JP2742799B2 - Method of forming semiconductor thin film - Google Patents

Method of forming semiconductor thin film

Info

Publication number
JP2742799B2
JP2742799B2 JP63250296A JP25029688A JP2742799B2 JP 2742799 B2 JP2742799 B2 JP 2742799B2 JP 63250296 A JP63250296 A JP 63250296A JP 25029688 A JP25029688 A JP 25029688A JP 2742799 B2 JP2742799 B2 JP 2742799B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
film
forming
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63250296A
Other languages
Japanese (ja)
Other versions
JPH0298127A (en
Inventor
真吾 岡本
久樹 樽井
昇 中村
信哉 津田
昭一 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63250296A priority Critical patent/JP2742799B2/en
Publication of JPH0298127A publication Critical patent/JPH0298127A/en
Application granted granted Critical
Publication of JP2742799B2 publication Critical patent/JP2742799B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、常圧の反応容器内において光エネルギによ
り原料ガスを分解し、基板上に半導体薄膜を形成する常
圧光CVDによる半導体薄膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a semiconductor thin film on a substrate by decomposing a raw material gas by light energy in a normal pressure reaction vessel to form a semiconductor thin film on a substrate. It relates to a forming method.

〔従来の技術〕[Conventional technology]

一般に、光CVDは、プラズマCVDのように基板にプラズ
マダメージを与えることがないため、例えば非晶質シリ
コン薄膜や微結晶シリコン薄膜などの形成に広く採用さ
れている。
In general, optical CVD does not cause plasma damage to a substrate unlike plasma CVD, and thus is widely used for forming, for example, an amorphous silicon thin film or a microcrystalline silicon thin film.

最近では、昭和63年春季第35回応用物理学関係連合講
演会講演予稿集第1分冊329頁の「28p−ZG−11常圧光CV
D法によるa−Si膜の作製」に記載されているように、
常圧における光CVDにより、高価な真空排気ポンプを不
要にし、反応容器内面からの不純物を低減して膜質の向
上を図ることが提案されている。
Recently, “28p-ZG-11 normal pressure optical CV” on page 329 of the 1st volume of the 35th Symposium on Applied Physics, Spring 1988
Production of a-Si Film by Method D ''
It has been proposed that the optical CVD at normal pressure eliminates the need for an expensive evacuation pump, reduces impurities from the inner surface of the reaction vessel, and improves the film quality.

ところで、前記した常圧光CVDも含め,光CVDであつて
も、通常のプラズマCVDと同様に、膜質の良好な半導体
薄膜を得る為には、基板を100〜300℃程度に加熱し、成
膜ラジカルが基板表面で最適な位置に移動するのに要す
るエネルギとして熱エネルギを与える必要がある。
By the way, in the case of optical CVD including the normal-pressure optical CVD described above, in order to obtain a semiconductor thin film having good film quality, as in ordinary plasma CVD, the substrate is heated to about 100 to 300 ° C. It is necessary to provide thermal energy as energy required for the film radical to move to an optimal position on the substrate surface.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の技術で説明したように、基板を高温に加熱する
と、以下のような問題点がある。
As described in the related art, heating the substrate to a high temperature has the following problems.

異なる種類の薄膜を基板上に積層する場合に、下層
の薄膜の原子やドープされたボロンなどの不純物原子
が、熱拡散により上層の薄膜中に混入し、上層の薄膜の
膜質低下を招く。
When different types of thin films are stacked on a substrate, atoms of the lower thin film and impurity atoms such as doped boron are mixed into the upper thin film by thermal diffusion, thereby deteriorating the film quality of the upper thin film.

希釈ガスとして水素ガスを用いる水銀増感光CVDの
ように、水素ラジカルが多く存在する雰囲気中では、光
起電力装置を作成する為に,透明導電膜(TCO)上に半
導体薄膜を形成する際に、水素ラジカルによつてTCOが
還元され、TCOが損傷してTCOの透過率が低下し、この現
象は温度が高いほど顕著となり、光電変換効率の低下の
原因となる。
In an atmosphere containing a large amount of hydrogen radicals, such as a mercury-sensitized CVD using hydrogen gas as a diluent gas, when forming a semiconductor thin film on a transparent conductive film (TCO) to create a photovoltaic device, In addition, TCO is reduced by hydrogen radicals, TCO is damaged, and the transmittance of TCO is reduced. This phenomenon becomes more remarkable as the temperature is higher, and causes a decrease in photoelectric conversion efficiency.

成膜反応の開始までに基板を加熱する時間と、成膜
後に基板を冷却する時間とを要し、成膜に要するトータ
ル時間が長くなる。
The time required to heat the substrate before the start of the film formation reaction and the time required to cool the substrate after the film formation is required, and the total time required for the film formation is increased.

反応容器を冷却水により冷却する設備が必要とな
り、装置が高価になる。
Equipment for cooling the reaction vessel with cooling water is required, and the apparatus becomes expensive.

そこで、本発明は前記の諸点に留意してなされたもの
であり、基板温度を室温程度に留めて半導体薄膜を形成
し得るようにし、安価な構成により、膜質の優れた半導
体薄膜を、従来よりも短い時間で得られるようにするこ
とを目的とする。
In view of the above, the present invention has been made in consideration of the above-mentioned points, and enables a semiconductor thin film to be formed while keeping the substrate temperature at about room temperature. The purpose is to be able to be obtained in a short time.

〔課題を解決するための手段〕[Means for solving the problem]

前記目的を達成するために、内部を常圧に保持した反
応容器に透光性窓板を設け、前記容器内に基板を配設
し、前記容器内に原料ガスを供給し、光源により前記窓
板を通して前記容器内に照射光を照射し、前記照射光の
エネルギにより、前記原料ガスを分解して成膜ラジカル
を生成し、前記基板表面での前記成膜ラジカルの反応に
より、前記基板上に半導体薄膜を形成する常圧光CVDに
よる半導体薄膜の形成方法において、本発明では、 前記基板に振動を与えるとともに、基板温度を20〜50
℃に留めることを特徴としている。
In order to achieve the above object, a translucent window plate is provided in a reaction vessel having an internal pressure maintained at normal pressure, a substrate is provided in the vessel, a source gas is supplied into the vessel, and a light source is used for the window. The container is irradiated with irradiation light through the plate, and the energy of the irradiation light decomposes the source gas to generate film-forming radicals. In a method of forming a semiconductor thin film by atmospheric pressure photo-CVD for forming a semiconductor thin film, in the present invention, while applying vibration to the substrate, the substrate temperature is set to 20 to 50
It is characterized in that it is kept at ° C.

〔作用〕[Action]

以上のように構成されているため、光源による照射光
のエネルギにより原料ガスが分解されて生成された成膜
ラジカルが基板表面で反応し、振動エネルギにより、基
板表面の最適の位置に成膜ラジカルが移動し、基板上に
半導体薄膜が成長する。
With the above configuration, the film forming radical generated by the decomposition of the source gas by the energy of the irradiation light from the light source reacts on the substrate surface, and the film forming radical is located at an optimum position on the substrate surface by the vibration energy. Move, and a semiconductor thin film grows on the substrate.

このとき、成膜ラジカルが基板表面の最適の位置に移
動するのに要するエネルギを、従来のような熱エネルギ
ではなく,振動エネルギの形で与え、成膜時の基板温度
を室温程度の20〜50℃に留めたため、異種の薄膜積層時
の下層中の不純物の熱拡散による膜質低下、光起電力装
置を作成する場合のTCOの損傷、成膜に要する時間の長
期化や装置のコストアツプなどの、基板の100〜300℃程
度もの高温加熱に起因する種々の問題がすべて解消され
る。
At this time, the energy required for the film-forming radical to move to the optimal position on the substrate surface is given in the form of vibration energy instead of the conventional thermal energy, and the substrate temperature at the time of film formation is set to about 20 to about room temperature. Since the temperature is kept at 50 ° C, the film quality deteriorates due to thermal diffusion of impurities in the lower layer when different kinds of thin films are stacked, TCO is damaged when a photovoltaic device is created, the time required for film formation is prolonged, and the cost of the device is increased. In addition, all problems caused by heating the substrate at a high temperature of about 100 to 300 ° C. are all solved.

〔実施例〕〔Example〕

実施例について図面を参照して説明する。 Embodiments will be described with reference to the drawings.

(実施例1) まず、実施例1を示した第1図ないし第3図について
説明する。
Embodiment 1 First, FIGS. 1 to 3 showing Embodiment 1 will be described.

形成装置を示す第1図において、(1)は反応容器、
(2)は反応容器(1)の上面に設けられた石英からな
る透光性窓板、(3)は反応容器(1)内に配設された
基板ホルダ、(4)はホルダ(3)に装着保持された基
板、(5)は先端部が反応容器(1)内に導入され基板
(4)に原料ガスを供給する原料ガス供給パイプ、
(6)は先端部が反応容器(1)内に導入され窓板
(2)に曇り止めのHe,Ar,N2,H2などのパージガスを吹
き出すパージガス供給パイプ、(7),(8)は両供給
パイプ(5),(6)の途中に設けられたバルブ、
(9)は水銀バブラであり、原料ガス供給パイプ(5)
側のバルブ(7)の入口側及び出口側にそれぞれ接続さ
れたバルブ(10a),(10b)を介し、バルブ(7)にバ
イパスして設けられ、使用時において、水銀蒸気圧を一
定に保つようになつており、温度制御が可能な構造を有
する。
In FIG. 1 showing a forming apparatus, (1) is a reaction vessel,
(2) is a translucent window plate made of quartz provided on the upper surface of the reaction vessel (1), (3) is a substrate holder provided in the reaction vessel (1), and (4) is a holder (3). (5) a source gas supply pipe for feeding a source gas to the substrate (4), the tip of which is introduced into the reaction vessel (1);
(6) is a purge gas supply pipe whose tip is introduced into the reaction vessel (1) and blows out a purge gas such as He, Ar, N 2 , H 2, etc. to prevent fogging into the window plate (2), (7), (8) Is a valve provided in the middle of both supply pipes (5) and (6),
(9) is a mercury bubbler, and a source gas supply pipe (5)
It is provided to bypass the valve (7) via the valves (10a) and (10b) connected to the inlet side and the outlet side of the side valve (7), and keeps the mercury vapor pressure constant during use. It has a structure capable of controlling the temperature.

(11)は基板ホルダ(3)の下面に装着され高周波電
源(12)により通電され基板ホルダ(3)を通して基板
(4)に振動を与える水晶圧電振動子、(13)は反応容
器(1)に形成された排気口、(14)は真空バルブ(1
5)を介して排気口(13)に接続された真空排気ポン
プ、(16)は排気バルブ(17)を介して排気口(13)に
接続され、反応容器(1)内からガスを排気,処理する
排気ガス処理装置、(18)は窓板(2)の上側に形成さ
れたランプハウス、(19)は光源である低圧水銀ランプ
であり、ランプハウス(18)内に収納され、窓板(2)
を通して反応容器(1)内に照射光を照射し、この照射
光エネルギにより、反応容器(1)内に供給された原料
ガスが分解されて成膜ラジカルが生成し、生成した成膜
ラジカルの基板(4)の表面での反応により、基板
(4)上に半導体薄膜が成長する。
(11) is a quartz piezoelectric vibrator mounted on the lower surface of the substrate holder (3) and energized by the high frequency power supply (12) to vibrate the substrate (4) through the substrate holder (3). (13) is a reaction vessel (1). The exhaust port formed in (14) is a vacuum valve (1
An evacuation pump connected to the exhaust port (13) through 5), and (16) is connected to the exhaust port (13) through the exhaust valve (17) to exhaust gas from inside the reaction vessel (1). An exhaust gas treatment device for processing, (18) a lamp house formed above the window plate (2), (19) a low-pressure mercury lamp as a light source, which is housed in the lamp house (18) and (2)
Irradiation light is irradiated into the reaction vessel (1) through the reactor, and the irradiation light energy decomposes the raw material gas supplied into the reaction vessel (1) to generate film-forming radicals. By the reaction on the surface of (4), a semiconductor thin film grows on the substrate (4).

なお、(20)は特性比較のために設けられた基板
(4)の加熱用ヒータである。
Reference numeral (20) denotes a heater for heating the substrate (4) provided for comparison of characteristics.

そして、第1図に示す装置を用い、水銀増感を行わず
にpin型光起電力装置を作成する。この光起電力装置
は、第2図に示すように、ガラス基板(21)上にスパツ
タ等によりTCO〔透明導電膜〕(22)が形成され、このT
CO(22)上に非晶質シリコンカーバイド(以下a−SiC
という)からなるp層(23),非晶質シリコン(以下a
−Siという)からなるi層(24)及びn層(25)が順次
積層され、n層(25)上にアルミニウム〔Al〕等からな
る裏面電極(26)が形成されて構成されており、以下の
ような手順で作成される。
Then, using the device shown in FIG. 1, a pin-type photovoltaic device is prepared without performing mercury sensitization. In this photovoltaic device, as shown in FIG. 2, a transparent conductive film (TCO) (22) is formed on a glass substrate (21) with a spatter or the like.
Amorphous silicon carbide (hereinafter a-SiC)
), Amorphous silicon (hereinafter a)
-Si), an i layer (24) and an n layer (25) are sequentially laminated, and a back electrode (26) made of aluminum [Al] or the like is formed on the n layer (25). It is created by the following procedure.

まず、TCO(22)を形成したガラス基板(21)を容器
(1)内のホルダ(3)に装着し、バルブ(15)のみを
開いて容器(1)内を真空ポンプ(14)により一旦真空
排気し、その後バルブ(15)を閉じ、バルブ(7),
(8)を開いて容器(1)内に原料ガス及びパージガス
を供給し、容器(1)内の圧力が大気圧よりも若干高く
(〜780Torr)なつた時点でバルブ(17)を開き、排気
ガス処理装置(16)により容器(1)内のガスを排出す
る。
First, the glass substrate (21) on which the TCO (22) is formed is mounted on the holder (3) in the container (1), only the valve (15) is opened, and the inside of the container (1) is temporarily stopped by the vacuum pump (14). Evacuate and then close valve (15), valve (7),
(8) is opened to supply the raw material gas and the purge gas into the container (1), and when the pressure in the container (1) becomes slightly higher than the atmospheric pressure (up to 780 Torr), the valve (17) is opened to exhaust the gas. The gas in the container (1) is discharged by the gas processing device (16).

このとき、容器(1)内のガスをポンプなしで排出す
る為には、容器(1)内の圧力を大気圧よりも若干高く
する必要があり、逆に容器(1)内の圧力を高くしすぎ
ると安全面の問題があるため、容器(1)内の圧力を78
0Torrに設定した。
At this time, in order to discharge the gas in the container (1) without a pump, the pressure in the container (1) needs to be slightly higher than the atmospheric pressure. If the pressure is too high, there is a safety problem.
Set to 0 Torr.

また、水銀増感を行わないため、バルブ(10a),(1
0b)を閉じておく。
In addition, since mercury sensitization is not performed, valves (10a), (1
0b) is closed.

つぎに、電源(12)により振動子(11)に1MHzの高周
波を印加して振動子(11)を駆動し、振動子(11)によ
りホルダ(3)を通して基板(4)に振動エネルギを与
え、水銀ランプ(19)により照射光を照射し、TCO(2
2)上にp,i,nの各層(23)〜(25)を形成する。
Next, a high frequency of 1 MHz is applied to the vibrator (11) by the power supply (12) to drive the vibrator (11), and the vibrator (11) applies vibration energy to the substrate (4) through the holder (3). Irradiates irradiation light with a mercury lamp (19), and the TCO (2
2) Form p, i, and n layers (23) to (25) thereon.

このように、水銀ランプ(19)により照射光を照射す
ると、照射光エネルギにより、原料ガスが分解されて成
膜ラジカルが生成され、生成された成膜ラジカルが基板
(4)の表面で反応し、基板(4)上にa−SiCやa−S
iの薄膜が成長するが、成膜ラジカルが基板(4)の表
面の最適な位置に移動するのに要するエネルギを、従来
のような熱エネルギではなく,振動子(11)による振動
エネルギの形で与えるため、成膜時の基板温度は室温程
度にしかならず、従来の光CVDにおける基板の加熱によ
る種々の問題点が解消される。
As described above, when the irradiation light is irradiated from the mercury lamp (19), the irradiation light energy decomposes the raw material gas to generate film-forming radicals, and the generated film-forming radicals react on the surface of the substrate (4). A-SiC or a-S on the substrate (4)
Although the thin film of i grows, the energy required for the film forming radical to move to the optimal position on the surface of the substrate (4) is not the heat energy as in the past, but the form of the vibration energy by the vibrator (11). Therefore, the substrate temperature at the time of film formation is only about room temperature, and various problems caused by heating the substrate in the conventional photo CVD are solved.

ところで、p,i,nの各層(23)〜(25)の形成条件は
表1に示すとおりであり、電源(12)の出力は、p層
(23)の形成時には10W,i,n層(24),(25)は形成時
には20Wとし、p層(23)の形成後、容器(1)内を真
空にしてi層(24)への不純物の混入を防止した。
The conditions for forming each of the layers (23) to (25) of p, i, and n are as shown in Table 1. The output of the power supply (12) is 10 W, i, and n at the time of forming the p layer (23). (24) and (25) were set to 20 W at the time of formation, and after the formation of the p-layer (23), the inside of the container (1) was evacuated to prevent impurities from being mixed into the i-layer (24).

なお、p,i,nの各層(23)〜(25)の厚さはそれぞれ2
00,3000,300Åであり、各層形成時の基板温度はほぼ室
温の40℃であつた。
The thickness of each of the layers (23) to (25) of p, i, and n is 2
The substrate temperature at the time of forming each layer was approximately room temperature of 40 ° C.

そして、比較のために、i層(24)の形成時に、振動
子(11)による振動に代えて、ヒータ(20)により基板
(4)を300℃に加熱し、それ以外は表1に示す条件と
同一条件下でp,i,nの各層(23)〜(25)の形成を行
い、得られた光起電力装置の諸特性を測定した。
For comparison, when forming the i-layer (24), the substrate (4) was heated to 300 ° C. by the heater (20) instead of the vibration by the vibrator (11). The layers (23) to (25) of p, i, and n were formed under the same conditions, and various characteristics of the obtained photovoltaic device were measured.

なお、i層(24)の加熱を行う場合、p層(23)及び
i層(24)の形成後、基板(4)の加熱及び冷却の為
に,それぞれ約1時間放置する必要があるのに対し、振
動子による振動を行う場合にはこのような放置時間は不
要であるが、条件を合わせるため、振動子(11)による
振動を行う場合も、p層(23)及びi層(24)の形成
後,それぞれ約1時間放置したが、特性的には放置時間
を設けない場合の光起電力装置と変わらない。
When the i-layer (24) is heated, it is necessary to leave the substrate (4) for about 1 hour after the formation of the p-layer (23) and the i-layer (24) for heating and cooling the substrate (4). On the other hand, such a leaving time is not necessary when the vibration is performed by the vibrator. However, in order to match the conditions, when the vibration is performed by the vibrator (11), the p-layer (23) and the i-layer (24) ) Is left for about 1 hour after formation, however, the characteristics are the same as those of the photovoltaic device in which no leaving time is provided.

このとき、i層(24)の形成時に、振動を与える場合
をケースとし、基板(4)を300℃に加熱する場合を
ケースとすると、i層自体の特性は、ケース,と
も大差はなく、光学的バンドギヤツプEopt=1.68eV,暗
導電率σd〜10-10Ω-1cm-1,光導電率σph〜10-4Ω-1cm
-1となり、ケース,における光起電力装置の諸特性
は、表2に示すようになつた。ただし、表2において、
Vocは開放電圧,Iscは短絡光電流密度,FFはフイルフアク
タ,ηは光電変換効率である。
At this time, when the case where vibration is applied during the formation of the i-layer (24) is the case and the case where the substrate (4) is heated to 300 ° C. is the case, the characteristics of the i-layer itself are not much different from those of the case. Optical band gap Eopt = 1.68 eV, dark conductivity σd ~ 10 -10 Ω -1 cm -1 , photoconductivity σph ~ 10 -4 Ω -1 cm
−1 , and the characteristics of the photovoltaic device in the case were as shown in Table 2. However, in Table 2,
Voc is the open circuit voltage, Isc is the short-circuit photocurrent density, FF is the film actuator, and η is the photoelectric conversion efficiency.

ところで、表2からわかるように、ケース,即ちi
層(24)の形成時に基板(4)を300℃に加熱する場
合、ケース,即ちi層(24)の形成時に振動を与える
場合に比べ、Voc,Isc,FF,ηが共に大きく低下している
が、その原因として、p層(23)中のドーパントとして
のボロン〔B〕原子がi層(24)中に熱拡散によつて混
入したことが考えられ、これを確認するために、得られ
た光起電力装置のi層(24)の深さ方向のB濃度分布を
SIMS(2次イオン質量分析法)により測定したところ、
ケース,の結果は、それぞれ第3図中の実線及び破
線に示すようになり、同図から、ケースの場合には、
p層(23)との界面付近である深さ3000Å付近でB濃度
が急峻に増加し、i層(24)中にはBが混入していない
のに対し、ケースの場合には、i層(24)の全域にB
が拡散,混入していることがわかる。
By the way, as can be seen from Table 2, the case, i.e., i
When the substrate (4) is heated to 300 ° C. during the formation of the layer (24), Voc, Isc, FF, and η are greatly reduced as compared with the case, that is, when vibration is applied during the formation of the i-layer (24). However, the cause is considered to be that boron [B] atoms as dopants in the p-layer (23) were mixed into the i-layer (24) by thermal diffusion. B concentration distribution in the depth direction of the i-layer (24) of the photovoltaic device
When measured by SIMS (secondary ion mass spectrometry),
The result of the case is as shown by the solid line and the broken line in FIG. 3, respectively.
At a depth of about 3000 ° near the interface with the p-layer (23), the B concentration sharply increases, and B is not mixed in the i-layer (24). B in the entire area of (24)
Are diffused and mixed.

なお、ケースの場合であつても、実験の結果、基板
(4)の温度が20〜50℃であるときに良好な特性データ
が得られたことから基板温度が20〜50℃となるように、
基板(4)に与える振動エネルギを調整すればよい。
Even in the case of the case, as a result of the experiment, good characteristic data was obtained when the temperature of the substrate (4) was 20 to 50 ° C., so that the substrate temperature was set to 20 to 50 ° C. ,
What is necessary is just to adjust the vibration energy given to the board | substrate (4).

従つて、実施例1によると、成膜ラジカルが基板
(4)表面の最適の位置に移動するのに要するエネルギ
を、従来のような熱エネルギではなく,振動エネルギの
形で与えるため、成膜時の基板(4)の温度を室温程度
の20〜50℃に留めることができ、異種の薄膜積層時の下
層中の不純物の熱拡散による膜質低下、光起電力装置を
作成する場合のTCOの損傷、成膜に要する時間の長期化
や装置のコストアツプなどの基板の高温加熱に起因する
種々の問題を解消することができ、安価な構成により、
膜質の優れたa−SiCやa−Siなどの半導体薄膜を、従
来よりも短い時間で形成することができ、特性の良好な
光起電力装置等を得ることが可能となる。
Therefore, according to the first embodiment, the energy required for the film-forming radical to move to the optimum position on the surface of the substrate (4) is given in the form of vibration energy instead of the conventional thermal energy. The temperature of the substrate (4) at the time can be kept at about 20-50 ° C., which is about room temperature, the film quality deteriorates due to the thermal diffusion of impurities in the lower layer when different kinds of thin films are laminated, Various problems caused by high-temperature heating of the substrate, such as damage, prolonged time required for film formation and increased cost of equipment, can be solved.
A semiconductor thin film such as a-SiC or a-Si having excellent film quality can be formed in a shorter time than in the past, and a photovoltaic device or the like having excellent characteristics can be obtained.

(実施例2) つぎに、実施例2を示す第4図について説明する。Second Embodiment Next, FIG. 4 showing a second embodiment will be described.

なお、実施例2において用いる装置は、第1図に示す
ものと同一であり、以下に第1図に示す装置を用い,水
銀増感により作成したpin型光起電力装置の諸特性の測
定結果について説明する。
The device used in Example 2 is the same as that shown in FIG. 1. The following shows the measurement results of various characteristics of the pin-type photovoltaic device produced by mercury sensitization using the device shown in FIG. Will be described.

このとき、作成した光起電力装置の構成は、第2図中
のp層(23)の材質を微結晶シリコンカーバイド(以下
μC−SiCという)とした以外は、第2図に示す構成と
同様であり、形成手順としては、μC−SiCのp層(2
3)の形成時に、水銀増感を行う為に、バルブ(7)を
閉じ、バルブ(10a),(10b)を開いて容器(1)に水
銀バブラ(9)からの水銀蒸気を導入する以外は、前記
実施例1と同様である。
At this time, the structure of the photovoltaic device produced was the same as the structure shown in FIG. 2 except that the material of the p layer (23) in FIG. 2 was microcrystalline silicon carbide (hereinafter referred to as μC-SiC). As a forming procedure, a p-layer of μC-SiC (2
During formation of 3), in order to perform mercury sensitization, except that the valve (7) is closed, the valves (10a) and (10b) are opened, and mercury vapor from the mercury bubbler (9) is introduced into the container (1). Is the same as in the first embodiment.

ただし、水銀バブラ(9)の温度は70℃に保持する。 However, the temperature of the mercury bubbler (9) is maintained at 70 ° C.

ところで、p,i,nの各層(23)〜(26)の形成条件は
表3に示すとおりであり、各層(23)〜(25)の厚さは
それぞれ300,2000,300Åとし、比較のために、p層(2
3)の形成時に、振動子(11)による振動に代えて、ヒ
ータ(20)により基板(4)を200℃に加熱し、それ以
外は表3に示す条件と同一条件下でp,i,nの各層(23)
〜(25)の形成を行い、得られた光起電力装置の諸特性
を測定した。
The conditions for forming the layers (23) to (26) of p, i, and n are as shown in Table 3, and the thickness of each layer (23) to (25) is 300, 2000, and 300 mm, respectively. For the p-layer (2
In the formation of 3), the substrate (4) is heated to 200 ° C. by the heater (20) instead of the vibration by the vibrator (11). Each layer of n (23)
(25) was formed, and various characteristics of the obtained photovoltaic device were measured.

このとき、p層(23)の形成時に、振動を与える場合
をケースとし、基板(4)を200℃に加熱する場合を
ケースとすると、p層自体の特性は、ケース,と
も大差はなく、Eopt=2.1eV,σd〜100Ω-1cm-1,σph〜
100Ω-1cm-1となり、ケース,における光起電力装
置の諸特性は、表4に示すようになつた。
At this time, if the case where vibration is applied during the formation of the p-layer (23) is the case and the case where the substrate (4) is heated to 200 ° C. is the case, the characteristics of the p-layer itself are not much different from those of the case. Eopt = 2.1eV, σd~10 0 Ω -1 cm -1, σph~
Characteristics of 10 0 Ω -1 cm -1, and the case, a photovoltaic device in the has fallen as shown in Table 4.

そして、表4からわかるように、ケース,即ちp層
(23)の形成時に基板(4)を200℃に加熱する場合、
ケース,即ちp層(23)の形成時に振動を与える場合
に比べ、VocとIscが著しく低下しているが、その原因と
して、TCO(22)上に水銀増感法によりp層(23)を形
成する場合に、水銀蒸気の希釈ガスとして水素を用いる
ため、高温下でTCO(22)が水素ラジカルにより還元さ
れてTCO(22)が損傷を受け、TCO(22)の透過率が低下
し、TCO(22)とp層(23)との界面の接合不良が生じ
ていることが考えられる。
And, as can be seen from Table 4, when the substrate (4) is heated to 200 ° C. during the formation of the case, that is, the p-layer (23),
Voc and Isc are remarkably reduced as compared with the case, that is, when vibration is applied during the formation of the p layer (23). The cause is that the p layer (23) is formed on the TCO (22) by the mercury sensitization method. Since hydrogen is used as a diluent gas for mercury vapor when formed, TCO (22) is reduced by hydrogen radicals at high temperatures, which damages TCO (22) and reduces the transmittance of TCO (22). It is conceivable that poor bonding at the interface between the TCO (22) and the p-layer (23) has occurred.

さらに、TCO(22)の透過率の低下を確認するため
に、得られた光起電力装置の収集効率スペクトルを測定
したところ、ケース,の結果は、それぞれ第4図中
の実線及び破線に示すようになり、同図から、ケース
の場合、ケースに比べ300〜800nmの波長範囲の全域に
おいて収集効率が低下しており、TCO(22)の透過率の
低下を裏付けていることがわかる。なお、収集効率スペ
クトルの測定時のバイアスは−5Vとした。
Further, the collection efficiency spectrum of the obtained photovoltaic device was measured in order to confirm the decrease in the transmittance of the TCO (22). The results of the case were shown by a solid line and a broken line in FIG. 4, respectively. As can be seen from the figure, the case has a lower collection efficiency over the entire wavelength range of 300 to 800 nm than the case, confirming the decrease in the transmittance of the TCO (22). The bias at the time of measuring the collection efficiency spectrum was -5V.

従つて、実施例2によると、前記実施例1と同等の効
果を得ることができ、安価な構成により、膜質の優れた
μC−SiCやa−Siなどの半導体薄膜を従来よりも短い
時間で形成することができる。
Therefore, according to the second embodiment, the same effect as that of the first embodiment can be obtained, and a semiconductor thin film having excellent film quality such as μC-SiC or a-Si can be formed in a shorter time than the conventional one by an inexpensive configuration. Can be formed.

なお、前記両実施例では、電源(12)により振動子
(11)に印加する高周波を1MHzとしたが、これに限るも
のではなく、可聴周波であつてもよい。
In both of the above embodiments, the high frequency applied to the vibrator (11) by the power supply (12) is set to 1 MHz. However, the present invention is not limited to this, and an audio frequency may be used.

また、形成装置としては、第1図に示す単室反応炉型
に限らず、分離形成炉型であつても、本発明を同様に実
施することができる。
Further, the present invention is not limited to the single-chamber reaction furnace type shown in FIG.

さらに、前記両実施例のような光起電力装置以外に、
TFTや半導体センサなどのドーパントを用いるものを始
め、Alなどの熱拡散に弱い物質を用いたデバイスの作成
に、本発明を適用できるのは勿論である。
Further, in addition to the photovoltaic device as in the above two embodiments,
Needless to say, the present invention can be applied to the fabrication of devices using materials that are weak to thermal diffusion, such as Al and other materials that use dopants, such as TFTs and semiconductor sensors.

また、光源は、前記した低圧水銀ランプに限らないの
は言うまでもない。
Needless to say, the light source is not limited to the low-pressure mercury lamp described above.

〔発明の効果〕〔The invention's effect〕

本発明は、以上説明したように構成されているので、
以下に記載する効果を奏する。
Since the present invention is configured as described above,
The following effects are obtained.

照射光エネルギによる原料ガスの分解により生成した
成膜ラジカルが,基板表面の最適の位置に移動するのに
要するエネルギを、従来のような熱エネルギではなく,
振動エネルギの形で与えるため、基板が従来のように10
0〜300℃程度もの高温にする必要がなく、成膜時の基板
温度を室温程度の20〜50℃に留めることができ、基板の
高温加熱に起因する従来の種々の問題を解消することが
でき、安価な構成により、膜室の優れた半導体薄膜を従
来より短い時間で形成することができ、特性の良好な半
導体デバイスを作成する上で極めて有効である。
The energy required for the film-forming radicals generated by the decomposition of the source gas by the irradiation light energy to move to the optimum position on the substrate surface is not the heat energy as in the past, but the heat energy.
Since the substrate is applied in the form of vibration energy,
There is no need to raise the temperature to about 0 to 300 ° C., and the substrate temperature during film formation can be kept at about 20 to 50 ° C., which is about room temperature, and various problems caused by high-temperature heating of the substrate can be solved. With a low-cost configuration, a semiconductor thin film with an excellent film chamber can be formed in a shorter time than in the past, which is extremely effective in producing a semiconductor device having good characteristics.

【図面の簡単な説明】[Brief description of the drawings]

図面は、本発明の半導体薄膜の形成方法の実施例を示
し、第1図ないし第3図は実施例1を示し、第1図は形
成装置の概略図、第2図は作成した光起電力装置の断面
図、第3図は第2図の光起電力装置のi層におけるボロ
ン濃度の分布図、第4図は実施例2を示し、作成した光
起電力装置の収集効率スペクトルである。 (1)……反応容器、(2)……透光性窓板、(4)…
…基板、(19)……低圧水銀ランプ。
The drawings show an embodiment of the method for forming a semiconductor thin film according to the present invention. FIGS. 1 to 3 show an embodiment 1, FIG. 1 is a schematic view of a forming apparatus, and FIG. FIG. 3 is a cross-sectional view of the device, FIG. 3 is a distribution diagram of boron concentration in the i-layer of the photovoltaic device of FIG. 2, and FIG. (1) ... reaction vessel, (2) ... translucent window plate, (4) ...
... substrate, (19) ... low-pressure mercury lamp.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津田 信哉 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 中野 昭一 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平1−298169(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinya Tsuda 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Shoichi Nakano 2-18-3 Keihanhondori, Moriguchi-shi, Osaka (56) References JP-A-1-298169 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内部を常圧に保持した反応容器に透光性窓
板を設け、前記容器内に基板を配設し、前記容器内に原
料ガスを供給し、光源により前記窓板を通して前記容器
内に照射光を照射し、前記照射光のエネルギにより、前
記原料ガスを分解して成膜ラジカルを生成し、前記基板
表面での前記成膜ラジカルの反応により、前記基板上に
半導体薄膜を形成する常圧光CVDによる半導体薄膜の形
成方法において、 前記基板に振動を与えるとともに、基板温度を20〜50℃
に留めることを特徴とする半導体薄膜の形成方法。
1. A translucent window plate is provided in a reaction vessel whose inside is maintained at normal pressure, a substrate is provided in the vessel, a source gas is supplied into the vessel, and a light source passes through the window plate. The container is irradiated with irradiation light, the source gas is decomposed by the energy of the irradiation light to generate film-forming radicals, and the film-forming radicals react on the substrate surface to form a semiconductor thin film on the substrate. In the method of forming a semiconductor thin film by atmospheric pressure photo-CVD to be formed, while applying vibration to the substrate, the substrate temperature is set to 20 to 50 ° C.
A method for forming a semiconductor thin film, comprising:
JP63250296A 1988-10-04 1988-10-04 Method of forming semiconductor thin film Expired - Fee Related JP2742799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250296A JP2742799B2 (en) 1988-10-04 1988-10-04 Method of forming semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250296A JP2742799B2 (en) 1988-10-04 1988-10-04 Method of forming semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH0298127A JPH0298127A (en) 1990-04-10
JP2742799B2 true JP2742799B2 (en) 1998-04-22

Family

ID=17205796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250296A Expired - Fee Related JP2742799B2 (en) 1988-10-04 1988-10-04 Method of forming semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2742799B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080860A (en) * 1990-07-02 1992-01-14 General Electric Company Niobium and chromium containing titanium aluminide rendered castable by boron inoculations
US5098653A (en) * 1990-07-02 1992-03-24 General Electric Company Tantalum and chromium containing titanium aluminide rendered castable by boron inoculation
US5205875A (en) * 1991-12-02 1993-04-27 General Electric Company Wrought gamma titanium aluminide alloys modified by chromium, boron, and nionium
US5228931A (en) * 1991-12-20 1993-07-20 General Electric Company Cast and hipped gamma titanium aluminum alloys modified by chromium, boron, and tantalum

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298169A (en) * 1988-05-27 1989-12-01 Tokyo Electron Ltd Film formation

Also Published As

Publication number Publication date
JPH0298127A (en) 1990-04-10

Similar Documents

Publication Publication Date Title
US6307146B1 (en) Amorphous silicon solar cell
US4400409A (en) Method of making p-doped silicon films
CN104094418A (en) Passivation film stack for silicon-based solar cells
JPH02191322A (en) Method of producing p-type carbon-doped amorphous silicon
JPH0512850B2 (en)
US20090101201A1 (en) Nip-nip thin-film photovoltaic structure
JPH04266066A (en) Photoelectromotive force element
WO2010023947A1 (en) Photoelectric conversion device manufacturing method, photoelectric conversion device, and photoelectric conversion device manufacturing system
US4799968A (en) Photovoltaic device
JP2742799B2 (en) Method of forming semiconductor thin film
JP2588446B2 (en) Semiconductor device
JP3106810B2 (en) Method for producing amorphous silicon oxide thin film
JP2724892B2 (en) Amorphous silicon pin type photoelectric conversion element
JP2003188400A (en) Crystalline silicon carbide film and manufacturing method thereof, and solar cell
JP3697199B2 (en) Solar cell manufacturing method and solar cell
EP0354853B1 (en) Amorphous silicon photodiode and method of producing the same
JPH08195348A (en) Semiconductor device manufacturing equipment
JP3040247B2 (en) Manufacturing method of silicon thin film
JP3201540B2 (en) Solar cell and method of manufacturing the same
JPH04266067A (en) Photovoltaic element
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
JP2654456B2 (en) Manufacturing method of high quality IGFET
JPS6041453B2 (en) Method for producing microcrystalline amorphous silicon film
JP2785885B2 (en) Photovoltaic element
JP3746711B2 (en) Method for manufacturing microcrystalline silicon solar cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees