JP3229753B2 - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JP3229753B2
JP3229753B2 JP18435194A JP18435194A JP3229753B2 JP 3229753 B2 JP3229753 B2 JP 3229753B2 JP 18435194 A JP18435194 A JP 18435194A JP 18435194 A JP18435194 A JP 18435194A JP 3229753 B2 JP3229753 B2 JP 3229753B2
Authority
JP
Japan
Prior art keywords
hydrogen
layer
photovoltaic device
power generation
composition ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18435194A
Other languages
Japanese (ja)
Other versions
JPH0851227A (en
Inventor
景一 佐野
洋一郎 綾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP18435194A priority Critical patent/JP3229753B2/en
Publication of JPH0851227A publication Critical patent/JPH0851227A/en
Application granted granted Critical
Publication of JP3229753B2 publication Critical patent/JP3229753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光起電力装置に係り、
特に光劣化後における変換効率を高められるようにした
光起電力装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device,
In particular, the present invention relates to a photovoltaic device capable of increasing conversion efficiency after light degradation.

【0002】[0002]

【従来の技術】未結合手を水素もしくはハロゲン族元素
により終端した非晶質Siアロイ(以下、a−Siアロ
イという。)を発電層に用いた光起電力装置は、シリコ
ン(Si)原子と炭素(C)、窒素(N)、酸素
(O)、ゲルマニウム(Ge)、あるいは錫(Sn)原
子とのアロイ化により光学ギャップを広い範囲で制御で
きることから、太陽光スペクトルの有効利用を目的とし
た積層型光起電力装置として有望視されている。
2. Description of the Related Art A photovoltaic device using an amorphous Si alloy in which dangling bonds are terminated by hydrogen or a halogen group element (hereinafter referred to as a-Si alloy) for a power generation layer is composed of silicon (Si) atoms. Since the optical gap can be controlled in a wide range by alloying with carbon (C), nitrogen (N), oxygen (O), germanium (Ge), or tin (Sn) atoms, the aim is to make effective use of the solar spectrum. Promising as such a stacked photovoltaic device.

【0003】発電層を構成する合金型アモルファス半導
体の製膜方法としてはプラズマ分解法が多用され、装置
的には平行平板電極の容量結合型反応装置が用いられる
ことが多い。膜生成用ガスはSiと合金を構成する成分
に対応して選択され、例えば合金型アモルファス半導体
の中で代表的地位を占めるアモルファスシリコン(以
下、a−Siという。)とゲルマニウム(Ge)とをア
ロイ化したa−SiGe:Hは、モノシラン(Si
4 )とゲルマンガス(GeH4 )と水素(H2 )とを
膜生成用ガスとして用いている。
[0003] As a method of forming an alloy type amorphous semiconductor for forming a power generation layer, a plasma decomposition method is frequently used, and in terms of equipment, a capacitively coupled reactor having parallel plate electrodes is often used. The film-forming gas is selected according to the components constituting the alloy with Si. For example, amorphous silicon (hereinafter referred to as a-Si) and germanium (Ge), which occupy a representative position in the alloy type amorphous semiconductor, are selected. The alloyed a-SiGe: H is a monosilane (Si
H 4 ), germane gas (GeH 4 ), and hydrogen (H 2 ) are used as film-forming gases.

【0004】a−Siアロイは非晶質Si(以下、a−
Siという。)に比べて電気的特性が劣ることから、発
電層内でSi以外の構成原子組成比を変化させることに
より光学ギャップを変化させた、いわゆる、光学ギャッ
プグレーデッド構造を採用してそのキャリヤ収集特性を
改善し、光起電力装置の初期特性を高めることが試みら
れている。
[0004] The a-Si alloy is made of amorphous Si (hereinafter a-Si alloy).
It is called Si. Since the electrical characteristics are inferior to those of (1), the optical gap is changed by changing the composition ratio of constituent atoms other than Si in the power generation layer. To improve the initial characteristics of the photovoltaic device.

【0005】グレーディングとしては、膜厚が大きくな
るにしたがって単純にSiに対するGeの組成比(CGe
/CSi)が増大するもの、膜厚が大きくなるにしたがっ
て単純にCGe/CSiが減少するもの、及び膜厚の途中ま
で膜厚が大きくなるにしたがってCGe/CSiが増大し、
その後CGe/CSiが減少するものが知られている(App
l. Phys. Lett. 5 June 1989 p2330-2332参照)。
As the grading, as the film thickness increases, the composition ratio of Ge to Si (C Ge
/ C Si ) increases, C Ge / C Si simply decreases as the film thickness increases, and C Ge / C Si increases as the film thickness increases halfway,
It is known that C Ge / C Si decreases thereafter (App
l. Phys. Lett. 5 June 1989 p2330-2332).

【0006】従来、発電層内でSi以外の構成原子組成
比を変化させるためには、単純に原料ガスの流量比(S
iH4 /GeH4 比)を変化させ、その組成比を変化さ
せており、したがって、例えば図7に示すように、a−
SiGe:HのSiに対するGe組成比(CGe/CSi
が増大すれば、終端元素である水素のSiに対する組成
比(CH /CSi)が減少するという関係になっている。
Conventionally, in order to change the composition ratio of constituent atoms other than Si in the power generation layer, the flow rate ratio (S
iH 4 / GeH 4 ratio) and the composition ratio thereof, and therefore, for example, as shown in FIG.
Ge composition ratio of SiGe: H to Si (C Ge / C Si )
Increases, the composition ratio (C H / C Si ) of hydrogen, which is a terminating element, to Si decreases.

【0007】[0007]

【発明が解決しようとする課題】ところで、a−Siで
発電層が構成されている光起電力装置において、SiH
2 の高次の結合がある時には膜質が悪化し、変換効率が
低下するため、水素量CH を適宜制御することが推奨さ
れている。
By the way, in a photovoltaic device in which a power generation layer is composed of a-Si, SiH
2 of the film quality is deteriorated when there is a coupling of higher order, because the conversion efficiency is lowered, it is recommended to control appropriately the amount of hydrogen C H.

【0008】そこで、a−Siアロイで発電層が構成さ
れている光起電力装置、例えば、a−SiGe:Hで発
電層が構成されている光起電力装置において、水素量C
H が変換効率に与える影響を求めたところ、a−Siで
発電層が構成されている光起電力装置と同様に水素量C
H がある量に達するまでは変換効率が水素量CH に比例
して増大するが、ある量を越えると急激に変換効率が低
下することを発見したのである。また、SiH4 /Ge
4 比を変化させて発電層の成長に対応してGe量を変
化させるとCH /CSiも変化するが、発電層の成長速度
(デポレート)と圧力とを制御することによって発電層
の全膜厚にわたって終端元素量、即ち、CH /CSiを全
膜厚にわたって均一にすることができ、しかも、CGe
Siを任意に変化させることができることを発見したの
である。
Therefore, in a photovoltaic device in which the power generation layer is composed of an a-Si alloy, for example, a photovoltaic device in which the power generation layer is composed of a-SiGe: H, the amount of hydrogen C
When the effect of H on the conversion efficiency was determined, the amount of hydrogen C
It has been found that the conversion efficiency increases in proportion to the hydrogen amount C H until H reaches a certain amount, but the conversion efficiency sharply decreases when the amount exceeds a certain amount. Also, SiH 4 / Ge
When the amount of Ge is changed corresponding to the growth of the power generation layer by changing the H 4 ratio, C H / C Si also changes. However, by controlling the growth rate (depo rate) and pressure of the power generation layer, termination element amount over the entire film thickness, i.e., can be made uniform C H / C Si over the entire thickness, moreover, C Ge /
They discovered that C Si can be changed arbitrarily.

【0009】本発明は、係る知見に基づいて完成された
ものであり、変換効率を高められるようにした光起電力
装置の提供を目的とするものである。
The present invention has been completed based on the above findings, and has as its object to provide a photovoltaic device capable of increasing the conversion efficiency.

【0010】[0010]

【課題を解決するための手段】本発明は、未結合手を水
素もしくはハロゲン族元素により終端したa−Siアロ
イを発電層に用いた光起電力装置において、上記の目的
を達成するため、発電層の全膜厚にわたって終端元素の
シリコン元素に対する組成比が均一であり、シリコン以
外のアロイ構成原子の組成比を変化させた発電層を備え
ることを特徴とする。
SUMMARY OF THE INVENTION The present invention relates to a photovoltaic device using an a-Si alloy in which dangling bonds are terminated by hydrogen or a halogen group element as a power generation layer. A power generation layer is provided in which the composition ratio of the terminating element to the silicon element is uniform over the entire thickness of the layer and the composition ratio of alloy constituent atoms other than silicon is changed.

【0011】ここで、a−Siアロイとは、Si原子と
他の原子、例えばC、N、O、Ge、Snのいずれかの
原子で構成された非晶質半導体材料を意味している。
Here, the a-Si alloy means an amorphous semiconductor material composed of Si atoms and other atoms, for example, any one of C, N, O, Ge, and Sn.

【0012】[0012]

【作用】本発明によれば、発電層の全膜厚にわたって終
端元素のシリコン元素に対する組成比が均一であるた
め、未結合手やSi−H2 の高次の結合が最小となる最
適の均一な膜質を形成することができ、光劣化による変
換効率の低下を減少させることができる。
According to the present invention, since the composition ratio of the terminating element to the silicon element is uniform over the entire thickness of the power generation layer, the optimum uniformity that minimizes dangling bonds and high-order bonding of Si—H 2 is minimized. It is possible to form an excellent film quality and reduce a decrease in conversion efficiency due to light degradation.

【0013】本発明において、終端元素のシリコン元素
に対する組成比をどの程度に設定するかは自由である
が、最高の初期特性が得られる初期の最適値よりも多く
することはSi−H2 の高次の結合が増大し、初期特性
及び光劣化後の特性を低下させるので好ましくなく、ま
た、光劣化後に最高の特性が得られる光劣化後の最適値
よりも少なくすると未結合手が増大して初期特性及び光
劣化後の特性を低下させるので好ましくない。最も好ま
しいのは初期特性の最適値よりも少ない光劣化後の最適
値にすることである。
In the present invention, the composition ratio of the terminating element to the silicon element can be freely set, but it is not possible to increase the composition ratio of Si—H 2 beyond the initial optimum value at which the highest initial characteristics are obtained. It is not preferable because the higher-order coupling increases and deteriorates the initial characteristics and the characteristics after light deterioration, and if the value is less than the optimum value after light deterioration at which the best characteristics are obtained after light deterioration, unbonded hands increase. This deteriorates the initial characteristics and the characteristics after light deterioration, which is not preferable. Most preferably, the optimum value after light degradation is smaller than the optimum value of the initial characteristics.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて具体
的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings.

【0015】本発明の一実施例に係る光起電力装置は図
1の断面模式図に示すように、ガラス基板に順次積層さ
れる透明電極1、p型a−Si層2、膜厚200Åのa
−Si層3、膜厚1300Åのa−SiGe層4、膜厚
200Åのa−Si層5、n型a−Si層6及び裏面電
極7を備え、上記a−Si層3、a−SiGe層4、a
−Si層5によりi層(発電層)が構成される。
A photovoltaic device according to one embodiment of the present invention has a transparent electrode 1, a p-type a-Si layer 2, and a film thickness of 200.degree. a
A-Si layer 3, an a-SiGe layer 4 having a thickness of 1300 °, an a-Si layer 5 having a thickness of 200 °, an n-type a-Si layer 6 and a back electrode 7, and the a-Si layer 3 and the a-SiGe layer 4, a
-Si layer 5 forms an i-layer (power generation layer).

【0016】図2に示すように、このi層におけるGe
のグラディエーションプロフィルは、成長量0から20
0Åのa−Si層3内ではほぼ直線的に増大し、200
〜1300Åの間のa−SiGe層4内ではほぼ一定値
(ここではCGe/CSi=29%)とし、1300〜17
00Åの間のa−Si層5内ではほぼ直線的に減少する
等脚台形となっている。又、このi層における水素組成
比CH /CSiは全膜厚にわたって一定値(ここでは0.
098%)にしてある。
As shown in FIG. 2, Ge in the i-layer
The gradient profile is 0 to 20 growth
In the 0-degree a-Si layer 3, it increases almost linearly,
In the a-SiGe layer 4 between about 1300 ° and 1300 °, it is set to a substantially constant value (here, C Ge / C Si = 29%),
In the a-Si layer 5 during the period of 00 °, the shape is an isosceles trapezoid that decreases almost linearly. Further, the hydrogen composition ratio C H / C Si in the i-layer is constant over the entire film thickness (here, it is set to be 0.
098%).

【0017】なお、このa−SiGeの基本的な形成条
件は表1に示す通りであり、デポレートを制御する反応
圧力とRFパワーとを制御することにより、膜厚全体に
わたって終端元素量、即ち、CH /CSiが一定値(0.
098%)に固定されるようにしている。
The basic conditions for forming a-SiGe are as shown in Table 1. By controlling the reaction pressure for controlling the deposition and the RF power, the amount of the terminating element, that is, the amount of the terminating element over the entire film thickness, that is, C H / C Si is a constant value (0.
098%).

【0018】[0018]

【表1】 [Table 1]

【0019】この光起電力装置のa−SiGe層4の
(αhν)1/3 プロットにより求めたた光学ギャップを
1.32eVと一定にした場合、図3に示すように、水
素量CH と赤色フィルター下の初期の変換効率との関係
は、水素量CH が約9at%以下では水素量CH の増大
にほぼ比例して変換効率が増大するが、約9at%を越
えると変換効率が低下し、CH =約9at%で極大値と
なることが分かる。極大値よりも水素量CH が少ない領
域での変換効率の低下は、水素もしくはハロゲン族元素
により終端されていない未結合手が存在するためと思わ
れ、極大値よりも水素量CH が多い領域の変換効率の低
下は、SiH2 の高次の結合が生じて膜質が低下したた
めと思われる。
In the case where the optical gap determined by a-SiGe layer 4 (αhν) 1/3 plot of this photovoltaic device constant at 1.32 eV, as shown in FIG. 3, and the hydrogen content C H relationship between the initial conversion efficiency under the red filter is hydrogen amount C H of about 9 atomic% or less is increased substantially in proportion to the conversion efficiency to the increase of the hydrogen content C H, the conversion efficiency in excess of about 9 atomic% It can be seen that the value decreases and reaches a maximum value when C H = about 9 at%. The decrease in the conversion efficiency in the region where the amount of hydrogen C H is smaller than the maximum value is considered to be due to the presence of dangling bonds that are not terminated by hydrogen or a halogen group element, and the amount of hydrogen C H is larger than the maximum value. The decrease in the conversion efficiency in the region is considered to be due to the occurrence of higher-order bonding of SiH 2 and the deterioration of the film quality.

【0020】又、表2に示す条件に従ってこの光起電力
装置の光劣化後の水素量CH と赤色フィルター下の初期
変換効率との関係を求めたところ、図4に示すように、
上記の初期変換効率に比べれば水素量CH が少ない約7
at%で最高値が得られ、図3及び図4から光劣化前後
では最適の水素量CH が異なり、光劣化後の最適値は低
水素側にシフトすることが分かる。
[0020] Also, we determined the relationship between the initial conversion efficiency of the hydrogen amount after photodegradation C H and a red filter under the photovoltaic device according to the conditions shown in Table 2, as shown in FIG. 4,
About the amount of hydrogen compared to the initial conversion efficiency C H less 7
highest value obtained by at%, and satisfy the relations different optimum hydrogen content C H is at about photodegradation 3 and 4, the optimum value after the light degradation is seen to be shifted to the low-hydrogen side.

【0021】[0021]

【表2】 [Table 2]

【0022】次に、この光起電力装置のa−SiGe層
4の光学ギャップを変化させ、1.50eV、1.43
eV、1.36eV場合に付いても同様の実験を行い、
各光学ギャップにおける劣化後の最適水素量を求めたと
ころ図5に示す結果が得られた。この図5の縦軸は水素
量CH を示すが、これを水素組成比CH /CSiに置き換
えると図6に示すようになり、CH /CSi=0.098
(%)に各光学ギャップの光劣化後の最適組成が存在す
ることが分かる。
Next, the optical gap of the a-SiGe layer 4 of this photovoltaic device was changed to 1.50 eV, 1.43.
The same experiment was performed for the case of eV and 1.36 eV,
When the optimum hydrogen amount after deterioration in each optical gap was determined, the result shown in FIG. 5 was obtained. The vertical axis of FIG. 5 shows the hydrogen amount C H, and when this is replaced by the hydrogen composition ratio C H / C Si , the result becomes as shown in FIG. 6, where C H / C Si = 0.098.
It can be seen that the optimum composition after light degradation of each optical gap exists in (%).

【0023】以上の結果を踏まえて、Ge組成比を図1
に示すように変化させ、水素組成比CH /CSiを一定値
(0.098%)にしてキャリヤの輸送特性も同時に向
上させた場合の光劣化前後の赤色フィルター下の上記一
実施例の太陽電池特性を調べたところ、表3に示す結果
が得られた。また、比較のために、図7に示す従来の光
学ギャップグレーデッド構造の光起電力装置の太陽電池
特性を調べたところ、表4に示す結果が得られた。
Based on the above results, the Ge composition ratio was changed as shown in FIG.
The hydrogen composition ratio C H / C Si is changed to a constant value (0.098%) to improve the carrier transport characteristics at the same time. When the solar cell characteristics were examined, the results shown in Table 3 were obtained. For comparison, the solar cell characteristics of the conventional photovoltaic device having an optical gap graded structure shown in FIG. 7 were examined. The results shown in Table 4 were obtained.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】これら表3と表4から明らかなように、上
記一実施例によれば劣化率が4%と大きく改善されるの
に加え、劣化後の赤色フィルター下での変換効率(Ef
f)も3.45%と非常に高い太陽電池特性を得ること
ができた。
As is clear from Tables 3 and 4, according to the above-described embodiment, the deterioration rate is greatly improved to 4%, and the conversion efficiency (Ef) under the red filter after the deterioration.
f), a very high solar cell characteristic of 3.45% was obtained.

【0027】なお、この実施例によれば、水素量CH
光劣化後の最適値に設定しているので、おそらく、i層
に注入されたキャリアが素早く電極に収集され再結合す
る確率が低くなり、i層に注入されたキャリヤが再結合
する際に欠陥を誘起してi層の膜質を低下させることが
少なくなっているために光劣化が小さくなったものと思
われる。
According to this embodiment, since the hydrogen amount C H is set to the optimum value after photodegradation, the probability that the carriers injected into the i-layer are quickly collected by the electrode and recombine is probably high. It is considered that the photo-deterioration was reduced because the carrier injected into the i-layer is less likely to induce defects when it is recombined and deteriorate the film quality of the i-layer.

【0028】上記の一実施例では、Geのグラディエー
ションプロフィルを等脚台形にしているが、このプロフ
ィルを不等脚台形にしたり、山形にしたりすることは自
由である。
In the above-described embodiment, the Ge gradient profile has an isosceles trapezoidal shape, but the profile may be unequally shaped trapezoidal or mountain-shaped.

【0029】また、上記実施例の説明ではa−SiG
e:Hに関してのみ述べたが、Si原子とC原子とのア
ロイ、Si原子とN原子とのアロイ、Si原子とO原子
とのアロイ、Si原子とSn原子とのアロイについても
同様の結果が得られている。
In the description of the above embodiment, a-SiG
e: H was described only, but similar results were obtained for alloys of Si and C atoms, alloys of Si and N atoms, alloys of Si and O atoms, and alloys of Si and Sn atoms. Have been obtained.

【0030】[0030]

【発明の効果】以上に説明したように、本発明によれ
ば、終端元素量が全膜厚にわたって一定値に固定されて
いるので、水素もしくはハロゲン族元素により終端され
ていない未結合手やSi−H2 の高次の結合が最小にな
る最適の均一な膜質を形成することができ、光劣化によ
る変換効率の低下を減少させることができるのである。
As described above, according to the present invention, since the amount of the terminating element is fixed at a constant value over the entire film thickness, dangling bonds and Si not terminated by hydrogen or a halogen group element can be obtained. higher binding -H 2 can form a uniform film quality of optimal minimized, it is possible to reduce the lowering of conversion efficiency due to photo-deterioration.

【0031】本発明において、特に水素量CH を初期の
最適値よりも小さく光劣化後の最適値以上に設定する場
合には一層光劣化後の変換効率を高めることができ、実
用上一層好ましい設計ができるのである。
[0031] In the present invention, in particular it is possible to further enhance a conversion efficiency after light degradation in the case of setting the optimum value or less after the photodegradation than the initial optimum amount of hydrogen C H, practically more preferable You can design.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の断面模式図である。FIG. 1 is a schematic sectional view of an embodiment of the present invention.

【図2】本発明の実施例の発電層の組成分布図である。FIG. 2 is a composition distribution diagram of a power generation layer according to an example of the present invention.

【図3】本発明の実施例の初期の水素量と変換効率との
関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between an initial hydrogen amount and a conversion efficiency in an example of the present invention.

【図4】本発明の実施例の光劣化後の水素量と変換効率
との関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a hydrogen amount after photodegradation and a conversion efficiency according to an example of the present invention.

【図5】本発明の実施例の光学ギャップと劣化後最適水
素量との関係を示す特性図である。
FIG. 5 is a characteristic diagram illustrating a relationship between an optical gap and an optimum hydrogen amount after deterioration according to the example of the present invention.

【図6】本発明の実施例の光学ギャップと劣化後最適組
成比との関係を示す特性図である。
FIG. 6 is a characteristic diagram showing a relationship between an optical gap and an optimum composition ratio after deterioration according to an example of the present invention.

【図7】従来例の発電層の組成分布図である。FIG. 7 is a composition distribution diagram of a conventional power generation layer.

【符号の説明】[Explanation of symbols]

3 a−Si層 4 a−SiGe層 5 a−Si層 CH /CSi 水素組成比 CGe/CSi Geの組成比The composition ratio of 3 a-Si layer 4 a-SiGe layer 5 a-Si layer C H / C Si hydrogen composition ratio C Ge / C Si Ge

フロントページの続き (56)参考文献 特開 平4−286167(JP,A) 特開 平4−85816(JP,A) 特開 平2−260662(JP,A) 特開 平7−221337(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 H01L 21/205 Continuation of the front page (56) References JP-A-4-286167 (JP, A) JP-A-4-85816 (JP, A) JP-A-2-260662 (JP, A) JP-A-7-221337 (JP) , A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 31/04-31/078 H01L 21/205

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 未結合手を水素もしくはハロゲン族元素
により終端した非晶質シリコンアロイを発電層に用いた
光起電力装置において、 発電層の全膜厚にわたって終端元素のシリコン元素に対
する組成比が均一であり、シリコン以外のアロイ構成原
子の組成比を変化させた発電層を備えることを特徴とす
る光起電力装置。
In a photovoltaic device using an amorphous silicon alloy terminated by dangling atoms of hydrogen or a halogen group for a power generation layer, the composition ratio of a terminating element to a silicon element over the entire thickness of the power generation layer is increased. A photovoltaic device comprising a power generation layer which is uniform and has a different composition ratio of alloy constituent atoms other than silicon.
JP18435194A 1994-08-05 1994-08-05 Photovoltaic device Expired - Fee Related JP3229753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18435194A JP3229753B2 (en) 1994-08-05 1994-08-05 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18435194A JP3229753B2 (en) 1994-08-05 1994-08-05 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPH0851227A JPH0851227A (en) 1996-02-20
JP3229753B2 true JP3229753B2 (en) 2001-11-19

Family

ID=16151743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18435194A Expired - Fee Related JP3229753B2 (en) 1994-08-05 1994-08-05 Photovoltaic device

Country Status (1)

Country Link
JP (1) JP3229753B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003295880A1 (en) 2002-11-27 2004-06-23 University Of Toledo, The Integrated photoelectrochemical cell and system having a liquid electrolyte
US7667133B2 (en) 2003-10-29 2010-02-23 The University Of Toledo Hybrid window layer for photovoltaic cells

Also Published As

Publication number Publication date
JPH0851227A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
US4499331A (en) Amorphous semiconductor and amorphous silicon photovoltaic device
US7238545B2 (en) Method for fabricating tandem thin film photoelectric converter
US5942049A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
JP2984537B2 (en) Photovoltaic element
AU2004222793B2 (en) Solar cell and process for producing solar cell
IE54526B1 (en) Current enhanced photovoltaic device
GB2124826A (en) Amorphous semiconductor materials
JP2001267611A (en) Thin-film solar battery and its manufacturing method
JPH065766B2 (en) Photovoltaic device and manufacturing method thereof
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
US5104455A (en) Amorphous semiconductor solar cell
JPH10125944A (en) Photosensor
JP3792376B2 (en) Silicon-based thin film photoelectric conversion device
JP3229753B2 (en) Photovoltaic device
JP2009038180A (en) Solar cell and manufacturing method thereof
JP3933334B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof
JP2846639B2 (en) Amorphous solar cell
JP4836398B2 (en) Photoelectric conversion element
JP2003258286A (en) Thin film solar battery and manufacturing method thereof
JP3143274B2 (en) Amorphous semiconductor
JP5123444B2 (en) Manufacturing method of solar cell
JPH04286167A (en) Photosensor
JP3423102B2 (en) Photovoltaic element
JPH0571196B2 (en)
JPH0794768A (en) Photovoltaic device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees