JPS6314420A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPS6314420A
JPS6314420A JP61157827A JP15782786A JPS6314420A JP S6314420 A JPS6314420 A JP S6314420A JP 61157827 A JP61157827 A JP 61157827A JP 15782786 A JP15782786 A JP 15782786A JP S6314420 A JPS6314420 A JP S6314420A
Authority
JP
Japan
Prior art keywords
thin film
film
plasma treatment
hydrogen
glow discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61157827A
Other languages
Japanese (ja)
Other versions
JPH0821546B2 (en
Inventor
Nobuo Nakamura
信夫 中村
Juichi Shimada
嶋田 寿一
Haruo Ito
晴夫 伊藤
Shinichi Muramatsu
信一 村松
Sunao Matsubara
松原 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61157827A priority Critical patent/JPH0821546B2/en
Publication of JPS6314420A publication Critical patent/JPS6314420A/en
Publication of JPH0821546B2 publication Critical patent/JPH0821546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To manufacture the defectless non-single crystal film of good quality by a method wherein the formation of a thin film and a plasma treatment using hydrogen or halogen compound are performed repeatedly. CONSTITUTION:The formation of a thin film and the plasma treatment using hydrogen or halogen compound are performed repeatedly. For example, a glass substrate is heated up to 250oC in a glow discharge device, SiH4 of reaction gas and GeH4 of 5 SCCM respectively and H2 of 100 SCCM are allowed to flow, and the pressure of the glow discharge device is maintained at 0.5 Torr. Then, SiH4 and GeH4 are allowed to flow intermittently, H2 is permitted to flow continuously, and high frequency power of 10W is applied continuously. In addition to the above-mentioned process A, a flush annealing operation is performed intermittently while a plasma treatment is being performed as the process B, and an a-SiGe : H film is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非単結晶物質の薄膜の形成方法に係り、特にシ
リコン化合物薄膜の形成に好適々製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a thin film of a non-single crystal material, and particularly to a manufacturing method suitable for forming a silicon compound thin film.

〔従来の技術〕[Conventional technology]

SiH4を用いてグロー放電法により製造したasi:
H(アモルファスシリコン)太陽電池は、光電変換効率
が10%を超えている。更に高効率化するためには光学
バンドギャップの異なる物質からなる太陽電池を積層さ
せることが有効であり、この観点から上記a−8i:H
と他の物質との組合せが考えられており、例えば特開昭
55−8092号公報の記載では、  a−8ioe 
: H。
asi manufactured by glow discharge method using SiH4:
H (amorphous silicon) solar cells have a photoelectric conversion efficiency of over 10%. In order to further improve the efficiency, it is effective to stack solar cells made of materials with different optical band gaps, and from this point of view, the above a-8i:H
A combination of a-8ioe and other substances is considered, for example, in the description of JP-A-55-8092, a-8ioe
:H.

特開昭55−151329 号公報の記載ではa−8i
F:Hがあり、これらの混合物であるa−8iGeF:
Hは特開昭57−78183号公報の記載においてそれ
ぞれ製造方法が述べられている。しかし、これらの物質
は従来のグロー放゛電法のみでは良質な膜を形成するこ
とができないため、例えば特開昭58−10817の様
にスパッタ法を組み合わせた成膜法が提案されているが
、充分な膜質が得られていない現状である。
In the description of JP-A-55-151329, a-8i
F:H and a mixture of these a-8iGeF:
The manufacturing method of H is described in Japanese Patent Application Laid-Open No. 57-78183. However, since it is not possible to form a high-quality film with these substances using only the conventional glow emission method, a film formation method combining sputtering has been proposed, for example, as in JP-A-58-10817. Currently, sufficient film quality is not obtained.

膜質改善の方法としては、水素プラズマ処理がちる。特
開昭59−72776はpj曲(又は0層)形成後に水
素プラズマに曝し、次いでi層を形成するものであり、
特開昭59−35016は高温で微結晶化膜を形成した
後に水素プラズマ処理を行なうものである。また、プラ
ズマ処理をより有効的に行なう方法として特開昭57−
181117号公報や特開昭57−160124  号
公報に記載される方法がある。
Hydrogen plasma treatment is a common method for improving film quality. JP-A-59-72776 discloses that after forming the pj curve (or 0 layer), it is exposed to hydrogen plasma, and then the i layer is formed.
JP-A-59-35016 discloses that a microcrystalline film is formed at high temperature and then subjected to hydrogen plasma treatment. In addition, as a method for more effective plasma processing, JP-A-57-
There are methods described in Japanese Patent Application Laid-open No. 181117 and Japanese Patent Application Laid-open No. 160124/1983.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

a −8iGe、 a−8i F、 a−8i C,a
−8iN、 a −8iSnといったアモルファスSi
化合物はs S iとの共有結合半径や混気陰性度が違
うために、a−8iに比べて欠陥を生じ易い性質を持っ
ている。
a-8iGe, a-8i F, a-8i C, a
Amorphous Si such as -8iN, a -8iSn
Since the compound has a different covalent bond radius and air negativity with s Si, it has the property of being more likely to cause defects than a-8i.

従来のグロー放′R,法スパッタ法等による成膜では、
Si以外の物質の組成比率が増すに従って欠陥数も飛躍
的に増加しており、この方法だけで良質の膜を作ること
は難しい現状にある。膜中の欠陥はHあるいはF、C1
などのハロゲン物質でターミネートすることにより消滅
するが、これらとSiとの結合エネルギーは他との結合
エネルギーと異なるために、グロー放電法で成膜するだ
けでは一方にのみターミネートし易い結果となっている
In film formation using conventional glow radiation, sputtering method, etc.
As the composition ratio of substances other than Si increases, the number of defects increases dramatically, and it is currently difficult to produce a high-quality film using this method alone. Defects in the film are H, F, C1
However, since the bonding energy between these and Si is different from the bonding energy with other halogen substances, forming a film using the glow discharge method tends to result in termination on only one side. There is.

従って、グロー放電法やスパッタ法とHあるいはF等の
ハロゲン物′jtをターミネートさせるだめの池の方法
を併用すれば、欠陥のない良質の、“漠を製造すること
ができる。
Therefore, if the glow discharge method or sputtering method is used in conjunction with the Dame no Ike method of terminating a halogen substance such as H or F, it is possible to produce a high-quality material without any defects.

例えば、H′!i−ターミネートさせるための手段とし
て水素プラズマ処理法があるが、その欠点は導入水素量
が小さいことおよび導入濃度が深さ依存性を持ち、表面
から遠ざかるにつれて導入量が小さくなることである。
For example, H'! A hydrogen plasma treatment method is available as a means for i-termination, but its drawbacks are that the amount of hydrogen introduced is small and the concentration of introduced hydrogen is depth dependent, and the amount introduced becomes smaller as the distance from the surface increases.

従って1表面層以外はHでターミネートされないことに
なり、欠陥はそのまま残ってしまう。導入水素量を多く
するためには、水素プラズマ処理温度を高くすればよい
が(特開昭57−181117他)、透明導電膜が形成
されている場合には、これらの物質が拡散してセル特性
に悪影響金及ぼすことになる。
Therefore, all but one surface layer is not terminated with H, and the defects remain as they are. In order to increase the amount of hydrogen introduced, it is possible to increase the hydrogen plasma treatment temperature (JP-A-57-181117, etc.), but if a transparent conductive film is formed, these substances will diffuse and damage the cell. This will have a negative impact on the characteristics.

本発明の目的は、上記欠点をなくすことにより欠!陥の
ない良質の非単結晶膜を製造することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks. The objective is to produce a high quality non-single crystal film without defects.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、極めて薄い非単結晶膜を形成した後に水素
あるいはフッ素等のハロゲン物質によるプラズマ処理を
行い、これを、操り返せば欠陥のない良質な膜が形成さ
れることになる。1回に形成する模厚ば、その後のプラ
ズマ処理でどの深さまで十分な水素化が行なわれるかに
よって決まるが、高温で大きいエネルギーで処理した方
が深くまで水素化あるいはハロゲン化することができる
のは明らかである。しかし現実には、構成物質と水素あ
るいはハロゲン物質との結合エネルギー強度による差は
ちるものの、一度結合した水素あるいはハロゲン物質が
熱的に再放出される温度以下で行なう必要があるため1
例えばa−8i:Hの場合は300C8度以下が望まし
く、この時のJ厚ば100オングストローム以下が望ま
しい。ハロゲン物質によるプラ処理の場合は結合エネル
ギーにより温度が異なるものの、膜厚は上記以下が望ま
しく、本法は非単結晶膜の全てに可能である。
The above purpose is to form an extremely thin non-single crystal film and then perform plasma treatment using a halogen substance such as hydrogen or fluorine. If this process is repeated, a good quality film with no defects will be formed. The thickness of the layer formed at one time depends on the depth to which sufficient hydrogenation can be achieved in the subsequent plasma treatment, but it is possible to hydrogenate or halogenate to a deeper depth if the treatment is performed at high temperature and with a large amount of energy. is clear. However, in reality, although there is a difference in the bonding energy strength between the constituent substances and the hydrogen or halogen substance, it is necessary to carry out the process at a temperature below the temperature at which the hydrogen or halogen substance once bonded is thermally re-released.
For example, in the case of a-8i:H, the thickness is preferably 300C8 degrees or less, and the J thickness at this time is preferably 100 angstroms or less. In the case of plastic treatment with a halogen substance, although the temperature varies depending on the bond energy, the film thickness is preferably less than the above, and this method is applicable to all non-single crystal films.

導入量を増す必要がある場合には、プラズマ処理中にフ
ラッシュアニールやレーザーアニール等を行ない、表面
のみの@度ヲ上げれば良い。これにより処理時も短縮さ
れる。
If it is necessary to increase the amount introduced, flash annealing, laser annealing, etc. may be performed during plasma processing to increase the temperature only on the surface. This also shortens the processing time.

〔作用〕 極めて薄い膜をプラズマ処理するために、低温での処理
で水素化あるいはハロゲン化が可能となる。また、グロ
ー放電法で生じた欠陥を完全に補償することができる様
になるため、良・賞の膜が形成される。更にグロー放電
法での問題点である。膜厚方向の膜質不均一性もなくな
り、膜厚が薄い場合でも厚い場合と同様の膜質が得られ
る様になる。
[Operation] Hydrogenation or halogenation can be performed at low temperatures in order to plasma-treat extremely thin films. Furthermore, since defects caused by the glow discharge method can be completely compensated for, a film of good quality can be formed. Furthermore, this is a problem with the glow discharge method. Non-uniformity in film quality in the film thickness direction is also eliminated, and even when the film is thin, the same film quality as when it is thick can be obtained.

プラズマ処理中にフラッシュアニールやレーザーアニー
ル等で表面層のみを加熱すれば、ち密化されたアモルフ
ァス膜が形成されることになり。
If only the surface layer is heated by flash annealing, laser annealing, etc. during plasma processing, a densified amorphous film will be formed.

従って、光学ギャップの異なる膜が形成される。Therefore, films with different optical gaps are formed.

更に、こうして形成された膜は熱的に安定でちるばかり
でなく、光劣化も格段に小さくなる。
Furthermore, the film thus formed is not only thermally stable and durable, but also exhibits significantly less photodegradation.

〔実施例〕〔Example〕

以下1本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例 1 第1図を用いて説明する。グロー放電装置内でガラス基
板が250Cに加熱されており1反応ガスである3iH
4およびG e H4がそれぞれ58CCM%H1が1
1005CC流れ、圧力が0.5Torrに保たれてい
る。
Example 1 This will be explained using FIG. 1. A glass substrate is heated to 250C in a glow discharge device, and 3iH, which is a 1-reactive gas, is heated to 250C.
4 and G e H4 are each 58CCM%H1 is 1
The flow is 1005 CC and the pressure is maintained at 0.5 Torr.

SiH4およびG e H,は超高速マスフローメータ
により断続的に流されるが% H,は連続的に流され、
高周波電力は10Wが連続的に印加される。
SiH4 and G e H, were flowed intermittently by an ultra-high-speed mass flow meter, while % H, was flowed continuously;
A high frequency power of 10 W is continuously applied.

第1図は1時間ごとの工程を示したもので1本実施例で
は工程人のみを操り返し行なった。
FIG. 1 shows the process for each hour, and in this example, only the process personnel were operated.

SiH4およびGeH4を流す時間を20秒間とし、休
止時間を40秒間として、25分間の成膜を行なったと
ころ1000オングストロームのa−8iGe:HJが
形成された。ここから1回の成膜で約40オングストロ
ームが形成していることがわかる。こうして形成した膜
と同じ条件でSiH4およびGeH,i連続的に流して
同一の膜1°Jに形成されたものを比較したところ、光
学ギャップは変わらないものの、光導1度では断続的に
流したものの方が約1桁も太き々直となった。
When SiH4 and GeH4 were flowed for 20 seconds and paused for 40 seconds, film formation was performed for 25 minutes, and a-8iGe:HJ of 1000 angstroms was formed. It can be seen from this that about 40 angstroms are formed in one film formation. When comparing the film thus formed with the same film formed in 1°J by continuously flowing SiH4 and GeH,i under the same conditions, it was found that although the optical gap remained the same, the flow was intermittently for 1° of light guide. The difference was about one order of magnitude more clearly.

実施例 2 実施例1と同様にして成膜を行なうが、第1図の工程B
に示す様に、プラズマ処理中にフラッシュアニールを断
続的に行なったところ、光学ギャップがより小さな直と
なり、光の連続照射によっても導電度がほとんど変化し
ない膜が得られた。
Example 2 Film formation was carried out in the same manner as in Example 1, but step B in FIG.
As shown in Figure 2, when flash annealing was performed intermittently during plasma treatment, the optical gap became smaller and a film was obtained in which the conductivity hardly changed even with continuous light irradiation.

光学ギャップは、フラッシュアニールの照射時間に依存
し、照射時間が長い場合はど小さな値と逢った。例えば
、フラッシュアニールを行なわない場合には1.50e
Vであった光学ギャップが1秒間隔で20 ミIJ秒の
照射を行った場合には1.45evとなり、50ミリ秒
の場合には1.40eVと立った。
The optical gap depends on the flash annealing irradiation time, and the longer the irradiation time, the smaller the value. For example, if flash annealing is not performed, 1.50e
When the optical gap was V, it became 1.45 eV when irradiation was performed for 20 mIJ seconds at 1 second intervals, and 1.40 eV when it was 50 msec.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、甑めて薄い膜ヲプラズマ処理するため
に、200〜300Cといった成膜温度と同じ温度範囲
でのプラズマ処理で効果がある。
According to the present invention, in order to plasma-process a thin film after heating, plasma processing in the same temperature range as the film-forming temperature, such as 200 to 300 C, is effective.

また、プラズマによるダメージの生じない低いエネルギ
ーで処理が行なえると共に、膜厚によらず欠陥を完全に
補償することができる。
Further, processing can be performed with low energy without causing damage due to plasma, and defects can be completely compensated for regardless of the film thickness.

プラズマ処理中に表面層のみを加熱すれば、光学ギャッ
プ等の膜特性の制御が可能となり、更に熱的に安定であ
るばかりでなく、光劣化も格段に小さくなるという効果
がある。
By heating only the surface layer during plasma treatment, it is possible to control the film properties such as the optical gap, which not only provides thermal stability but also significantly reduces photodeterioration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による非単結晶膜形成における工程図
である。
FIG. 1 is a process diagram for forming a non-single crystal film according to the present invention.

Claims (1)

【特許請求の範囲】 1、薄膜の形成と水素あるいはハロゲン物質によるプラ
ズマ処理を繰り返すことを特徴とする薄膜の製造方法。 2、1回ごとの前記薄膜の形成膜厚が100オングスト
ローム以下であることを特徴とする特許請求の範囲第1
項記載の薄膜の製造方法。 3、前記薄膜の形成と前記プラズマ処理との工程におい
て、プラズマを継続させて放電させることを特徴とする
特許請求の範囲第1項および第2項記載の薄膜の製造方
法。 4、前記プラズマ処理工程において、前記形成薄膜の表
面層のみを加熱することを特徴とする特許請求の範囲第
1項記載の薄膜の製造方法。 5、前記加熱方法がフラッシュアニールあるいはレーザ
ーアニールであることを特徴とする特許請求の範囲第4
項記載の薄膜の製造方法。 6、前記加熱を断続的に行なうことを特徴とする特許請
求の範囲第5項記載の薄膜の製造方法。
[Claims] 1. A method for producing a thin film, which comprises repeating the formation of a thin film and the plasma treatment using hydrogen or a halogen substance. 2. Claim 1, characterized in that the thickness of the thin film formed each time is 100 angstroms or less
2. Method for producing a thin film described in Section 1. 3. The method for manufacturing a thin film according to claims 1 and 2, characterized in that in the steps of forming the thin film and the plasma treatment, plasma is continuously discharged. 4. The thin film manufacturing method according to claim 1, wherein in the plasma treatment step, only the surface layer of the formed thin film is heated. 5. Claim 4, wherein the heating method is flash annealing or laser annealing.
2. Method for producing a thin film described in Section 1. 6. The thin film manufacturing method according to claim 5, wherein the heating is performed intermittently.
JP61157827A 1986-07-07 1986-07-07 Thin film manufacturing method Expired - Lifetime JPH0821546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61157827A JPH0821546B2 (en) 1986-07-07 1986-07-07 Thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61157827A JPH0821546B2 (en) 1986-07-07 1986-07-07 Thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPS6314420A true JPS6314420A (en) 1988-01-21
JPH0821546B2 JPH0821546B2 (en) 1996-03-04

Family

ID=15658184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61157827A Expired - Lifetime JPH0821546B2 (en) 1986-07-07 1986-07-07 Thin film manufacturing method

Country Status (1)

Country Link
JP (1) JPH0821546B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330319A (en) * 1989-06-28 1991-02-08 Mitsui Toatsu Chem Inc Amorphous semiconductor thin film
JPH0332018A (en) * 1989-06-29 1991-02-12 Mitsui Toatsu Chem Inc Amorphous semiconductor thin film
JPH0332019A (en) * 1989-06-29 1991-02-12 Mitsui Toatsu Chem Inc Amorphous semiconductor thin film
US5194398A (en) * 1989-06-28 1993-03-16 Mitsui Toatsu Chemicals, Inc. Semiconductor film and process for its production
JP2007134416A (en) * 2005-11-08 2007-05-31 Mitsubishi Heavy Ind Ltd Thin film solar battery and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330319A (en) * 1989-06-28 1991-02-08 Mitsui Toatsu Chem Inc Amorphous semiconductor thin film
US5194398A (en) * 1989-06-28 1993-03-16 Mitsui Toatsu Chemicals, Inc. Semiconductor film and process for its production
JPH0332018A (en) * 1989-06-29 1991-02-12 Mitsui Toatsu Chem Inc Amorphous semiconductor thin film
JPH0332019A (en) * 1989-06-29 1991-02-12 Mitsui Toatsu Chem Inc Amorphous semiconductor thin film
JP2007134416A (en) * 2005-11-08 2007-05-31 Mitsubishi Heavy Ind Ltd Thin film solar battery and its manufacturing method

Also Published As

Publication number Publication date
JPH0821546B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
US4968384A (en) Method of producing carbon-doped amorphous silicon thin film
JPH02155225A (en) Method of forming amorphous semiconductor thin-film
JPH0281424A (en) Manufacture of polycrystalline silicon thin film
JPS6314420A (en) Manufacture of thin film
JP2945234B2 (en) Method of forming semiconductor thin film
JPS5940525A (en) Growth of film
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
JPH0982637A (en) Manufacture of amorphous semiconductor thin film
JP2966909B2 (en) Amorphous semiconductor thin film
JPH0548130A (en) Semiconductor device and its manufacture
JPH07263344A (en) Formation of semiconductor thin film
JPS59126680A (en) Amorphous silicon solar battery and manufacture thereof
JP2978050B2 (en) Manufacturing method of amorphous alloy semiconductor
JPH02260666A (en) Manufacture of amorphous solar cell
JP2966908B2 (en) Photoelectric conversion element
JPS61156723A (en) Manufacture of semiconductor device
JPS63232418A (en) Method and apparatus for forming deposit film
JP2565684B2 (en) Method for manufacturing polycrystalline silicon thin film
CN116924352A (en) Method for adjusting transition metal chalcogenide broad spectrum detection by utilizing vacancy defects
JPS59161880A (en) Manufacture of amorphous solar battery
JPS61260682A (en) Solar cell and manufacture thereof
JPH03217014A (en) Thin amorphous semiconductor film
JPH04188879A (en) Photoelectric conversion element and manufacture thereof
JPS6274084A (en) Production of periodic structure film
JPH04299522A (en) Method and device for manufacturing non-single crystal silicon