JPH01161777A - Manufacture of amorphous semiconductor solar cell - Google Patents

Manufacture of amorphous semiconductor solar cell

Info

Publication number
JPH01161777A
JPH01161777A JP62320755A JP32075587A JPH01161777A JP H01161777 A JPH01161777 A JP H01161777A JP 62320755 A JP62320755 A JP 62320755A JP 32075587 A JP32075587 A JP 32075587A JP H01161777 A JPH01161777 A JP H01161777A
Authority
JP
Japan
Prior art keywords
layer
interface layer
solar cell
type
sih4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62320755A
Other languages
Japanese (ja)
Other versions
JPH0542141B2 (en
Inventor
Sota Moriuchi
森内 荘太
Yoshihiko Takeda
喜彦 竹田
Katsuhiko Nomoto
克彦 野元
Tetsuhiro Okuno
哲啓 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62320755A priority Critical patent/JPH01161777A/en
Publication of JPH01161777A publication Critical patent/JPH01161777A/en
Publication of JPH0542141B2 publication Critical patent/JPH0542141B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To improve the conversion efficiency of a P-I-N structure amorphous semiconductor solar cell having a P/I interface layer further by forming the P/I interface layer through a high hydrogen dilution method set under conditions in which high-frequency power density extends over a specific value or below and a deposition rate over a specific value or more. CONSTITUTION:When a P-I-N type amorphous semiconductor solar cell in which a P/I interface layer 4 composed of an amorphous silicon-carbon layer is interposed between a P-type amorphous silicon layer 5 and an I-type amorphous silicon layer 3 is manufactured, said P/I interface layer 4 is shaped by using a high hydrogen dilution method set under conditions in which high-frequency power density extends over 0.1w/cm<2> or below and a deposition rate over 1Angstrom /sec or more. The mixed gas of PH3 and SiH4 is decomposed by glow discharge and an N-type a-Si layer 2 is deposited onto a metallic substrate 1, the I-type a-Si layer 3 is deposited by SiH4 gas, and the P/I interface layer 4 is deposited by the mixed gas of SiH4, CH4 and H2. The P-type a-Si layer 5 is deposited by the mixed gas of B2H6, SiH4, CH4 and H2, and a transparent conductive film 6 and a comb-shaped Al electrode 7 are formed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高水素希釈法を用いた非晶質半導体太陽電池の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing an amorphous semiconductor solar cell using a high hydrogen dilution method.

く従来の技術〉 従来、、Cり、pin構造を有する非晶質半導体太陽電
池の光電変換に対する高効率化が各種の方法で試みられ
てきているが、その1つとして、pin構造におけるp
層とi層との間にp/i界面層を形成することに1って
太陽電池の変換効率特に開放電圧の上昇することが知ら
れているop/i界面層に適用する非晶質半導体材料が
満九すべき要件としては次の2点があげられる。
Conventional technology> Various methods have been attempted to improve the photoelectric conversion efficiency of amorphous semiconductor solar cells having a pin structure.
It is known that forming a p/i interface layer between a layer and an i layer increases the conversion efficiency, especially the open circuit voltage, of a solar cell. The following two points are listed as requirements that the materials must meet.

(111fflぶりも光学的バンドギャップが広いこと
(111ffl also has a wide optical bandgap.

(2)  光電流を取り出すに充分な光導電率を持つ仁
とO 上記第1項の要件は、光学的バンドギャップを9層側1
り1層側へ減少させて素子内部電界を設け、光照射に1
9発生し几キャリアをこの電界にLvi層側へ押し出す
ためである。また上記第2項の要件は発生したキャリア
(電子及び正孔)がp/i界面層中で再結晶することな
く、外部に電流として取り出されるために必要である。
(2) The requirement for the first term above is that the optical bandgap should be
The internal electric field of the device is created by reducing the amount of light toward the 1st layer.
This is because the electric field causes carriers to be pushed out toward the Lvi layer. Further, the requirement of the above-mentioned item 2 is necessary so that the generated carriers (electrons and holes) can be extracted to the outside as a current without being recrystallized in the p/i interface layer.

従来、かかる要件を満九すp/i界面層材料として非晶
質シリコンカーボンが用いられてき次。これは、シリコ
ン(St)の原料としてシラン系のガスを、またカーボ
ン(Oの原料としてハイドロカーボンガスを用い、これ
ら原料ガスを高周波グロー放電法に1って分解すること
にょうで形成される。
Conventionally, amorphous silicon carbon has been used as a p/i interface layer material that satisfies these requirements. This is formed by using silane gas as a raw material for silicon (St) and hydrocarbon gas as a raw material for carbon (O), and decomposing these raw gases using a high-frequency glow discharge method. .

最近広い光学バンドギャップを有しかつ高い光導電率を
有する高品質の非晶質シリコンカーボン膜を形成する方
法として、原料ガスを高倍率の水素で希釈する方法(以
下高水素希釈法と記す)が知られるようになっ友。
Recently, as a method to form a high-quality amorphous silicon carbon film with a wide optical bandgap and high photoconductivity, a method of diluting the raw material gas with hydrogen at a high magnification (hereinafter referred to as the high hydrogen dilution method) became known as Friend.

〈発明が解決しょうとする問題点〉 しかしながら、i層上又はp層上に高品質の非晶質シリ
コンカーボンから成るp/i界面層を高水素希釈法に工
って形成したところ、太陽電池特性としては曲線因子が
低下し、予測した変換効率の改善は認められなかった。
<Problems to be Solved by the Invention> However, when a p/i interface layer made of high-quality amorphous silicon carbon is formed on the i-layer or p-layer using a high hydrogen dilution method, solar cells As for the characteristics, the fill factor decreased and the predicted improvement in conversion efficiency was not observed.

これはp/i界面層形成時に水素の分解にぶって発生し
丸木素原子及び水素イオンが下地のi層あるいはp層に
ダメージを与えていることが原因であると考えられる。
This is thought to be due to the fact that Maruki atoms and hydrogen ions generated due to decomposition of hydrogen during the formation of the p/i interface layer damage the underlying i-layer or p-layer.

〈発明の背景〉 上記ダメージは放電プラズマの発光分光分析にエフ観測
される水素原子の発光種(H’)の発光強度と堆積速度
との比(単位時間に膜表面に到達する水素原子や水素イ
オンと膜として堆積する原子との比に相当)に相関があ
ることを発明者は見い出した。これを第4図に示す。図
、、cり明らかな如く、従来、堆積速度を速めるために
採用していた高周波電力密度0.1 w/cd以上の領
域では、(H’O発光強度)/(堆積速度)は急速に増
加している。
<Background of the Invention> The above-mentioned damage is caused by the ratio of the emission intensity of the luminescent species (H') of hydrogen atoms observed in discharge plasma emission spectrometry to the deposition rate (hydrogen atoms reaching the film surface per unit time, The inventors have discovered that there is a correlation between the ratio of ions to atoms deposited as a film). This is shown in FIG. As is clear from the figures, in the region of high-frequency power density of 0.1 w/cd or higher, which has been conventionally adopted to increase the deposition rate, (H'O emission intensity)/(deposition rate) rapidly decreases. It has increased.

また、これに対応して曲線因子も低下することが確かめ
られ友。
It has also been confirmed that the fill factor decreases accordingly.

一方、高周波電力密度を0.1 wA以下とすることは
、従来堆積速度が極度に遅くなるため、工業的見地から
は現突的でない。また、ダメージを減らすため希釈する
水素の倍率を減らすことも考えられるが、この方法では
非晶質シリコンカーボン膜の光導電率は急速に低下し、
その結果太陽電池の変換効率も低下する。以上の如く、
p/i界面層として有効な非晶質シリコンカーボン膜の
形成方法の確立が効率向上にとって大きな課題となって
いた0 く問題点を解決する之めの手段〉 本発明はp/i界面層を有するpin構造非晶質半導体
太陽電池の変換効率をさらに同上させる製造方法を提供
することを目的とし、高周波電力密度を極端に小さくす
る一方で堆積速度を落さずにpin構造非晶質半導体太
陽電池を作製することを特徴とする。即ち、上記本発明
の目的はp/i界面層の形成に際し、高周波電力密度を
0.1 w/aI以下に抑える一方で、原料ガス及び希
釈水素ガスの流量を大流量とし、堆積速度t−1^/s
 e c以上に設定して成膜することによって達成され
る。
On the other hand, setting the high-frequency power density to 0.1 wA or less is not currently desirable from an industrial standpoint because conventionally the deposition rate is extremely slow. It is also possible to reduce the dilution ratio of hydrogen in order to reduce damage, but with this method, the photoconductivity of the amorphous silicon carbon film will rapidly decrease.
As a result, the conversion efficiency of the solar cell also decreases. As above,
The establishment of a method for forming an amorphous silicon carbon film that is effective as a p/i interface layer has been a major issue for improving efficiency. The purpose of the present invention is to provide a manufacturing method that further increases the conversion efficiency of a pin structure amorphous semiconductor solar cell having a pin structure, while extremely reducing the high frequency power density and without reducing the deposition rate. It is characterized by producing a battery. That is, the object of the present invention is to suppress the high frequency power density to 0.1 w/aI or less when forming the p/i interface layer, while increasing the flow rate of the raw material gas and diluted hydrogen gas to increase the deposition rate t- 1^/s
This is achieved by forming a film by setting e c or more.

く実施例〉 以下第1図に示す構造を有する太陽電池を例にとって、
本発明の1実施例を説明する。第1図の構造は、金属基
板Iの上にPH8とS iH4との混合ガスをグロー放
電分解してn型非晶質シリコン(a−St)層2を堆積
し次いでS iH4又はこれに微量のB2H6ft混合
したガスでi型a−5i層3を堆積し、次に、SiH4
,CH4及びH2の混合ガスにニジ非晶質シリコンカー
ボン膜のp/i界面層4を堆積する。さらにB2H6,
SiH4,CH4及びH2の混合ガスによりp型a−S
ii層上堆積し、最後に透明導電膜6及び櫛型At電極
7を形成することにL9得られる。このp/i界面界面
層製作製原料ガス流量と堆積速度の違いにLる曲線因子
と変換効率の違いを第1表に示す。
Examples> Hereinafter, taking a solar cell having the structure shown in FIG. 1 as an example,
One embodiment of the present invention will be described. In the structure shown in Fig. 1, an n-type amorphous silicon (a-St) layer 2 is deposited on a metal substrate I by glow discharge decomposition of a mixed gas of PH8 and SiH4, and then SiH4 or a trace amount of this is deposited. An i-type a-5i layer 3 is deposited with a gas mixture of 6ft of B2H, and then SiH4
A p/i interface layer 4 of a rainbow amorphous silicon carbon film is deposited in a mixed gas of , CH4 and H2. Furthermore, B2H6,
p-type a-S by mixed gas of SiH4, CH4 and H2
L9 is obtained by depositing on layer ii and finally forming a transparent conductive film 6 and a comb-shaped At electrode 7. Table 1 shows the difference in fill factor and conversion efficiency depending on the difference in raw material gas flow rate and deposition rate for producing this p/i interface layer.

第1表 第1表から明らかな工うに、本実施例によるIA/se
e以上の堆積速度で形成したp/i界面膚を有する太陽
電池は曲線因子の向上及び変換効率の向上が認められた
Table 1 It is clear from Table 1 that the IA/se according to this embodiment
Solar cells with a p/i interface skin formed at a deposition rate of e or higher were found to have an improved fill factor and improved conversion efficiency.

上記特性の向上が水素原子や水素イオンのダメージの低
減にLるものであることを明らかにするため(H%)発
光強度)/(堆積速度〕と堆積速度との関係を示したの
が第2図である。原料ガスを増し、堆積速度を高めるに
従−て(H米の発光強度)/(堆積速度)は低下し、堆
積速度t−IA/sea以上とすることでダメージが充
分に低減されていることが明らかである0ま几、ダメー
ジの低減に対応して曲線因子が同上することも確かめら
れt。
In order to clarify that the improvement in the above characteristics is significant in reducing the damage caused by hydrogen atoms and hydrogen ions, the relationship between (H%) emission intensity)/(deposition rate) and deposition rate was shown in the following. Figure 2 shows that as the raw material gas is increased and the deposition rate is increased, the ratio (emission intensity of H rice)/(deposition rate) decreases, and by setting the deposition rate to t-IA/sea or higher, sufficient damage is caused. Although it is clear that the damage has been reduced, it has also been confirmed that the fill factor increases in response to the reduction in damage.

またこのように流量を増加させた場合の単層膜特性は第
3図に示す如く光学的バンドギャップは若干低下するも
のの光導電率は大幅に上昇し、高品質膜が形成されてい
ることがわかる。
Furthermore, when the flow rate is increased in this way, the characteristics of the single layer film are as shown in Figure 3. Although the optical bandgap decreases slightly, the photoconductivity increases significantly, indicating that a high quality film is formed. Recognize.

上記実施例においては、金属基板を用いた構造の太陽電
池を例としたがガラス基板を用いた構造の太陽電池に対
しても本発明は適用できる。またp/i界面層だけでな
くn/i界面層に対しても本発明は適用可能である。
In the above embodiments, a solar cell having a structure using a metal substrate was taken as an example, but the present invention can also be applied to a solar cell having a structure using a glass substrate. Further, the present invention is applicable not only to the p/i interface layer but also to the n/i interface layer.

〈発明の効果〉 以上述べた工うに本発明は0.1 町4以下の低電力密
度でかつ1Å/sec以上の堆積速度で、p/i界面層
を高水素希釈法を用い几グロ・−放電により形成するこ
とに二って変換効率の高い太陽電池を得るものである。
<Effects of the Invention> In accordance with the above-described process, the present invention is capable of depositing a p/i interface layer using a high hydrogen dilution method at a low power density of 0.1 cm or less and a deposition rate of 1 Å/sec or more. By forming the solar cell through discharge, a solar cell with high conversion efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の説明に供する太陽電池の構
成図である。 第2図は、本発明による原料ガス流量を増した場合の(
H米の発光強度)/(堆積速度)と堆積速度との関係を
示す説明図である。 第3因は本発明によるp/i界面層の光学的バンドギャ
ップと光導電率との関係を示す説明図であるO 第4図は (n米の発光強度)/(堆積速度)と高周波
電力密度との関係を示す説明図である。 1・・・金属基板 2・・・n型a−5t層 3・・・
i型a−3t層 4・・・p/i界面層 5・・・p型
a−5t層 6・・・透明導電膜 7・・・櫛型At電
極代理人 弁理士 杉 山 毅 至 (他1名)第 1
gl 堆積速度 (A/5ec) 第2図 1・82・02.2 光学バンド堅門フ”(eV) 第3WJ
FIG. 1 is a configuration diagram of a solar cell for explaining one embodiment of the present invention. Figure 2 shows (
FIG. 3 is an explanatory diagram showing the relationship between luminescence intensity (emission intensity)/(deposition rate) and deposition rate of H rice. The third factor is an explanatory diagram showing the relationship between the optical bandgap and photoconductivity of the p/i interface layer according to the present invention. FIG. 3 is an explanatory diagram showing the relationship with density. 1... Metal substrate 2... N-type a-5t layer 3...
I-type a-3t layer 4...p/i interface layer 5...p-type a-5t layer 6...transparent conductive film 7...comb-shaped At electrode representative Patent attorney Takeshi Sugiyama (and others) 1 person) 1st
gl Deposition rate (A/5ec) Fig. 2 1・82・02.2 Optical band gate f” (eV) 3rd WJ

Claims (1)

【特許請求の範囲】[Claims] 1、p型非晶質シリコン層とi型非晶質シリコン層との
間に非晶質シリコン・カーボン層から成るp/i界面層
を挿設したpin型非晶質半導体太陽電池の製造方法に
おいて、前記p/i界面層を高周波電力密度0.1w/
cm^2以下でかつ堆積速度1Å/sec以上の条件に
設定された高水素希釈法を用いて形成することを特徴と
する非晶質半導体太陽電池の製造方法。
1. Method for manufacturing a pin-type amorphous semiconductor solar cell in which a p/i interface layer made of an amorphous silicon/carbon layer is inserted between a p-type amorphous silicon layer and an i-type amorphous silicon layer , the p/i interface layer was heated to a high frequency power density of 0.1 w/
1. A method for manufacturing an amorphous semiconductor solar cell, characterized in that it is formed using a high hydrogen dilution method set to conditions such as cm^2 or less and a deposition rate of 1 Å/sec or more.
JP62320755A 1987-12-17 1987-12-17 Manufacture of amorphous semiconductor solar cell Granted JPH01161777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320755A JPH01161777A (en) 1987-12-17 1987-12-17 Manufacture of amorphous semiconductor solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320755A JPH01161777A (en) 1987-12-17 1987-12-17 Manufacture of amorphous semiconductor solar cell

Publications (2)

Publication Number Publication Date
JPH01161777A true JPH01161777A (en) 1989-06-26
JPH0542141B2 JPH0542141B2 (en) 1993-06-25

Family

ID=18124911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320755A Granted JPH01161777A (en) 1987-12-17 1987-12-17 Manufacture of amorphous semiconductor solar cell

Country Status (1)

Country Link
JP (1) JPH01161777A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131072A (en) * 1989-10-17 1991-06-04 Canon Inc Photovoltaic element
JP2001291878A (en) * 2000-04-05 2001-10-19 Tdk Corp Photovoltaic element and its manufacturing method
JP2005150723A (en) * 2003-11-12 2005-06-09 Samsung Electronics Co Ltd Photodiode and manufacturing method of same
JP2014003275A (en) * 2012-06-14 2014-01-09 Nexpower Technology Corp Thin-film solar cell and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131072A (en) * 1989-10-17 1991-06-04 Canon Inc Photovoltaic element
JP2001291878A (en) * 2000-04-05 2001-10-19 Tdk Corp Photovoltaic element and its manufacturing method
JP2005150723A (en) * 2003-11-12 2005-06-09 Samsung Electronics Co Ltd Photodiode and manufacturing method of same
JP2014003275A (en) * 2012-06-14 2014-01-09 Nexpower Technology Corp Thin-film solar cell and method of manufacturing the same
TWI475704B (en) * 2012-06-14 2015-03-01 Nexpower Technology Corp Thin film solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0542141B2 (en) 1993-06-25

Similar Documents

Publication Publication Date Title
US9812599B2 (en) Method of stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys
EP0204907B1 (en) Microwave system and method of making semi-conductor members and improved semi-conductive members made thereby
AU2004222793B2 (en) Solar cell and process for producing solar cell
JPH06267868A (en) Formation of silicon oxide semiconductor film
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
JPH01161777A (en) Manufacture of amorphous semiconductor solar cell
KR20010033375A (en) Solar cell device and method of producing the same
JPS5864070A (en) Amorphous silicon solar battery containing fluorine
US4366334A (en) Photovoltaic cell usable as a solar cell
JP3453315B2 (en) Amorphous silicon solar cell and method of manufacturing the same
JPH03101274A (en) Manufacture of amorphous solar cell
JPS59101879A (en) Thin film solar battery
JPH02219284A (en) Manufacture of amorphous solar cell
JP3229753B2 (en) Photovoltaic device
JPS5952883A (en) Solar battery
JPS58142582A (en) Amorphous silicon hydride photo conductive film
JPH0554692B2 (en)
JPH05110123A (en) Photoelectric conversion device and its manufacture
JP2000196122A (en) Photovolatic element
JPH06268240A (en) Thin-film solar cell and manufacture thereof
JPH0997919A (en) Photoconductive film, manufacture thereof, and photovoltaic element using this film
JPH03200374A (en) Manufacture of solar cell
Sadamoto et al. Improvement of the quality of a-SiGe: H films
KR100368737B1 (en) Amorphous silicon solar cell having fine crystalline silicon layer containing chlorine and method for manufacturing the same
JPH0571196B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees