film using metal gallium as a dopant when manufacturing the p-type silicon film by a plasma glow discharge method.

従来は、p型シリコン膜の形成はプラズマグロ
ー放電法やスパツタ法を用いて、シラン(SiH4
や四フツ化シリコン(SiF4)を分解させ、ドープ
剤としてジボラン(B2H6)を添加して行なわれ
ていた。この従来法は、B2H6がガス状態であり、
ドープ剤のボロン(B)の添加が簡単にできる特徴が
ある。しかしながら、得られたp型シリコン膜に
対するBのドーピング効率が低いという欠点があ
つた。さらに、Bドープのp型シリコン膜の光の
透過率は可視光領域においてその透過率が小さく
光の吸収係数が大きいという欠点もあつた。
Conventionally, p-type silicon films were formed using silane (SiH 4 ) using plasma glow discharge method or sputtering method.
This was done by decomposing silicon tetrafluoride (SiF 4 ) and adding diborane (B 2 H 6 ) as a doping agent. In this conventional method, B 2 H 6 is in a gaseous state;
One of its features is that boron (B) doping agent can be easily added. However, there was a drawback that the doping efficiency of B into the obtained p-type silicon film was low. Furthermore, the B-doped p-type silicon film has a disadvantage in that the light transmittance is low in the visible light region and the light absorption coefficient is large.

プラズマグロー放電法で作製したBドープp型
シリコン膜は光起電力効果を応用した太陽電池に
利用されており、この太陽電池においては、該p
型シリコン膜は、(太陽光の入射する側の)窓側
材料として使用される。Bドープp型シリコン膜
は、Bのドーピング効率が低いことから多量のB
がドーピングされ、その結果、光の吸収係数が大
きくなる欠点があつた。太陽電池の光電変換効率
の向上のためには、窓側材料として光吸収係数の
小さいp型シリコン膜の形成が望ましく、必然的
にp型シリコン膜を薄くして、光吸収係数の大き
いことを補う施策がされた。しかしながら、膜を
薄くすると太陽電池としての直列抵抗成分が増加
することになり、光電変換効率の低下の要因とな
る。
B-doped p-type silicon films produced by the plasma glow discharge method are used in solar cells that apply the photovoltaic effect.
The type silicon film is used as the window side material (on the side where sunlight enters). B-doped p-type silicon film contains a large amount of B due to low B doping efficiency.
is doped, resulting in a disadvantage that the light absorption coefficient becomes large. In order to improve the photoelectric conversion efficiency of solar cells, it is desirable to form a p-type silicon film with a small light absorption coefficient as the window side material, and it is necessary to make the p-type silicon film thinner to compensate for the large light absorption coefficient. Measures were taken. However, when the film is made thinner, the series resistance component of the solar cell increases, which causes a decrease in photoelectric conversion efficiency.

本発明の目的は、p型シリコン膜の太陽電池へ
の適用を考慮し、p型シリコン膜へのドープ剤の
ドーピング効率の向上および該p型シリコン膜の
光吸収係数の低減を重視する視点に立つて、新規
なp型シリコン膜の製造方法を提供することにあ
る。
The purpose of the present invention is to take into consideration the application of p-type silicon films to solar cells, and to focus on improving the doping efficiency of dopants into p-type silicon films and reducing the light absorption coefficient of the p-type silicon films. The purpose of the present invention is to provide a novel method for manufacturing a p-type silicon film.

上記の目的を達成するため本発明の構成は、ド
ープ剤のソースとしての金属ガリウムを抵抗加熱
により蒸気化し、シリコン膜中にガリウムをドー
ピングさせることにある。
In order to achieve the above object, the present invention consists in vaporizing metallic gallium as a source of a dopant by resistance heating and doping gallium into a silicon film.

すなわち、p型シリコン膜のドープ剤としての
B2H6にかわり、新たに金属ガリウムを抵抗加熱
方式により蒸発させ、該膜中にガリウムをドーピ
ングするp型シリコン膜の製造方法である。
That is, as a dopant for p-type silicon film.
This is a method for producing a p-type silicon film in which metal gallium is newly evaporated using a resistance heating method instead of B 2 H 6 and gallium is doped into the film.

第1図は本発明に使用した装置の概略図であ
る。以下、図を用いて具体的に説明する。ベルジ
ヤー2によつて囲まれた真空室1内を排気系3に
より10-5Torr程度以下の真空度に排気する。金
属ガリウム4の入つたルツボ5を加熱し、同時に
基板6を加熱する基板ホルダー7も加熱する。所
定の温度になつたら、ガス導入系8によりシラン
(SiH4)ガスを真空室内へ導入し、プラズマグロ
ー放電が可能な圧力(0.1Torr程度)にする。高
周波電源9によりプラズマグロー放電を開始する
と同時に金属ガリウム4のシヤツター10を開放
し、プラズマ中にGa蒸気を導入しp型シリコン
膜の形成を行なう。
FIG. 1 is a schematic diagram of the apparatus used in the present invention. This will be explained in detail below using figures. The inside of the vacuum chamber 1 surrounded by the bell gear 2 is evacuated to a degree of vacuum of about 10 -5 Torr or less by the exhaust system 3. The crucible 5 containing the metal gallium 4 is heated, and at the same time, the substrate holder 7 that heats the substrate 6 is also heated. When the temperature reaches a predetermined value, silane (SiH 4 ) gas is introduced into the vacuum chamber by the gas introduction system 8 to raise the pressure (approximately 0.1 Torr) at which plasma glow discharge is possible. At the same time as plasma glow discharge is started by the high frequency power source 9, the shutter 10 of the metal gallium 4 is opened, Ga vapor is introduced into the plasma, and a p-type silicon film is formed.

本発明の製造方法は、上記のような装置によつ
て行なわれているが、これは一例であり、装置自
体としては上記のものに限らず種々の変形や改良
が可能である。
Although the manufacturing method of the present invention is carried out using the above-mentioned apparatus, this is only an example, and the apparatus itself is not limited to the above-mentioned one, and various modifications and improvements can be made.

尚、本発明の製造方法により得られたp型シリ
コン膜の室温暗電導度δD、および光吸収係数αを
測定することにより、Gaのドーピング量との間
の関係を第2図および第3図に示す。第2図およ
び第3図において、実線で示した曲線aおよびc
はGaをドーピングした場合で、破線で示した曲
線bおよびdは比較のため従来法によるB2H6
ドーピングガスとしてBをドープした場合であ
る。第2図の曲線aのGaをドープしたp型シリ
コン膜の室温暗電導度δDは、Bをドープしたp型
シリコン膜の曲線bよりも、少ないドーピング量
で同程度の電導度が得られている。この結果よ
り、従来法のBドーピングよりも本発明による
Gaドーピングの方がよりドーピング効率が高く、
本発明によつてドーピングされたGaの活性化率
がBよりも高いことが判明した。
By measuring the room temperature dark conductivity δ D and the light absorption coefficient α of the p-type silicon film obtained by the manufacturing method of the present invention, the relationship between the amount of Ga doping and the amount of Ga doping is shown in FIGS. 2 and 3. As shown in the figure. In Figures 2 and 3, curves a and c shown as solid lines
curves b and d shown by broken lines are for comparison when doping with B using B 2 H 6 as a doping gas according to the conventional method. The room-temperature dark conductivity δ D of the Ga-doped p-type silicon film shown by curve a in Figure 2 is similar to that of curve b of the B-doped p-type silicon film with a smaller doping amount. ing. From this result, it is clear that the method of the present invention is better than the conventional method of B doping.
Ga doping has higher doping efficiency,
It has been found that the activation rate of Ga doped according to the invention is higher than that of B.

第3図は、室温暗電導度δDが1×10-4(Ω・cm)
-1であるGaドープ及びBドープの、それぞれの
シリコン膜の光吸収係数αについて示したもので
あり、Gaドープしたシリコン膜の曲線cがBド
ープのシリコン膜の曲線dよりも吸収係数が小さ
くなつている。この結果は、p型シリコン膜を太
陽電池の窓側材料として使用する場合は、従来法
のBドープしたシリコン膜よりもGaドープした
シリコン膜の方が適していることを示唆する。
Figure 3 shows that the room temperature dark conductivity δ D is 1×10 -4 (Ω・cm)
It shows the light absorption coefficient α of Ga-doped and B-doped silicon films, which is -1 , and curve c for Ga-doped silicon film has a smaller absorption coefficient than curve d for B-doped silicon film. It's summery. This result suggests that when a p-type silicon film is used as a window material for a solar cell, a Ga-doped silicon film is more suitable than a conventional B-doped silicon film.

Gaドープによりドーピング効率が向上した要
因としては、BよりもGaがイオン半径が大きく、
結晶構造的に周辺のシリコン群に対して動きにく
くかつ、ぬけにくくなつているためである。ま
た、Bドーピングの場合は、ドーピングするBの
量が少量であるとシリコン群に対しBが三配位に
位置し、多量のドーピングで四配位に位置するこ
とによりアクセプターとして挙動するが、Gaの
場合は、少量のドーピングでもシリコン群に対し
四配位に位置することによりドーピング効率が向
上したものである。
The reason why the doping efficiency was improved by Ga doping is that Ga has a larger ionic radius than B.
This is because the crystal structure makes it difficult to move and escape from surrounding silicon groups. In addition, in the case of B doping, when the amount of B doped is small, B is located in the tri-coordination with respect to the silicon group, and when doped in a large amount, B is located in the tetra-coordination and behaves as an acceptor. In the case of , the doping efficiency is improved even with a small amount of doping due to the four-coordination position with respect to the silicon group.

以下に本発明の実施例を具体的に述べる。 Examples of the present invention will be specifically described below.

実施例 前記第1図を使用して説明すると、ベルジヤー
2によつて囲まれた真空室1を排気系3によつて
一旦10-5Torr以下の真空度に排気する。次に、
金属ガリウム4が2g入つたルツボ5を910℃に
加熱し、同時に基板6を加熱する基板ホルダー7
を220℃に加熱保持し、真空室1内を1×
10-6Torrとする。所定の温度になつたら、ガス
導入系8によりシラン(SiH4)ガスを真空室1
内に導入し、真空室内圧力が0.1Torrになるよう
にする。引き続き、周波数13.56MHzの高周波電
圧9を印加し、さらに、金属ガリウム4のシヤツ
ター10を開放する。真空室1内をプラズマ状態
にすると同時にそのプラズマ中にGa蒸気を拡散
させ、シラン(SiH4)ガスが分解し析出する際
にシリコン中にGaが混入し、p型シリコン膜が
基板上に析出する。
Embodiment To explain using FIG. 1, a vacuum chamber 1 surrounded by a bell jar 2 is once evacuated to a vacuum level of 10 -5 Torr or less by an exhaust system 3. next,
A substrate holder 7 that heats a crucible 5 containing 2g of metal gallium 4 to 910°C and simultaneously heats a substrate 6.
is heated to 220℃, and the inside of vacuum chamber 1 is heated to 1×
10 -6 Torr. When the specified temperature is reached, silane (SiH 4 ) gas is introduced into the vacuum chamber 1 using the gas introduction system 8.
the pressure inside the vacuum chamber is 0.1 Torr. Subsequently, a high frequency voltage 9 with a frequency of 13.56 MHz is applied, and the shutter 10 of metal gallium 4 is opened. At the same time that the inside of the vacuum chamber 1 is brought into a plasma state, Ga vapor is diffused into the plasma, and when silane (SiH 4 ) gas decomposes and precipitates, Ga gets mixed into the silicon, and a p-type silicon film is deposited on the substrate. do.

得られたp型シリコン膜の室温暗電導度は、第
2図に示したごとく、Gaのドーピング量と密接
な関係にある。そのGaのドーピング量の制御は
金属ガリウム4の蒸気圧のコントロールで行なわ
れ、金属ガリウム4のチヤージ量と加熱温度で制
御する。
The room temperature dark conductivity of the obtained p-type silicon film is closely related to the amount of Ga doping, as shown in FIG. The amount of Ga doping is controlled by controlling the vapor pressure of the metal gallium 4, and is controlled by the charge amount of the metal gallium 4 and the heating temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用したp型シリコン膜の製
造装置の概略図、第2図はドーピング量に対する
p型シリコン膜の室温暗電導度との関係を示す特
性図、第3図はホトンエネルギーに対する光の吸
収係数との関係を示す特性図である。 1……真空室、4……金属ガリウム、5……ル
ツボ、6……基板、7……基板ホルダー、8……
ガス導入系、10……シヤツター。
Figure 1 is a schematic diagram of the p-type silicon film manufacturing apparatus used in the present invention, Figure 2 is a characteristic diagram showing the relationship between the doping amount and the room temperature dark conductivity of the p-type silicon film, and Figure 3 is the photon energy. FIG. 3 is a characteristic diagram showing the relationship between the light absorption coefficient and the light absorption coefficient. 1... Vacuum chamber, 4... Metal gallium, 5... Crucible, 6... Substrate, 7... Substrate holder, 8...
Gas introduction system, 10... shutter.

Claims (1)

【特許請求の範囲】[Claims] 1 プラズマグロー放電法を用いたp型シリコン
膜の製造方法において、ドープ剤のソースに金属
ガリウムを用い、該金属ガリウムを抵抗加熱によ
り蒸気化し、シリコン膜中にガリウムをドーピン
グすることを特徴としたp型シリコン膜の製造方
法。
1. A method for producing a p-type silicon film using a plasma glow discharge method, characterized in that metallic gallium is used as a source of a dopant, the metallic gallium is vaporized by resistance heating, and the silicon film is doped with gallium. A method for manufacturing a p-type silicon film.
JP57186754A 1982-10-26 1982-10-26 Manufacture of p type silicon film Granted JPS5976419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186754A JPS5976419A (en) 1982-10-26 1982-10-26 Manufacture of p type silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186754A JPS5976419A (en) 1982-10-26 1982-10-26 Manufacture of p type silicon film

Publications (2)

Publication Number Publication Date
JPS5976419A JPS5976419A (en) 1984-05-01
JPS6361768B2 true JPS6361768B2 (en) 1988-11-30

Family

ID=16194051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186754A Granted JPS5976419A (en) 1982-10-26 1982-10-26 Manufacture of p type silicon film

Country Status (1)

Country Link
JP (1) JPS5976419A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214179A (en) * 1986-03-17 1987-09-19 Nec Corp Thin film forming device
JPH08330611A (en) * 1995-03-30 1996-12-13 Sharp Corp Si solar cell and manufacture thereof
JP2004297008A (en) * 2003-03-28 2004-10-21 National Institute Of Advanced Industrial & Technology P-type semiconductor material, its manufacturing method, its manufacturing device, photoelectric conversion element, light emitting device, and thin film transistor
JP4691888B2 (en) * 2004-03-18 2011-06-01 凸版印刷株式会社 Non-single crystal solar cell and method of manufacturing non-single crystal solar cell

Also Published As

Publication number Publication date
JPS5976419A (en) 1984-05-01

Similar Documents

Publication Publication Date Title
US4400409A (en) Method of making p-doped silicon films
US4196438A (en) Article and device having an amorphous silicon containing a halogen and method of fabrication
US4409605A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US5248348A (en) Amorphous silicon solar cell and method for manufacturing the same
GB2124826A (en) Amorphous semiconductor materials
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
US4710786A (en) Wide band gap semiconductor alloy material
US4677738A (en) Method of making a photovoltaic panel
US4799968A (en) Photovoltaic device
JPH01290267A (en) Manufacture of photoelectric conversion element
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
JPS6361768B2 (en)
US4703336A (en) Photodetection and current control devices
JPH07106611A (en) Fabrication of bsf solar cell
JP2948236B2 (en) Photovoltaic device
JPH05166733A (en) Method and apparatus for forming non-single crystal silicon film
JP2742799B2 (en) Method of forming semiconductor thin film
GB2049643A (en) Process for the production of silicon having semiconducting proprties
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
US5242504A (en) Photovoltaic device and manufacturing method therefor
JP4256522B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JPS6057617A (en) Manufacture of semiconductor device
JP3100668B2 (en) Method for manufacturing photovoltaic element
JPS58132983A (en) Preparation of solar battery
JPS61256625A (en) Manufacture of thin film semiconductor element