JPH0571196B2 - - Google Patents
Info
- Publication number
- JPH0571196B2 JPH0571196B2 JP62123776A JP12377687A JPH0571196B2 JP H0571196 B2 JPH0571196 B2 JP H0571196B2 JP 62123776 A JP62123776 A JP 62123776A JP 12377687 A JP12377687 A JP 12377687A JP H0571196 B2 JPH0571196 B2 JP H0571196B2
- Authority
- JP
- Japan
- Prior art keywords
- order silane
- reaction
- silicon
- inert gas
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 38
- 229910000077 silane Inorganic materials 0.000 claims description 37
- 238000006243 chemical reaction Methods 0.000 claims description 26
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 239000010703 silicon Substances 0.000 claims description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 19
- 239000011261 inert gas Substances 0.000 claims description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 238000000354 decomposition reaction Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims 2
- 239000002210 silicon-based material Substances 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 description 13
- 239000000758 substrate Substances 0.000 description 12
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910006404 SnO 2 Inorganic materials 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- VEDJZFSRVVQBIL-UHFFFAOYSA-N trisilane Chemical compound [SiH3][SiH2][SiH3] VEDJZFSRVVQBIL-UHFFFAOYSA-N 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/545—Microcrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、非晶質太陽電池に係り、特に高次シ
ランを用いた高速形成に好適なケイ素系pin型非
晶質太陽電池に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an amorphous solar cell, and particularly to a silicon-based pin-type amorphous solar cell suitable for high-speed formation using high-order silane.
ケイ素系非晶質太陽電池の低コスト化のために
は、高次シランを用いて高速で非晶質層を形成す
ることが効果的である。ところが、高次シランを
用いて、高速で形成した太陽電池は、第44回応用
物理学会学術講演会、P.348(1983年)等に述べら
れているように、高効率の可能性はあるが、モノ
シランを用いた低速成膜によるもの(効率11%
台)に比べ、大幅に効率が低い。
In order to reduce the cost of silicon-based amorphous solar cells, it is effective to form an amorphous layer at high speed using high-order silane. However, solar cells formed at high speed using high-order silane have the potential to be highly efficient, as stated in the 44th Annual Meeting of the Japan Society of Applied Physics, p. 348 (1983). However, by slow film formation using monosilane (efficiency 11%)
The efficiency is significantly lower than that of
この原因としては、(1)高次シランの分解反応の
際に急激な圧力上昇を引き起こし、反応条件が不
安定となること、(2)反応室に初期にたまつた高次
シランに対し、反応初期の立上がりの際には、供
給されるエネルギーが小さいため、高次シランが
十分分解しないまま膜となり、膜中にSiH2結合
の多い、緻密でない質の悪い膜が形成されること
が考えられる。 The causes of this are: (1) a rapid pressure increase occurs during the decomposition reaction of higher-order silane, making the reaction conditions unstable; and (2) higher-order silane that initially accumulates in the reaction chamber is Because the energy supplied during the initial startup of the reaction is small, the higher-order silane is not fully decomposed and forms a film, resulting in the formation of a poor-quality film that is not dense and has many SiH 2 bonds. It will be done.
上記従来技術は、ケイ素系非晶質膜を高速で形
成する際に、高次シランの分解反応制御の点につ
いて配慮がされておらず、前述のように、高次シ
ラン分解初期の反応条件の安定性低下や、分解初
期の膜質低下を引き起こすという問題があつた。
The above-mentioned conventional technology does not take into consideration the control of the decomposition reaction of higher-order silane when forming a silicon-based amorphous film at high speed, and as mentioned above, the reaction conditions at the initial stage of decomposition of higher-order silane are not controlled. There were problems with decreased stability and decreased film quality at the initial stage of decomposition.
本発明の目的は、これらの問題を解決し、高次
シランを用いた高速形成太陽電池の特性を向上さ
せることにある。 The purpose of the present invention is to solve these problems and improve the characteristics of rapidly formed solar cells using higher order silane.
〔問題点を解決するための手段〕
上記目的は、高次シランを用いてケイ素系非晶
質層を形成するpin型ケイ素系非晶質太陽電池に
おいて、高次シラン分解反応の際に、高次シラン
を不活性ガスあるいは水素ガスで希釈し、上記不
活性ガスあるいは水素ガスと高次シランとの流量
比を変化させながらケイ素系非晶質膜を形成する
ことにより達成される。[Means for solving the problem] The above objective is to solve the problem in a pin-type silicon-based amorphous solar cell in which a silicon-based amorphous layer is formed using high-order silane. This is achieved by diluting secondary silane with an inert gas or hydrogen gas and forming a silicon-based amorphous film while changing the flow rate ratio of the inert gas or hydrogen gas and higher silane.
高次シラン分解反応の際に、(1)反応圧力の急激
な上昇等による反応条件の安定性低下、(2)反応室
内に初期に存在している高次シランの量に対し、
反応の立上がりの際には、単位高次シラン当りに
供給する分解エネルギーが不足することによる反
応初期に形成される膜質の低下、を低減するため
には、まず、高次シランを用いる反応の初期に
は、不活性ガス、あるいは、水素を流しておき、
その後徐々に上記不活性ガスあるいは水素の流量
を減らし、同時に高次シランの流量を徐々に増や
すことが効果的である。上記方法により、例えば
不活性ガスあるいは水素の流量と高次シランの流
量の和を一定に保つておけば、高次シラン分解反
応の際、初期の急激な反応による圧力変動や、反
応の立上がりの際の、単位高次シラン当りに供給
されるエネルギーが不足して膜質が低下する現象
を抑えることが可能である。 During the higher-order silane decomposition reaction, (1) the stability of the reaction conditions decreases due to a sudden increase in reaction pressure, etc., (2) the amount of higher-order silane initially present in the reaction chamber,
In order to reduce the deterioration in film quality that is formed at the beginning of the reaction due to insufficient decomposition energy supplied per unit of higher order silane at the start of the reaction, it is necessary to Flow an inert gas or hydrogen into the
After that, it is effective to gradually reduce the flow rate of the above-mentioned inert gas or hydrogen, and at the same time gradually increase the flow rate of higher order silane. By using the above method, for example, if the sum of the flow rate of inert gas or hydrogen and the flow rate of higher-order silane is kept constant, pressure fluctuations due to the initial rapid reaction and the rise of the reaction can be avoided during the higher-order silane decomposition reaction. It is possible to suppress the phenomenon in which film quality deteriorates due to insufficient energy supplied per unit of high-order silane.
高次シランを分解して、ケイ素系非晶質層を形
成する方法としては、光エネルギーやマイクロ波
放電、あるいはrfグロー放電を用いることができ
る。特に、高速成膜のために高次シランを分解し
て良質の非晶質膜を得るためには、rfグロー放電
法を用いることが好ましい。 Optical energy, microwave discharge, or RF glow discharge can be used as a method for decomposing higher-order silane to form a silicon-based amorphous layer. In particular, in order to decompose high-order silane and obtain a high-quality amorphous film for high-speed film formation, it is preferable to use the RF glow discharge method.
また、本法を適用するケイ素系pin型非晶質太
陽電池の構造としては、(1)光入射側から、透明基
板、透明電極、p型ケイ素系非晶質層、i
(intrinsic)型ケイ素系非晶質層、n型ケイ素系
非晶質層、裏面電極の順に形成されるもの、(2)光
入射側から透明基板、透明電極、n型、i型、p
型各ケイ素系非晶質層、裏面電極の順に形成され
るもの、(3)金属基板側からp,i,n,各ケイ素
系非晶質層、透明電極の順に形成されるもの、(4)
金属基板側から、n,i,p,各ケイ素系非晶質
層、透明電極の順に形成されるもの、の4通りが
あるが、(2),(4)の場合には、n層を形成してから
i層を形成することになり、n型ドーパントであ
るp原子のi層中への混入により特性が低下する
虞れがある。好ましくは(1),(3)の構造が良い。 In addition, the structure of a silicon-based pin-type amorphous solar cell to which this method is applied is as follows: (1) From the light incident side, a transparent substrate, a transparent electrode, a p-type silicon-based amorphous layer, an i
(intrinsic) silicon-based amorphous layer, n-type silicon-based amorphous layer, and back electrode formed in this order; (2) from the light incident side, transparent substrate, transparent electrode, n-type, i-type, p-type;
(3) From the metal substrate side, p, i, n, silicon-based amorphous layers, and transparent electrodes are formed in this order. (4) )
There are four types: n, i, p, each silicon-based amorphous layer, and a transparent electrode are formed in this order from the metal substrate side, but in the case of (2) and (4), the n layer is formed in this order. Since the i-layer is formed after the formation of the i-layer, there is a possibility that the characteristics may be deteriorated due to the incorporation of p atoms, which are n-type dopants, into the i-layer. Structures (1) and (3) are preferable.
上記構造(1),(2)の場合に用いる透明基板として
はガラス、耐熱性プラスチツク等が挙げられる
が、基板加熱(約220℃)時の熱的安定性、コス
トの点でガラスが好ましい。 Examples of the transparent substrate used in the above structures (1) and (2) include glass and heat-resistant plastic, but glass is preferable in terms of thermal stability during substrate heating (approximately 220° C.) and cost.
透明電極としては、酸化スズ(SnO2)、インジ
ウムチンオキサイド(ITO)、酸化亜鉛(ZnO)
等が挙げられるが、成膜時に不純物が混入しにく
いという点ではSnO2を用いることが好ましい。 Transparent electrodes include tin oxide (SnO 2 ), indium tin oxide (ITO), and zinc oxide (ZnO).
However, it is preferable to use SnO 2 because it is difficult for impurities to be mixed in during film formation.
次に、p型、n型ケイ素系非晶質層としては、
a−SiC:H,a−Si:H、微結晶Si等が挙げら
れる。これらの層を光入射側にする場合には光学
的バンドギヤツプが大きいa−SiC:H、微結晶
Siが好ましく、また裏面電極あるいは金属基板側
にする場合には、導電率の大きい微結晶Siが好ま
しい。i層としては、a−Si:H,a−SiGe:
H、微結晶Si等が挙げられる。通常のシングルセ
ル型ではa−Si:Hが好ましく、積層セル形で光
学的バンドギヤツプの小さい材料を用いる必要が
ある場合にはa−SiGe:Hが好ましい。 Next, as p-type and n-type silicon-based amorphous layers,
Examples include a-SiC:H, a-Si:H, and microcrystalline Si. When these layers are placed on the light incident side, a-SiC:H, microcrystalline, which has a large optical band gap, is used.
Si is preferable, and microcrystalline Si, which has high electrical conductivity, is preferable when forming the back electrode or metal substrate side. The i-layer is a-Si:H, a-SiGe:
Examples include H, microcrystalline Si, and the like. For a normal single cell type, a-Si:H is preferred, and for a stacked cell type where it is necessary to use a material with a small optical bandgap, a-SiGe:H is preferred.
上記のようにケイ素系非晶質層としては、p
層、i層、n層があるが、このうちi層が最も膜
厚が大きく、高次シランを用いて高速形成する場
合には、i層に高次シランを用いることが効果的
である。ただし、例えば、高次シランを用いて光
学的バンドギヤツプを大きくしたい場合等、特に
目的がある場合には、高次シランはp層、n層に
も用いることができる。 As mentioned above, as the silicon-based amorphous layer, p
Among these, the i-layer has the largest thickness, and when high-order silane is used to form the film at high speed, it is effective to use high-order silane for the i-layer. However, if there is a particular purpose, such as when using higher-order silane to increase the optical bandgap, higher-order silane can also be used in the p-layer and n-layer.
裏面電極としては、アルミニウム、銀等が挙げ
られ、目的に応じて使い分けることができる。 Examples of the back electrode include aluminum, silver, etc., and can be selectively used depending on the purpose.
金属基板としては、ステンレス、鉄、アルミニ
ウム等が挙げられ、必要に応じて選択することが
できる。 Examples of the metal substrate include stainless steel, iron, aluminum, etc., and can be selected as necessary.
前述の不活性ガスとしては、アルゴン、ヘリウ
ム、ネオン、キセノン、クリプトン等が挙げられ
るがコストの点でアルゴン、ヘリウムが好まし
い。 Examples of the above-mentioned inert gas include argon, helium, neon, xenon, krypton, etc., but argon and helium are preferred from the viewpoint of cost.
高次シランとしては、ジシラン(Si2H6)、ト
リシラン(Si3H8)、テトラシラン(Si4H10)等
が挙げられるが、純度、コストの点でジシランが
好ましい。 Examples of the higher-order silane include disilane (Si 2 H 6 ), trisilane (Si 3 H 8 ), and tetrasilane (Si 4 H 10 ), but disilane is preferable in terms of purity and cost.
前述の不活性ガス、水素は、高次シランを分解
反応させる際、初期に急激に高次シランが反応し
ないように、濃度を調整する働きをし、さらに、
反応時の圧力変化を抑えるため、高次シランの流
量を増加させると同時に不活性ガス、水素の流量
を減らし、反応条件を安定化させる働きをする。
The above-mentioned inert gas and hydrogen function to adjust the concentration so that the high-order silane does not react rapidly in the initial stage when decomposing the high-order silane, and further,
In order to suppress pressure changes during the reaction, the flow rate of higher-order silane is increased and at the same time the flow rates of inert gas and hydrogen are reduced, working to stabilize reaction conditions.
また、不活性ガスあるいは水素を初期に多く流
し、高次シランの分圧を下げておくことにより、
反応の立上がりの際に見られる単位高次シラン当
りに供給されるエネルギーの不足をなくす働きも
する。 In addition, by initially flowing a large amount of inert gas or hydrogen to lower the partial pressure of higher-order silane,
It also serves to eliminate the shortage of energy supplied per unit of higher-order silane that occurs during the start-up of the reaction.
以下本発明の実施例を第1図、第2図により説
明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2.
作製した太陽電池はガラス基板1上に透明電極
2としてSnO2を4000Å形成し、その上にp層3
として、B原子をドーピングしたa−SiC:H膜
を約120Å形成した。この時の形成条件は、
13.56MHzの平行平板型プラズマCVD法により、
1%B2H6(Heベース)34sccm、50%SiH4(Heベ
ース)113sccm、炭素源として(CH3)2SiH2
6.4sccm流し、基板温度220℃、反応圧力66.5pa,
rfパワー120Wである。 The fabricated solar cell has a transparent electrode 2 of SnO 2 with a thickness of 4000 Å formed on a glass substrate 1, and a p layer 3 on top of it.
As a result, an a-SiC:H film doped with B atoms was formed to a thickness of about 120 Å. The formation conditions at this time are
By 13.56MHz parallel plate plasma CVD method,
1% B 2 H 6 (He based) 34 sccm, 50% SiH 4 (He based) 113 sccm, (CH 3 ) 2 SiH 2 as carbon source
6.4sccm flow, substrate temperature 220℃, reaction pressure 66.5pa,
RF power is 120W.
次に、i層4を形成する際には第2図に示すよ
うにガス流量を時間変化させた。すなわち、反応
スタート時から70秒後まではH2流量を40sccmか
ら0sccmまで直線的に減少させ、同時にSi2H6流
量は最初0から70秒後に40sccm、更にその後4
分50秒間40sccmを維持した。この時のi層の膜
厚は約5400Åであり、i層の平均成膜速度は15
Å/Sであつた。 Next, when forming the i-layer 4, the gas flow rate was changed over time as shown in FIG. That is, from the start of the reaction until 70 seconds later, the H 2 flow rate was linearly decreased from 40 sccm to 0 sccm, and at the same time, the Si 2 H 6 flow rate was decreased from 0 at first to 40 sccm after 70 seconds, and then to 4 sccm.
40sccm was maintained for 50 seconds. The thickness of the i-layer at this time is approximately 5400 Å, and the average deposition rate of the i-layer is 15
It was Å/S.
この時反応圧力は自動圧力制御弁により、一定
となるように制御しているが、反応中の圧力変動
の幅は±5Pa程度であつた。これは、比較例とし
て、i層にSi2H6だけを用い、流量は40sccm固定
で5分間成膜した場合(成膜速度は、18Å/S)
の圧力変動値±20Paに比べ、大幅に圧力変動を
抑えることができた。 At this time, the reaction pressure was controlled to be constant using an automatic pressure control valve, but the range of pressure fluctuation during the reaction was about ±5 Pa. This is a comparative example where only Si 2 H 6 was used for the i-layer and the film was formed for 5 minutes at a fixed flow rate of 40 sccm (the film formation rate was 18 Å/S).
Compared to the pressure fluctuation value of ±20Pa, we were able to significantly suppress pressure fluctuations.
また、反応の立上がりをSiH3 *(413nm)の発
光スペクトルにより比較した結果を第3図に示
す。この図では、上記比較例の場合(図中実線)
に比べ、本法(図中破線)の方が、反応の立上が
りが鋭く、反応初期に無駄なジシランが反応室内
にたまつておらず、反応が効率よく進んでいるこ
とを示唆している。なお、i層形成時の基板温度
は220℃、投入したrfパワーは280Wである。反応
圧力は113Paに設定した。 In addition, FIG. 3 shows the results of comparing the start-up of the reaction using the emission spectrum of SiH 3 * (413 nm). In this figure, in the case of the above comparative example (solid line in the figure)
Compared to this method (dashed line in the figure), the reaction has a sharper start-up, and wasteful disilane is not accumulated in the reaction chamber at the beginning of the reaction, suggesting that the reaction is proceeding efficiently. Note that the substrate temperature during the i-layer formation was 220°C, and the input RF power was 280W. The reaction pressure was set at 113Pa.
次にn層微結晶Siは、H2ベース1000ppmPH3
を100sccm,50%HeベースSiH4を10sccm,rfパ
ワー300W、成膜温度180℃で形成した。裏面電極
は、Alを約1μm抵抗加熱蒸着法により形成した。 Next, the n-layer microcrystalline Si is H2 based 1000ppmPH3
was deposited at 100 sccm, 50% He-based SiH 4 was deposited at 10 sccm, RF power was 300 W, and the film formation temperature was 180°C. The back electrode was formed of Al by resistance heating evaporation to a thickness of approximately 1 μm.
作製した太陽電池の特性は、短絡電流密度
18.3mA/cm2,開放電圧0.84V、曲線因子0.643、
変換効率9.88%である。また、上述のように、i
層形成法として、不活性ガス、あるいはH2を用
いず、Si2H640sccm一定で5分間形成し、他の条
件を同じにした比較例では、短絡電流16.2mA/
cm2、開放電圧0.82V、曲線因子0.640、交換効率
8.50%であつた。 The characteristics of the fabricated solar cell are short-circuit current density
18.3mA/cm 2 , open circuit voltage 0.84V, fill factor 0.643,
The conversion efficiency is 9.88%. Also, as mentioned above, i
In a comparative example in which the layer was formed for 5 minutes at a constant 40 sccm of Si 2 H 6 without using an inert gas or H 2 , and the other conditions were the same, the short circuit current was 16.2 mA/
cm2 , open circuit voltage 0.82V, fill factor 0.640, exchange efficiency
It was 8.50%.
第4図は本実施例と上記比較例の分光感度特性
の測定結果である。これによると、600nm以下の
短波長側で本法の場合、大きく感度が向上してい
る。これは、φ/i界面付近のi層の膜質が向上
したため、界面付近でのキヤリア再結合が低減し
たためであると考えられる。 FIG. 4 shows the measurement results of the spectral sensitivity characteristics of this example and the above comparative example. According to this, in the case of this method, the sensitivity is greatly improved on the short wavelength side of 600 nm or less. This is considered to be because the film quality of the i-layer near the φ/i interface was improved, which reduced carrier recombination near the interface.
本発明によれば、高次シランを用いた成膜にお
いても成膜初期の膜質を向上できるので、高効率
のケイ素系非晶質太陽電池を高速で形成でき、低
コスト化の効果がある。
According to the present invention, the film quality at the initial stage of film formation can be improved even in film formation using high-order silane, so a highly efficient silicon-based amorphous solar cell can be formed at high speed, and there is an effect of cost reduction.
第1図は本発明の実施例のケイ素系非晶質太陽
電池の断面図、第2図はジシランを用いてi層a
−Si:H膜を形成する際のジシランと水素の流量
の時間変化を示すグラフ、第3図は成膜時のジシ
ランプラズマ中のSiH3 *(413nm)の発光強度の
時間変化を測定した結果を示すグラフ、第4図は
作製した太陽電池の分光感度特性を示すグラフで
ある。
1……ガラス基板、2……SnO2膜(約4000
Å)、3……p型a−SiC:H膜(120Å)、4…
…i型a−Si:H膜(5000Å)、5……n型微結
晶Si膜(400Å)、6……裏面アルミニウム電極
(1μm)。
FIG. 1 is a cross-sectional view of a silicon-based amorphous solar cell according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a silicon-based amorphous solar cell using disilane.
A graph showing the time changes in the flow rates of disilane and hydrogen when forming a -Si:H film. Figure 3 shows the results of measuring the time changes in the emission intensity of SiH 3 * (413 nm) in disilane plasma during film formation. FIG. 4 is a graph showing the spectral sensitivity characteristics of the produced solar cell. 1...Glass substrate, 2...SnO 2 film (approximately 4000
Å), 3... p-type a-SiC:H film (120 Å), 4...
...i-type a-Si:H film (5000 Å), 5... n-type microcrystalline Si film (400 Å), 6... back aluminum electrode (1 μm).
Claims (1)
いは水素ガスで希釈し、不活性ガスあるいは水素
ガスと高次シランの流量比を変化させながらケイ
素系非晶質層を形成するpin型ケイ素系非晶質太
陽電池の製造方法において、不活性ガスあるいは
水素ガスと高次シランの流量の和を一定に保つよ
うに設定し、高次シランを用いる反応の初期には
不活性ガスあるいは水素ガスを流し、その後不活
性ガスあるいは水素ガスの流量を減らすと同時に
高次シランの流量を増やすことを特徴とするpin
型ケイ素系非晶質太陽電池の製造方法。1 A pin-type silicon-based material that is diluted with inert gas or hydrogen gas during the decomposition reaction of higher-order silane and forms a silicon-based amorphous layer while changing the flow rate ratio of inert gas or hydrogen gas and higher-order silane. In the manufacturing method of amorphous solar cells, the sum of the flow rates of inert gas or hydrogen gas and higher order silane is set to be kept constant, and the inert gas or hydrogen gas is set at the beginning of the reaction using higher order silane. pin, which is characterized by reducing the flow rate of inert gas or hydrogen gas and simultaneously increasing the flow rate of higher-order silane.
A method for manufacturing silicon-based amorphous solar cells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62123776A JPS63289968A (en) | 1987-05-22 | 1987-05-22 | Manufacture of amorphous solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62123776A JPS63289968A (en) | 1987-05-22 | 1987-05-22 | Manufacture of amorphous solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63289968A JPS63289968A (en) | 1988-11-28 |
JPH0571196B2 true JPH0571196B2 (en) | 1993-10-06 |
Family
ID=14868998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62123776A Granted JPS63289968A (en) | 1987-05-22 | 1987-05-22 | Manufacture of amorphous solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63289968A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0731691U (en) * | 1993-11-25 | 1995-06-13 | ダイヤテックス株式会社 | Large storage bag and its storage aid |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090068221A (en) * | 2006-10-13 | 2009-06-25 | 오므론 가부시키가이샤 | Method for manufacturing electronic device using plasma reactor processing system |
CN101569017B (en) | 2006-12-25 | 2011-11-30 | 夏普株式会社 | Photoelectric converter and method for fabricating the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6150379A (en) * | 1984-08-20 | 1986-03-12 | Mitsui Toatsu Chem Inc | Manufacture of photoelectric conversion element |
-
1987
- 1987-05-22 JP JP62123776A patent/JPS63289968A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6150379A (en) * | 1984-08-20 | 1986-03-12 | Mitsui Toatsu Chem Inc | Manufacture of photoelectric conversion element |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0731691U (en) * | 1993-11-25 | 1995-06-13 | ダイヤテックス株式会社 | Large storage bag and its storage aid |
Also Published As
Publication number | Publication date |
---|---|
JPS63289968A (en) | 1988-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6121541A (en) | Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys | |
US5646050A (en) | Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition | |
KR910001742B1 (en) | Photo electromotive force device | |
US5032884A (en) | Semiconductor pin device with interlayer or dopant gradient | |
JP4208281B2 (en) | Multilayer photovoltaic device | |
US7667133B2 (en) | Hybrid window layer for photovoltaic cells | |
EP1939947B1 (en) | Silicon-based thin-film photoelectric converter and method of manufacturing the same | |
US20080173347A1 (en) | Method And Apparatus For A Semiconductor Structure | |
JPH06151916A (en) | Multijunction photoelectric device and its manufacture | |
JP3047666B2 (en) | Method for forming silicon oxide semiconductor film | |
US5061322A (en) | Method of producing p-type amorphous silicon carbide and solar cell including same | |
JPS59205770A (en) | Photovoltaic device | |
JP2616929B2 (en) | Method for manufacturing microcrystalline silicon carbide semiconductor film | |
US5419783A (en) | Photovoltaic device and manufacturing method therefor | |
US4396793A (en) | Compensated amorphous silicon solar cell | |
Kondo et al. | An approach to device grade amorphous and microcrystalline silicon thin films fabricated at higher deposition rates | |
US5104455A (en) | Amorphous semiconductor solar cell | |
JPWO2005109526A1 (en) | Thin film photoelectric converter | |
JPH0595126A (en) | Thin film solar battery and manufacturing method thereof | |
US4680607A (en) | Photovoltaic cell | |
JPH0571196B2 (en) | ||
JPH11214727A (en) | Tandem type silicon thin-film photoelectric conversion device | |
JP2545066B2 (en) | Semiconductor device | |
KR101100109B1 (en) | Method for Manufacturing Photovoltaic Device | |
JP2006120712A (en) | Thin film photoelectric converter and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |