JPS5976419A - Manufacture of p type silicon film - Google Patents

Manufacture of p type silicon film

Info

Publication number
JPS5976419A
JPS5976419A JP57186754A JP18675482A JPS5976419A JP S5976419 A JPS5976419 A JP S5976419A JP 57186754 A JP57186754 A JP 57186754A JP 18675482 A JP18675482 A JP 18675482A JP S5976419 A JPS5976419 A JP S5976419A
Authority
JP
Japan
Prior art keywords
silicon film
type silicon
vacuum chamber
doping
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57186754A
Other languages
Japanese (ja)
Other versions
JPS6361768B2 (en
Inventor
Sunao Matsubara
松原 直
Juichi Shimada
嶋田 寿一
Masatoshi Utaka
正俊 右高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57186754A priority Critical patent/JPS5976419A/en
Publication of JPS5976419A publication Critical patent/JPS5976419A/en
Publication of JPS6361768B2 publication Critical patent/JPS6361768B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve doping efficiency by a method wherein a metal Ga as a source for doping material is vaporized with resistance heating to be doped into an Si film. CONSTITUTION:A vacuum chamber 1 enclosed by a bell jar 2 is exhausted through an exhaustion system 3. Then, a crucible 5 including therein a metal Ga is heated and a substrate holder 7 heating a substrate 6 is also heated simultaneously. When the temperature reaches a given level, silane gas is introdueced into the vacuum chamber 1 through a gas introduction system 8. Subsequently, high frequency voltage 9 is applied and a shutter 10 for the Ga 4 is opened. The interior of the vacuum chamber 1 is brought into the plasma state and Ga vapor is ismultaneously diffused into the plasma, so that, when silane gas is decomposed and separated, Ga mixes into Si and a P type Si film is deposited on the substrate. Ga has a larger ion radius than B and is hard to move and come loose with respect to the surrounding Si group in point of crystal structure, whereby doping efficiency is improved using the Ga dope.

Description

【発明の詳細な説明】 本発明は、プラズマグロー放電法でp型シリコン膜を製
造する際にドープ剤に金属ガリウムを用いたp型シリコ
ン膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a p-type silicon film using metal gallium as a dopant when manufacturing the p-type silicon film by a plasma glow discharge method.

従来は、p型シリコン膜の形成はプラズマグロー放電法
やスパッタ法を用いて、シラン(SiH4)や四フッ化
シリコン(SiF4)を分解させ、ドープ剤としてジボ
ラン(B2H6)を添加して行なわれていた。この従来
法は、B2H6がガス状態であり、)’−7’剤(7)
ボロン(B)の添加が簡単にできる特徴がある。しかし
ながら、得られたp型シリコン膜に対するBのドーピン
グ効率が低いという欠点があった。さらに、Bドープの
p型シリコン膜の光の透過率は可視光領域においてその
透過率が小さく光の吸収係数が太きいという欠点もあっ
た。
Conventionally, a p-type silicon film was formed by decomposing silane (SiH4) or silicon tetrafluoride (SiF4) using a plasma glow discharge method or sputtering method, and adding diborane (B2H6) as a dopant. was. In this conventional method, B2H6 is in a gaseous state, and the )'-7' agent (7)
It has the feature that boron (B) can be easily added. However, there was a drawback that the doping efficiency of B into the obtained p-type silicon film was low. Furthermore, the B-doped p-type silicon film has a drawback in that its light transmittance is low in the visible light region and its light absorption coefficient is large.

プラズマグロー放電法で作製したBドープp型シリコン
膜は光起電力効果を応用した太陽電池に利用されており
、この太陽電池においては、該p型シリコン膜は、(太
陽光の入射する側の)窓側材料として使用される。Bド
ープp型シリコン膜は、Bのドーピング効率が低いこと
から多量のBがドーピングされ、その結果、光の吸収係
数が大きくなる欠点があった。太陽電池の光電変換効率
の向上のためには、窓側材料として光吸収係数の小さい
p型シリコン膜の形成が望ましく、必然的にp型シリコ
ン膜を薄くして、光吸収係数の大きいことを補う施策が
された。しかしながら、膜を薄くすると太陽電池として
の直列抵抗成分が増加することになり、光電変換効率の
低下の要因となる。
A B-doped p-type silicon film produced by the plasma glow discharge method is used in a solar cell that applies the photovoltaic effect, and in this solar cell, the p-type silicon film is ) Used as window side material. The B-doped p-type silicon film has a drawback that a large amount of B is doped because the B doping efficiency is low, and as a result, the light absorption coefficient becomes large. In order to improve the photoelectric conversion efficiency of solar cells, it is desirable to form a p-type silicon film with a small light absorption coefficient as the window side material, and it is necessary to make the p-type silicon film thinner to compensate for the large light absorption coefficient. Measures were taken. However, when the film is made thinner, the series resistance component of the solar cell increases, which causes a decrease in photoelectric conversion efficiency.

本発明の目的は、p型シリコン膜の太陽電池への適用を
考慮し、p型シリコン膜へのドープ剤のドーピング効率
の向上および該p型シリコン膜の光吸収係数の低減を重
視する視点に立って、新規・なp型シリコン膜の製造方
法を提供することにある。
The purpose of the present invention is to take into consideration the application of p-type silicon films to solar cells, and to focus on improving the doping efficiency of dopants into p-type silicon films and reducing the light absorption coefficient of the p-type silicon films. The purpose of this invention is to provide a novel method for manufacturing p-type silicon films.

上記目的を達成するだめの本発明の構成は、ドープ剤の
ソースとしての金属ガリウムを抵抗加熱によシ蒸気化し
、シリコン膜中にガリウムをドーピングさせることにあ
る。
The structure of the present invention to achieve the above object is to vaporize metallic gallium as a source of a dopant by resistance heating, thereby doping gallium into a silicon film.

すなわち、p型シリコン膜のドープ剤としての1・、 B 2 Haにfわり、新たに金属ガリウムを抵抗加勢
方式によシ蒸発させ、該膜中にガリウムをドーピングす
るp型シリコン膜の製造方法である。
That is, a method for producing a p-type silicon film, in which metal gallium is newly evaporated by a resistive addition method in place of 1., B 2 Ha as a dopant for the p-type silicon film, and the film is doped with gallium. It is.

第1図は本発明に使用した装置の概略図でちる。FIG. 1 is a schematic diagram of the apparatus used in the present invention.

以下、図を用いて具体的に説明する。ペルジャー2によ
って囲まれた真空室1内を排気系3により10−IIT
Orr程度以下の真空度に排気する。金属ガリウム4の
入ったルツボ5を加熱し、同時に基板6を加熱する基板
ホルダー7も加熱する。所定の温度になったら、ガス導
入系8によシンラン(seHt)ガスを真空室内へ導入
し、プラズマグロー放電が可能な圧力(0,1Torr
程度)にする。
This will be explained in detail below using figures. The inside of the vacuum chamber 1 surrounded by the Pelger 2 is evacuated by the exhaust system 3 to 10-IIT.
Evacuate to a degree of vacuum of about Orr or less. The crucible 5 containing the metal gallium 4 is heated, and at the same time, the substrate holder 7 that heats the substrate 6 is also heated. When the temperature reaches a predetermined temperature, synlan (seHt) gas is introduced into the vacuum chamber by the gas introduction system 8, and the pressure (0.1 Torr) is set at which plasma glow discharge is possible.
degree).

高周波電源9によシプラズマグロー放電を開始すると同
時に金属ガリウム4のシャッター10を開放し、プラズ
マ中にQa蒸気を導入しp型シリコン膜の形成を行なう
At the same time as plasma glow discharge is started by the high frequency power source 9, the shutter 10 of the metal gallium 4 is opened, Qa vapor is introduced into the plasma, and a p-type silicon film is formed.

本発明の製造方法は、上記のような装置によって行なわ
れているが、これは−例であり、装置自体としては上記
のものに限らず種々の変形や改良が可能である。
Although the manufacturing method of the present invention is carried out using the above-mentioned apparatus, this is just an example, and the apparatus itself is not limited to the above-mentioned one, and various modifications and improvements can be made.

尚、本発明の製造方法によシ得られたp型シリコン膜の
室温暗室導度δD1および光吸収係数αを測定すること
により、Gaのドーピング量との間の関係を第2図およ
び第3図に示す。第2図および第3図において、実線で
示しだ曲線aおよびCはGaをドーピングした場合で、
破線で示した曲線すおよびdは比較のだめ従来法による
B 2 HeをドーピングガスとしてBをドープした場
合である。第2図の曲線aのGaをドープしたp型シリ
コン膜の室温暗室導度δDは、Bをドープしたp型シリ
コン膜の曲線すよりも、少ないドーピング量で同程度の
電導度が得られている。この結果より、従来法のBドー
ピングよυも本発明によるQaミド−ピング方がよりド
ーピング効率が高ぐVlfF/、を本発明によってドー
ピングされたGlの活性化率がBよりも高いことが判明
した。
By measuring the room temperature dark room conductivity δD1 and the light absorption coefficient α of the p-type silicon film obtained by the manufacturing method of the present invention, the relationship between the amount of Ga doping and the amount of Ga doping is shown in FIGS. 2 and 3. As shown in the figure. In FIGS. 2 and 3, curves a and C shown by solid lines are for the case where Ga is doped,
For comparison, the curves d and d shown by broken lines are the case where B is doped using B 2 He as the doping gas according to the conventional method. The room temperature dark room conductivity δD of the Ga-doped p-type silicon film shown by curve a in FIG. 2 is similar to that of the B-doped p-type silicon film with a smaller doping amount. There is. From this result, it is clear that the doping efficiency of Qa mid-doping according to the present invention is higher than that of B doping using the conventional method. did.

第3図は、室温暗室導度δDがI X 1O−4(Ω・
cm)−’であるG′aドープ及びBドープの、それぞ
れのシリコン膜の光吸収係数αについて示したものであ
り、Gaドープしたシリコン膜の曲線CがBドープのシ
リコン膜の曲線dよシも吸収係数が小さくなっている。
Figure 3 shows that the room temperature dark room conductivity δD is I x 1O-4 (Ω・
cm)-' for each G'a-doped and B-doped silicon film, and the curve C for the Ga-doped silicon film is different from the curve d for the B-doped silicon film. The absorption coefficient is also small.

この結果は、p型シリコン膜を太陽電池の窓側材料とし
て使用する場合は、従来法のBドープしたシリコン膜よ
りもGaドープしたシリコ/膜の方が適していることを
示唆する。
This result suggests that Ga-doped silico/film is more suitable than conventional B-doped silicon film when p-type silicon film is used as a window material for solar cells.

Gaドープによりドーピング効率が向上した要因として
は、BよりもGaがイオン半径が大きく、結晶構造的に
周辺のシリコン群に対して動きにくくかつ、ぬけにくく
なっているためである。また、Bドーピングの場合は、
ドーピングするBの量が少量であるとシリコン群に対し
Bが三配位に位置し、多量のドーピングで四配位に位置
することによりアクセプターとして挙動するが、Gaの
場合は、少量のドーピングでもシリコン群に対し四配位
に位置することによシト−ピング効率が向上したもので
ある。
The reason why the doping efficiency is improved by Ga doping is that Ga has a larger ionic radius than B, and its crystal structure makes it difficult to move and escape from the surrounding silicon group. In addition, in the case of B doping,
If the amount of B doped is small, B will be located in the tri-coordination with respect to the silicon group, and if it is doped in a large amount, it will be located in the tetra-coordination, thereby acting as an acceptor. However, in the case of Ga, even a small amount of doping The cytoping efficiency is improved by being located in a four-coordinate position with respect to the silicon group.

以下に本発明の実施例を具体的に述べる。Examples of the present invention will be specifically described below.

実施例 前記第1図を使用して説明すると、ペルジャー2によっ
て囲まれた真空室1を排気系3によって一旦10−5T
Orr以下の真空度に排気する。次に、金属ガリウム4
が2g入ったルツボ5を910Cに加熱し、同時に基板
6を加熱する基板ホルダー7を220Cに加熱保持し、
真空室1内を1×10−’ TOrrとする。所定の温
度になったら、ガス導入系8によりシラン(SiH4)
ガスを真空室1内に導入し、真空室内圧力が0.1To
rrになるようにする。引き続き、周波数13.56M
Hzの高周波電圧9を印加し、さらに、金属ガリウム4
のシャッター10を開放する。真空室1内をプラズマ状
態にすると同時にそのプラズマ中にQa蒸気を拡散させ
、シラン(SiH4)ガスが分解し析出する際にシリコ
ン中にQaが混入し、p型シリコン膜が基板上に析出す
る。
Embodiment To explain using FIG.
Evacuate to a vacuum level of Orr or less. Next, metal gallium 4
The crucible 5 containing 2 g of
The inside of the vacuum chamber 1 is set to 1×10 −' TOrr. When the predetermined temperature is reached, silane (SiH4) is introduced by the gas introduction system 8.
Gas is introduced into the vacuum chamber 1, and the pressure in the vacuum chamber is 0.1To.
Make it rr. Continued frequency 13.56M
A high frequency voltage 9 of Hz is applied, and metal gallium 4
The shutter 10 of is opened. At the same time as the inside of the vacuum chamber 1 is brought into a plasma state, Qa vapor is diffused into the plasma, and when silane (SiH4) gas decomposes and precipitates, Qa is mixed into the silicon, and a p-type silicon film is precipitated on the substrate. .

得られたp型シリコン膜の室温暗室導度は、第2図に示
したごとく、Gaのドーピング量と密接な関係にある。
The room temperature dark room conductivity of the obtained p-type silicon film is closely related to the amount of Ga doping, as shown in FIG.

そのGaのドーピング量の制御は金属ガリウム4の蒸気
圧のコントロールで行なわれ、金属ガリウム4のチャー
ジ量と加熱温度で制御する。
The amount of Ga doping is controlled by controlling the vapor pressure of the metal gallium 4, and is controlled by the amount of charge of the metal gallium 4 and the heating temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用したp型シリコン膜の製造装置の
概略図、第2図はドーピング量に対するp型シリコン膜
の室温暗室導度との関係を示す特性図、第3図はホトン
エネルギーに対する光の吸収係数との関係を示す特性図
でおる。 1・・・真空室、4・・・金属ガリウム、5・・・ルツ
ボ、6・・・基板、7・・・基板ホルダー、8・・・ガ
ス導入系、10・・・シャック−0
Figure 1 is a schematic diagram of the p-type silicon film manufacturing apparatus used in the present invention, Figure 2 is a characteristic diagram showing the relationship between the doping amount and the room temperature dark room conductivity of the p-type silicon film, and Figure 3 is the photon energy. This is a characteristic diagram showing the relationship between the light absorption coefficient and the light absorption coefficient. DESCRIPTION OF SYMBOLS 1... Vacuum chamber, 4... Metal gallium, 5... Crucible, 6... Substrate, 7... Substrate holder, 8... Gas introduction system, 10... Shack-0

Claims (1)

【特許請求の範囲】[Claims] 1、プラズマグロー放電法を用いたp型シリコン膜の製
造方法において、ドープ剤のソースに金属ガリウムを用
い、該金属ガリウムを抵抗加熱によシ蒸気化し、シリコ
ン膜中にガリウムをドーピングすることを特徴としたp
型シリコン膜の製造方法。
1. In a method for manufacturing a p-type silicon film using a plasma glow discharge method, metal gallium is used as a dopant source, and the metal gallium is vaporized by resistance heating to dope the silicon film with gallium. Featured p
Method for manufacturing mold silicon film.
JP57186754A 1982-10-26 1982-10-26 Manufacture of p type silicon film Granted JPS5976419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186754A JPS5976419A (en) 1982-10-26 1982-10-26 Manufacture of p type silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186754A JPS5976419A (en) 1982-10-26 1982-10-26 Manufacture of p type silicon film

Publications (2)

Publication Number Publication Date
JPS5976419A true JPS5976419A (en) 1984-05-01
JPS6361768B2 JPS6361768B2 (en) 1988-11-30

Family

ID=16194051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186754A Granted JPS5976419A (en) 1982-10-26 1982-10-26 Manufacture of p type silicon film

Country Status (1)

Country Link
JP (1) JPS5976419A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214179A (en) * 1986-03-17 1987-09-19 Nec Corp Thin film forming device
EP0735597A3 (en) * 1995-03-30 1997-06-04 Sharp Kk Silicon solar cell and fabrication method thereof
JP2004297008A (en) * 2003-03-28 2004-10-21 National Institute Of Advanced Industrial & Technology P-type semiconductor material, its manufacturing method, its manufacturing device, photoelectric conversion element, light emitting device, and thin film transistor
JP2005268481A (en) * 2004-03-18 2005-09-29 Toppan Printing Co Ltd Non-single crystal solar cell and apparatus for manufacturing p type semiconductor material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214179A (en) * 1986-03-17 1987-09-19 Nec Corp Thin film forming device
EP0735597A3 (en) * 1995-03-30 1997-06-04 Sharp Kk Silicon solar cell and fabrication method thereof
JP2004297008A (en) * 2003-03-28 2004-10-21 National Institute Of Advanced Industrial & Technology P-type semiconductor material, its manufacturing method, its manufacturing device, photoelectric conversion element, light emitting device, and thin film transistor
JP2005268481A (en) * 2004-03-18 2005-09-29 Toppan Printing Co Ltd Non-single crystal solar cell and apparatus for manufacturing p type semiconductor material

Also Published As

Publication number Publication date
JPS6361768B2 (en) 1988-11-30

Similar Documents

Publication Publication Date Title
US5248348A (en) Amorphous silicon solar cell and method for manufacturing the same
US5296405A (en) Method for photo annealing non-single crystalline semiconductor films
US4615298A (en) Method of making non-crystalline semiconductor layer
US4496450A (en) Process for the production of a multicomponent thin film
JPS6324923B2 (en)
JPS6122622A (en) Method and device for producing photovoltaic power panel
US5171710A (en) Method for photo annealing non-single crystalline semiconductor films
EP0069580A2 (en) Method of producing thin films of silicon
JPH0512850B2 (en)
KR910002764B1 (en) Amorphous semiconductor method and devices
JPH0143449B2 (en)
JPS5976419A (en) Manufacture of p type silicon film
JPH07106611A (en) Fabrication of bsf solar cell
JP3106810B2 (en) Method for producing amorphous silicon oxide thin film
GB2049643A (en) Process for the production of silicon having semiconducting proprties
JP2742799B2 (en) Method of forming semiconductor thin film
JPH05246794A (en) Semiconductor thin film, method and device for forming the same and semiconductor device with the same
JPS5860747A (en) Electrophotographic receptor
JP4256522B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JPH0639688B2 (en) Method of forming silicon thin film
JP2785882B2 (en) Photovoltaic element and method for manufacturing the same
JPS61256625A (en) Manufacture of thin film semiconductor element
JP3100668B2 (en) Method for manufacturing photovoltaic element
JP2726676B2 (en) Formation method of silicon carbide microcrystalline thin film
JP2966909B2 (en) Amorphous semiconductor thin film