JPH0262482B2 - - Google Patents

Info

Publication number
JPH0262482B2
JPH0262482B2 JP14210482A JP14210482A JPH0262482B2 JP H0262482 B2 JPH0262482 B2 JP H0262482B2 JP 14210482 A JP14210482 A JP 14210482A JP 14210482 A JP14210482 A JP 14210482A JP H0262482 B2 JPH0262482 B2 JP H0262482B2
Authority
JP
Japan
Prior art keywords
silicon
temperature
film
hydrogen
plasma treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14210482A
Other languages
Japanese (ja)
Other versions
JPS5935016A (en
Inventor
Nobuo Nakamura
Juichi Shimada
Sunao Matsubara
Shinichi Muramatsu
Masatoshi Utaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14210482A priority Critical patent/JPS5935016A/en
Publication of JPS5935016A publication Critical patent/JPS5935016A/en
Publication of JPH0262482B2 publication Critical patent/JPH0262482B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、シリコンまたはその合金の1種から
成る層を組込んだ電子デバイス、特に光子輻射線
を電気エネルギーに変換すべく使用し得る太陽電
池に用いる含水素シリコン層の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrogen-containing silicon layer for use in electronic devices incorporating a layer of silicon or one of its alloys, particularly solar cells that can be used to convert photon radiation into electrical energy. The present invention relates to a manufacturing method.

従来の太陽電池の材料としては一般に結晶シリ
コンが使用されてきたが、セル特性が良好な反面
製造コストが高いという欠点があつた。一方、最
近注目をあびている非晶質シリコンについては、
光吸収が大きいために薄くてもよく、低温プロセ
スで作れるという特長を持つ反面、成長速度が小
さいために長時間の成長が必要であり、長期使用
の信頼性にも問題がある。また、太陽光スペクト
ルからすれば波長感度幅が狭く、最適な材料とは
言えない。
Crystalline silicon has generally been used as a material for conventional solar cells, but although it has good cell characteristics, it has the disadvantage of high manufacturing costs. On the other hand, regarding amorphous silicon, which has been attracting attention recently,
Although it has the advantage of being able to be made thin due to its high light absorption and can be produced using a low-temperature process, it requires long-term growth due to its slow growth rate, and there are also problems with its reliability in long-term use. Furthermore, it has a narrow wavelength sensitivity range in terms of the sunlight spectrum, so it cannot be said to be an optimal material.

本発明の目的は、非晶質シリコンと微結晶シリ
コンとが共に含まれるシリコン膜とすることによ
り両者の利点の特性を持つ太陽電池を提供するこ
とにある。この膜は太陽光スペクトルに近い波長
感度を持ち光吸収の大きな材料であり、局在準位
が小さく易動度が大きいために高い光電変換効率
を示し、長期間安定な特性を示す様になる。
An object of the present invention is to provide a solar cell having characteristics that have the advantages of both amorphous silicon and microcrystalline silicon by using a silicon film containing both amorphous silicon and microcrystalline silicon. This film is a material with wavelength sensitivity close to the sunlight spectrum and high light absorption, and because it has small localized levels and high mobility, it exhibits high photoelectric conversion efficiency and exhibits long-term stable characteristics. .

非晶質シリコンを太陽電池として用いるために
は、光導伝性を持たせるために膜中に水素を含ま
せることが不可欠であり、通常グロー放電法によ
り形成されている。形成温度は200〜300℃であ
り、これ以上の温度で形成されたものは水素の割
合が極めて低く、太陽電池としては適当でない。
また、シリコン膜形成時に水素を含有させたもの
については、300℃以上の熱処理によつて水素が
放出されることがわかつており、従つて、水素含
有シリコン膜は、膜形成時および形成後も300℃
以上に加熱することは悪い影響を与えるとされて
きた。
In order to use amorphous silicon as a solar cell, it is essential to include hydrogen in the film to impart photoconductivity, and the film is usually formed by a glow discharge method. The formation temperature is 200 to 300°C, and those formed at temperatures higher than this have an extremely low hydrogen content and are not suitable for use as solar cells.
In addition, it is known that hydrogen is released from silicon films that contain hydrogen during heat treatment at temperatures of 300°C or higher. Therefore, hydrogen-containing silicon films are 300℃
It has been believed that heating above this level has negative effects.

しかし、シリコン膜を形成した後に水素プラズ
マ処理を行なつた場合には、処理温度は高いほど
良く最高550℃の温度まで充分な光導伝が得られ
た。一方、真空蒸着あるいは減圧下での化学分解
法・プラズマ分解法によつてシリコン膜を形成す
れば、圧力と形成温度との関係によつて非晶質シ
リコンと微結晶シリコンが共に含まれる膜を形成
することは容易である。こうして形成された膜を
微結晶化温度近傍の温度で水素プラズマ処理すれ
ば、高い光導伝性と非晶質シリコンに近い光吸収
を示し、その波長感度は、結晶シリコンと非晶質
シリコンの中間的な値となる。更に、グロー放電
法によつて低温で形成されたものに較べ格段に信
頼性の高い膜となる。微結晶化の温度はシリコン
膜の形成方法および条件により少しずつ異なつて
くるが、真空蒸着法および減圧プラズマ分解法の
場合は480℃から540℃、減圧下での化学分解法の
場合は560℃から600℃であつた。シリコン膜の光
吸収の割合は、結晶粒の大きさに依存する。波長
0.5μmにおける吸収係数値は、結晶シリコンは
1.1×104cm-1であり、不純物をドープしない250
℃で真空蒸着した非晶質シリコンは2×105cm-1
に対して、500℃で微結晶化したシリコンは4×
104cm-1であつた。形成温度を上げるに従つてこ
の値は結晶シリコンに近づいて小さくなり、550
℃で2.5×104cm-1となつた。すなわち、これ以上
の温度で形成した場合は、太陽電池としては、膜
厚が数μm以上が必要となり利点は小さいことに
なる。
However, when hydrogen plasma treatment was performed after forming the silicon film, the higher the treatment temperature, the better, and sufficient photoconduction was obtained up to a maximum temperature of 550°C. On the other hand, if a silicon film is formed by vacuum evaporation or chemical decomposition or plasma decomposition under reduced pressure, a film containing both amorphous silicon and microcrystalline silicon can be formed depending on the relationship between pressure and formation temperature. It is easy to mold. When the film thus formed is treated with hydrogen plasma at a temperature near the microcrystalization temperature, it exhibits high photoconductivity and light absorption close to that of amorphous silicon, and its wavelength sensitivity is between that of crystalline silicon and amorphous silicon. value. Furthermore, the film is much more reliable than that formed at low temperatures by the glow discharge method. The temperature for microcrystallization varies slightly depending on the silicon film formation method and conditions, but it is 480°C to 540°C for vacuum evaporation and reduced pressure plasma decomposition methods, and 560°C for chemical decomposition methods under reduced pressure. The temperature was between 600℃ and 600℃. The light absorption rate of a silicon film depends on the size of crystal grains. wavelength
The absorption coefficient value at 0.5μm is
1.1×10 4 cm -1 and not doped with impurities 250
Amorphous silicon vacuum-deposited at ℃ is 2×10 5 cm -1
On the other hand, silicon microcrystallized at 500℃ has a temperature of 4×
It was 10 4 cm -1 . As the formation temperature increases, this value approaches that of crystalline silicon and decreases to 550
It was 2.5×10 4 cm -1 at ℃. That is, if the film is formed at a temperature higher than this temperature, the solar cell will require a film thickness of several μm or more, and the advantage will be small.

膜形成後の水素プラズマ処理の効果は膜の結晶
性に依存し、結晶粒の小さなものほど低温処理で
よい。この効果については、赤外吸収測定等によ
る膜中の水素量の測定および導電率の変化によつ
て確かめられる。
The effect of hydrogen plasma treatment after film formation depends on the crystallinity of the film, and the smaller the crystal grains, the better the low temperature treatment. This effect can be confirmed by measuring the amount of hydrogen in the film by infrared absorption measurement or the like and by changing the conductivity.

また微結晶シリコンを含んだ膜については、微
結晶化温度Tの±50℃の温度範囲で、550℃を越
えない範囲が最も効果的であつた。更に、この水
素プラズマ処理は膜形成後に一度大気に触れさせ
た場合には、表面層のシリコンが酸化されてしま
い、水素と結合できないために効果が減少する。
For films containing microcrystalline silicon, the most effective temperature range was ±50°C of the microcrystalization temperature T, but not exceeding 550°C. Furthermore, if this hydrogen plasma treatment is once exposed to the atmosphere after film formation, the silicon in the surface layer will be oxidized and cannot bond with hydrogen, reducing its effectiveness.

実施例 1 10-10Torrの圧力下で蒸着ソースである結晶シ
リコンに電子ビームを照射し、加熱された石英基
板にシリコン膜を蒸着した。この時、基板温度が
450℃の時は蒸着されたシリコン膜は非晶質であ
るが、500℃では微結晶化する。まず、450℃の温
度において毎秒1nmの速度で0.5μmの厚さに非晶
質シリコンを蒸着し、次いで500℃の温度におい
て毎秒1.5nmの速度で0.5μmの厚さに微結晶シリ
コンを蒸着した。次いで460℃、0.1Torrの圧力
で30分間の水素プラズマ処理を行なつた。この結
果、暗導伝率が3×10-9Ω-1・cm-1に対しAM1の
強さの光照射導伝率は5×10-4Ω-1・cm-1と105
倍以上の変化を示し、太陽電池として使用可能な
十分な自由キヤリアが発生することがわかつた。
また、波長0.5μmに対する吸収係数値は6.5×104
cm-1と非晶質シリコンと結晶シリコンの中間的な
値を示した。
Example 1 A silicon film was deposited on a heated quartz substrate by irradiating crystalline silicon, which was a deposition source, with an electron beam under a pressure of 10 -10 Torr. At this time, the substrate temperature
At 450°C, the deposited silicon film is amorphous, but at 500°C it becomes microcrystalline. First, amorphous silicon was deposited to a thickness of 0.5 μm at a rate of 1 nm per second at a temperature of 450 °C, and then microcrystalline silicon was deposited to a thickness of 0.5 μm at a rate of 1.5 nm per second at a temperature of 500 °C. . Next, hydrogen plasma treatment was performed at 460°C and a pressure of 0.1 Torr for 30 minutes. As a result, while the dark conductivity is 3×10 -9 Ω -1・cm -1 , the light irradiation conductivity at AM1 intensity is 5×10 -4 Ω -1・cm -1 and 10 5
It was found that the change was more than double, and that enough free carriers were generated that could be used as solar cells.
Also, the absorption coefficient value for a wavelength of 0.5 μm is 6.5×10 4
cm -1 and showed an intermediate value between amorphous silicon and crystalline silicon.

実施例 2 第1図は、シリコン膜を形成するための減圧プ
ラズマCVD装置の全体図である。反応管1は炉
2により外部より加熱されており、ステンレス基
板3が電極4に保持されている。5は高周波電
源、6は真空ポンプを示している。反応管1の内
部を高真空に引いた後に微結晶化する温度以下の
300℃の温度においてSiH4とPH3をSiH4:PH3
10:1の割合で流し、全体の圧力を1Torrとし
た。この状態において電極4に高周波電圧を印加
し、反応管内部にプラズマ放電させた。まず基板
3にn型層を30nm成長させた後にPH3を止め、
圧力を1Torrに調整した後にノンドープ層を300n
m成長させた。次に反応炉内の温度を微結晶化の
温度近傍の500℃として引き続きノンドープ層を
400nm成長させた。最後にこの温度において
SiH4とB2H6をSiH4:B2H6=20:1の割合で流
し、1Torrの圧力で10nmのp型層を成長させた。
この状態で反応管を高真空引きした後に水素を流
し、0.1Torrの圧力にしてプラズマ放電させ、15
分間の水素プラズマ処理を行なつた。
Example 2 FIG. 1 is an overall view of a reduced pressure plasma CVD apparatus for forming a silicon film. The reaction tube 1 is heated from the outside by a furnace 2, and a stainless steel substrate 3 is held by an electrode 4. Reference numeral 5 indicates a high frequency power supply, and reference numeral 6 indicates a vacuum pump. After drawing the inside of the reaction tube 1 into a high vacuum, the temperature below which microcrystallization occurs
SiH 4 and PH 3 at a temperature of 300℃ SiH 4 : PH 3 =
The flow rate was 10:1, and the total pressure was 1 Torr. In this state, a high frequency voltage was applied to the electrode 4 to cause plasma discharge inside the reaction tube. First, after growing an n-type layer to a thickness of 30 nm on the substrate 3, the PH 3 was stopped.
After adjusting the pressure to 1 Torr, add a non-doped layer of 300n.
I grew m. Next, the temperature in the reactor was set to 500℃, near the temperature of microcrystalization, and a non-doped layer was subsequently formed.
It was grown to 400nm. Finally at this temperature
SiH 4 and B 2 H 6 were flowed at a ratio of SiH 4 :B 2 H 6 =20:1, and a 10 nm p-type layer was grown at a pressure of 1 Torr.
In this state, the reaction tube was evacuated to a high vacuum, hydrogen was flowed in, the pressure was set to 0.1 Torr, plasma was discharged, and 15
Hydrogen plasma treatment was performed for 1 minute.

反応装置から取り出した後に表面に透明導伝膜
を蒸着し太陽電池を構成したところAM1の擬似
太陽光下で、開放電圧0.81V、短絡電流7.8mA/
cm2を得た。更に、太陽光スペクトルに対して
350nmから900nmまでの波長に対して感度を示
し、結晶シリコン太陽電池と非晶質太陽電池の中
間的な特性を示した。
After taking out from the reactor, a transparent conductive film was deposited on the surface to form a solar cell, and under simulated sunlight of AM1, the open circuit voltage was 0.81 V, and the short circuit current was 7.8 mA/
cm2 was obtained. Furthermore, for the solar spectrum
It exhibited sensitivity to wavelengths from 350 nm to 900 nm, and exhibited characteristics intermediate between crystalline silicon solar cells and amorphous solar cells.

実施例 3 第2図を用いて説明する。成膜温度を460〜485
℃の範囲で変化させて作製した多数個の試料にプ
ラズマ処理を行ない、それらの試料の光導電度を
測定した結果、第2図に示すとおりになつた。第
2図から、成膜温度が高い程、微結晶含有率が大
きくなり、それに伴なつて光導電性に対する水素
プラズマ処理の効果が顕著であることがわかる。
Example 3 This will be explained using FIG. 2. Film forming temperature 460-485
A large number of samples prepared by changing the temperature within a range of .degree. C. were subjected to plasma treatment, and the photoconductivity of the samples was measured, and the results were as shown in FIG. It can be seen from FIG. 2 that the higher the film-forming temperature, the higher the microcrystal content, and the more pronounced the effect of hydrogen plasma treatment on photoconductivity becomes.

実施例 4 第3図を用いて説明する。実施例1と同様の方
法で作製した多数個の試料を加熱温度を変えて水
素プラズマ処理を行なつた。その温度範囲は10〜
550℃である。これらの試料の導電度(光照射な
し)を測定した結果、第3図のようになつた。本
願発明者は、第3図から、430〜550℃の範囲で導
電性(光照射なし)が著るしく減少しているこ
と、すなわち水素プラズマ処理の効果が顕著であ
ることを見出した。この温度範囲は従来の知見で
は含水素シリコン膜の形成が不可能であろうと考
えられた範囲である。
Example 4 This will be explained using FIG. 3. A large number of samples prepared in the same manner as in Example 1 were subjected to hydrogen plasma treatment at different heating temperatures. Its temperature range is 10~
The temperature is 550℃. The conductivity of these samples (without light irradiation) was measured, and the results were as shown in FIG. The inventors of the present invention found from FIG. 3 that the conductivity (without light irradiation) decreased significantly in the range of 430 to 550°C, that is, the effect of hydrogen plasma treatment was significant. This temperature range is a range in which it was considered impossible to form a hydrogen-containing silicon film based on conventional knowledge.

本発明は化学分解法又はプラズマ分解法におい
て有用である。
The present invention is useful in chemical or plasma decomposition methods.

本発明によれば、非晶質シリコン太陽電池と結
晶シリコン太陽電池の両方の長所を生かした太陽
電池を作ることができる。すなわち、光の吸収が
大きいので膜厚は数μm以下でよく、用途により
非晶質層と微結晶層の厚さの割合を変えれば任意
の波長感度のものが得られる。光電変換効率の点
では、表面側接合層を微結晶化することによつて
空乏層における局在準位密度の減少から結晶シリ
コン太陽電池に近い電流密度が可能となり、高い
変換効率となる。更に、微結晶化温度付近での熱
処理を経ているので、素子の信頼性は格段に優れ
たものとなる。
According to the present invention, it is possible to produce a solar cell that takes advantage of the advantages of both amorphous silicon solar cells and crystalline silicon solar cells. That is, since the light absorption is large, the film thickness may be several micrometers or less, and by changing the ratio of the thickness of the amorphous layer to the microcrystalline layer depending on the application, a film with arbitrary wavelength sensitivity can be obtained. In terms of photoelectric conversion efficiency, by microcrystallizing the surface-side junction layer, the localized level density in the depletion layer is reduced, making it possible to achieve a current density close to that of a crystalline silicon solar cell, resulting in high conversion efficiency. Furthermore, since the device is subjected to heat treatment near the microcrystallization temperature, the reliability of the device is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシリコン膜を形成するための減圧プラ
ズマCVD装置の全体図である。第2図は、実施
例3の結果を示す図である。第3図は、実施例4
の結果を示す図である。 1……反応炉、2……加熱炉、3……基板、4
……高周波電極、5……高周波電源。
FIG. 1 is an overall view of a low pressure plasma CVD apparatus for forming a silicon film. FIG. 2 is a diagram showing the results of Example 3. Figure 3 shows Example 4.
FIG. 1...Reaction furnace, 2...Heating furnace, 3...Substrate, 4
...High frequency electrode, 5...High frequency power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 減圧下で形成された、非晶質シリコンと微結
晶シリコンが共存するシリコン層を、大気に触れ
させる前に、430〜550℃において水素プラズマ処
理することを特徴とする含水素シリコン層の製造
方法。
1. Production of a hydrogen-containing silicon layer characterized by subjecting a silicon layer formed under reduced pressure, in which amorphous silicon and microcrystalline silicon coexist, to hydrogen plasma treatment at 430 to 550°C before exposing it to the atmosphere. Method.
JP14210482A 1982-08-18 1982-08-18 Preparation of hydrogen-containing silicon layer Granted JPS5935016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14210482A JPS5935016A (en) 1982-08-18 1982-08-18 Preparation of hydrogen-containing silicon layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14210482A JPS5935016A (en) 1982-08-18 1982-08-18 Preparation of hydrogen-containing silicon layer

Publications (2)

Publication Number Publication Date
JPS5935016A JPS5935016A (en) 1984-02-25
JPH0262482B2 true JPH0262482B2 (en) 1990-12-25

Family

ID=15307519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14210482A Granted JPS5935016A (en) 1982-08-18 1982-08-18 Preparation of hydrogen-containing silicon layer

Country Status (1)

Country Link
JP (1) JPS5935016A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169320A (en) * 1986-01-21 1987-07-25 Sharp Corp Manufacture of thin film
JPH05109638A (en) * 1988-09-30 1993-04-30 Sanyo Electric Co Ltd Method for forming polycrystalline silicon film
JP3369154B2 (en) * 2000-09-01 2003-01-20 科学技術振興事業団 Manufacturing method of organic co-deposited film
US7847186B2 (en) * 2003-07-24 2010-12-07 Kaneka Corporation Silicon based thin film solar cell
DK1650811T3 (en) * 2003-07-24 2013-07-08 Kaneka Corp Stacked photoelectric converter

Also Published As

Publication number Publication date
JPS5935016A (en) 1984-02-25

Similar Documents

Publication Publication Date Title
EP0118579B1 (en) Thin film heterojunction photovoltaic cells and methods of making the same
US4620058A (en) Semiconductor device for converting light into electric energy
US5700333A (en) Thin-film photoelectric conversion device and a method of manufacturing the same
US20060213550A1 (en) Thin-film photoelectric conversion device and a method of manufacturing the same
JPH04233772A (en) Manufacture of chacopyrite solar battery
JPH04267568A (en) Photovoltaic element
JP2918345B2 (en) Photovoltaic element
US6503771B1 (en) Semiconductor photoelectrically sensitive device
US4396793A (en) Compensated amorphous silicon solar cell
Raturi et al. Structural, optical and photoconducting properties of sprayed CdSe films
US4965225A (en) Method of stabilizing amorphous semiconductors
US4064522A (en) High efficiency selenium heterojunction solar cells
JP3311873B2 (en) Manufacturing method of semiconductor thin film
US4799968A (en) Photovoltaic device
JPH0262482B2 (en)
US7038238B1 (en) Semiconductor device having a non-single crystalline semiconductor layer
US4101341A (en) CdSe-SnSe photovoltaic cell
JP3978121B2 (en) Method for manufacturing thin film solar cell
Compaan The status of and challenges in CdTe thin-film solar-cell technology
JP2918814B2 (en) Photovoltaic element and method for manufacturing the same
JP2918815B2 (en) Photovoltaic element and method for manufacturing the same
JPH0282655A (en) Manufacture of photovolatic device
CA1077605A (en) Photovoltaic cell of n-cdse and p-snse
JP2735889B2 (en) Method for forming hydrogenated amorphous silicon film and method for forming photovoltaic device
Carlos et al. Characterization of electrodeposited CuInSe2 thin films for photovoltaic and photoelectrochemical applications