JPH0330319A - Amorphous semiconductor thin film - Google Patents

Amorphous semiconductor thin film

Info

Publication number
JPH0330319A
JPH0330319A JP1163710A JP16371089A JPH0330319A JP H0330319 A JPH0330319 A JP H0330319A JP 1163710 A JP1163710 A JP 1163710A JP 16371089 A JP16371089 A JP 16371089A JP H0330319 A JPH0330319 A JP H0330319A
Authority
JP
Japan
Prior art keywords
thin film
film
semiconductor thin
hydrogen
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1163710A
Other languages
Japanese (ja)
Inventor
Kenji Miyaji
宮地 賢司
Nobuhiro Fukuda
福田 信弘
Yoshinori Ashida
芦田 芳徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1163710A priority Critical patent/JPH0330319A/en
Priority to CA002019923A priority patent/CA2019923C/en
Priority to DE69032290T priority patent/DE69032290T2/en
Priority to EP90307023A priority patent/EP0407088B1/en
Priority to AU57938/90A priority patent/AU631436B2/en
Publication of JPH0330319A publication Critical patent/JPH0330319A/en
Priority to US07/830,967 priority patent/US5194398A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a highly stable thin film efficiently by performing repeatedly manufacturing processes through which a semiconductor thin film consisting of 10at.% or less bound hydrogen is formed and its thin film is exposed to a discharge atmosphere containing a reaction gas. CONSTITUTION:A semiconductor thin film is formed by performing repeatedly a film formation process 1 through which the semiconductor thin film consisting of 10at.% or less bound hydrogen is formed and a film-reforming process 2 through which the thin film is exposed to a discharge atmosphere containing a reaction gas. Then, film formation conditions when a great quantity of hydrogen not exist in an atmosphere are selected so that the quantity of bound hydrogen in the semiconductor thin film is 10at.% or less, especially it is preferable to be 3at.% or less. Further, the thickness of the semiconductor thin film which is formed at a time among repeating processes is defined to 3-1000Angstrom and, for example, such an operation is repeated 40 times to form thin films. lt is preferable for a film formation temperature to be determined by making its temperature conform to the reforming process 2. Then, repeating time of both processes 1 and 2 is exceedingly shortened by adopting film-formation means so that basically the temperature of respective processes is determined without relying upon materials. A highly stable thin film is thus obtained efficiently.

Description

【発明の詳細な説明】 (技術分野) 本発明は非晶質太陽電池の高性能化に関し、とくに、そ
の構成する非晶質Fl!IIの高品質化を図る技術に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to improving the performance of an amorphous solar cell, and particularly relates to the amorphous Fl! Concerning technology to improve the quality of II.

(背景技術) 非晶質太陽電池は電卓や時計を駆動するための、出力の
小さいエネルギー供給源としてすでに実用化されている
。しかしながら、太陽光発電用途のように、0.1 W
以上のような出力の大きいエネルギー供給源としては、
性能および安定性に関しては十分とはいえず、性能向上
をめざして、各種の検討が実施されている。しかしなが
ら、この性能の向上については、プラズマCVD法、光
CVD法、熱CVD法等の成膜手法で形成される水素化
非晶質シリコンにとっては、本質的なものであり、改善
が困難との悲観的な見方もあった。
(Background Art) Amorphous solar cells have already been put into practical use as a low-output energy supply source for driving calculators and watches. However, as in photovoltaic applications, 0.1 W
As for energy supply sources with large output as mentioned above,
Performance and stability are not satisfactory, and various studies are being conducted to improve performance. However, this improvement in performance is essential for hydrogenated amorphous silicon, which is formed by film formation methods such as plasma CVD, photoCVD, and thermal CVD, and is difficult to improve. There was also a pessimistic view.

この解決のために特開昭63−14420号に薄膜の形
成と水素あるいはハロゲン化物質によるプラズマ処理を
繰り返すことが提案されているが、特性の改善は満足さ
れるものではなかった。我々はこの問題は成膜中に多量
の水素が同伴されて、水素化非晶質シリコンを形成する
ことにあると考えて、その解決手法を特願昭63−30
8909号で開示した。すなわち、成膜工程においては
、水素量の少ない非晶質シリコンを形成して、次にこの
膜の性質を改善する工程をとるものである、しかしなが
ら、この方法においては、成膜工程と改質工程において
、温度条件を大きく変化させねばならず、長い処理時間
を必要としていた0本願発明はこの点をさらに飛躍的に
改良したものである。
In order to solve this problem, Japanese Patent Laid-Open No. 14420/1983 proposes repeating the formation of a thin film and the plasma treatment using hydrogen or a halogenated substance, but the improvement in characteristics was not satisfactory. We believed that this problem was due to the fact that a large amount of hydrogen was entrained during film formation, forming hydrogenated amorphous silicon.
It was disclosed in No. 8909. In other words, the film formation process involves forming amorphous silicon with a low hydrogen content, and then improving the properties of this film. However, in this method, the film formation process and modification process are In the process, temperature conditions had to be changed significantly and long processing time was required.The present invention further improves this point dramatically.

〔発明の基本的着色〕[Basic coloring of the invention]

結合水素量の少ない半導体薄膜の形成(以下、成膜と略
称する)温度が基本的には、原F+によらず決定される
成膜方法を採用することにより、成膜工程と改質工程の
繰り返し時間を著しく短縮するものである。
By adopting a film-forming method in which the temperature for forming a semiconductor thin film with a small amount of bound hydrogen (hereinafter referred to as film-forming) is basically determined regardless of the original F+, the film-forming process and modification process can be This significantly shortens the repetition time.

(発明の開示〕 本発明は、結合水素量がIO原子%以下の半導体薄膜の
形成工程(以下成膜工程と略称する)と反応性ガスを含
む放電雰囲気に曝す工程(以下改質工程と略称する)と
を繰り返し行うことにより形成された半導体薄膜であり
、さらに好ましくは、成膜工程と改質工程の繰り返しに
おいて、一度の繰り返しにおいて形成される半導体薄膜
の厚みが、3から1000人である半導体薄膜である。
(Disclosure of the Invention) The present invention comprises a process for forming a semiconductor thin film having a bound hydrogen content of IO atomic % or less (hereinafter referred to as a film formation process) and a process for exposing it to a discharge atmosphere containing a reactive gas (hereinafter referred to as a modification process). It is a semiconductor thin film formed by repeating the above steps, and more preferably, in repeating the film forming step and the modification step, the thickness of the semiconductor thin film formed in one repeat is 3 to 1000. It is a semiconductor thin film.

本発明における成膜工程は結合水素lを少なくする成膜
方法が採用される。具体的には、真空蒸着、スパッタリ
ング、イオンブレーティングなどの物理的成膜方法や光
CVD、プラズマCVDなどの化学気相成膜(CVD)
法により、成膜する工程である。また改質工程とは、そ
の薄膜を非堆積性の反応性ガスを含む放電を発生させて
、この放電の雰囲気に曝すことにより、半導体薄膜の性
質を改善する工程である。
In the film forming process of the present invention, a film forming method that reduces the amount of bound hydrogen 1 is adopted. Specifically, physical film deposition methods such as vacuum evaporation, sputtering, and ion blating, and chemical vapor deposition (CVD) such as optical CVD and plasma CVD are used.
This is a process of forming a film using a method. The modification step is a step of improving the properties of a semiconductor thin film by generating a discharge containing a non-depositing reactive gas and exposing the thin film to the atmosphere of this discharge.

本発明においては、結合水素量の少ない薄膜を形成する
成膜工程と改質工程とを繰り返すこと、ならびに一度の
繰り返しにより形成される半導体薄膜の厚みを3〜10
00人に規定することが、時に好ましいが、これ以外の
成膜条件は特に本発明の効果を何ら妨げるものではない
In the present invention, the film formation process and the modification process to form a thin film with a small amount of bound hydrogen are repeated, and the thickness of the semiconductor thin film formed by one repetition is 3 to 10%.
Although it is sometimes preferable to specify 00 people, other film forming conditions do not particularly impede the effects of the present invention.

まず、効果的な物理的成膜方法を以下に説明する。First, an effective physical film forming method will be explained below.

成膜のための出発原料としてシリコン、炭化シリコン、
窒化シリコン、シリコン−ゲルマニウム合金(または複
合粉末)、シリコン−錫合金(または複合粉末)等の元
素や化合物、合金等の実質的に水素を含有しない物質を
ターゲットとして効果的に用いることができる。この他
にも炭素、ゲルマニウム、錫等の元素、化合物、合金を
用いることもできる。
Silicon, silicon carbide,
Substantially hydrogen-free substances such as elements, compounds, and alloys such as silicon nitride, silicon-germanium alloy (or composite powder), and silicon-tin alloy (or composite powder) can be effectively used as targets. Other than these, elements, compounds, and alloys such as carbon, germanium, and tin can also be used.

本発明における成膜条件は、結合水素量を本発明で規定
する価より少なくする以外にはとくに限定されるもので
はない、すなわち、半導体薄膜中の結合水素量が、10
原子%(以下a(χ)以下であり、好ましくは、5 a
tx以下、特に好ましくは3atX以下になるように、
雰囲気に多量の水素が存在しない成膜条件が選択される
。なお、10原子%を越えると、効果が非常に少な(な
り、本発明の目的を達成することが出来ない。もちろん
、これらの条件を満足する範囲内であれば、不活性ガス
、水素、炭化水素、フッ素、酸素ガス等の雰囲気で成膜
することができる。具体的な条件として、ガス流量は、
1〜100 secm、反応圧力は、0.001mto
rr =10mtorrの範囲である。また、成膜速度
に応じて、fi!・圧力・電力等の成膜条件はJl宜選
選択れる。成膜温度については、基板温度を管理するこ
とで成膜が行われる。温度範囲は、基本的には制約をう
けるものではないが、改質工程に適合させて温度を設定
することが好ましい。具体的には、500°C以下の温
度範囲で選択される。
The film forming conditions in the present invention are not particularly limited, except that the amount of bound hydrogen is less than the value specified in the present invention, that is, the amount of bound hydrogen in the semiconductor thin film is 10
atomic % (hereinafter a(χ) or less, preferably 5 a
tx or less, particularly preferably 3atX or less,
Film forming conditions are selected such that a large amount of hydrogen does not exist in the atmosphere. In addition, if it exceeds 10 atomic %, the effect will be very small (and the purpose of the present invention cannot be achieved.Of course, as long as these conditions are satisfied, inert gas, hydrogen, carbonization Films can be formed in an atmosphere of hydrogen, fluorine, oxygen gas, etc.Specifically, the gas flow rate is
1 to 100 sec, reaction pressure is 0.001 mto
The range is rr = 10 mtorr. Also, depending on the film formation speed, fi! - Film forming conditions such as pressure and power can be selected as desired. Regarding the film formation temperature, film formation is performed by controlling the substrate temperature. Although the temperature range is basically not subject to any restrictions, it is preferable to set the temperature in accordance with the reforming process. Specifically, it is selected within a temperature range of 500°C or less.

次に、効果的なCVD法の具体的示例を以下に示す。Next, a specific example of an effective CVD method will be shown below.

成膜のための原料ガスとして一船式5iJIz++”z
(口は自然数)で表されるモノシラン、ジシラン、トリ
シラン、テトラシランなどシラン化合物や、フッ化シラ
ン、炭化硅素、炭化水素等が用いられる。また、水素、
フッ素、塩素、ヘリウム、アルゴン、ネオン、窒素等の
ガスを原料ガスとともに導入しても艮い。これらのガス
を用いる場合には、原ネ4ガスに対して、o、oi〜1
00%(容積比率)の範囲で用いると効果的であり、成
膜速度や膜特性(水素量など)を考慮して適宜選択され
るものである。
One ship type 5iJIz++”z as raw material gas for film formation
Silane compounds such as monosilane, disilane, trisilane, and tetrasilane expressed by the formula (wherein is a natural number), fluorinated silane, silicon carbide, hydrocarbons, and the like are used. In addition, hydrogen,
It is also possible to introduce gases such as fluorine, chlorine, helium, argon, neon, nitrogen, etc. together with the raw material gas. When using these gases, o, oi ~ 1
It is effective when used in a range of 0.00% (volume ratio), and is appropriately selected in consideration of the film formation rate and film characteristics (hydrogen content, etc.).

成膜条件については、物理的成膜方法と同様に、結合水
素量を少なくする以外にはとくに限定されるものではな
い。半導体′3腹中の結合水素量は10 aLX以下で
あり、好ましくは、5atX以下、特に好ましくは3a
t%以下になるように、成膜条件が選択される。10原
子%を越えると、効果が非常に少なくなり、本発明の目
的を達成することが出来ないのである。
As with the physical film-forming method, there are no particular limitations on the film-forming conditions other than reducing the amount of bonded hydrogen. The amount of bonded hydrogen in the semiconductor'3 antinode is 10 aLX or less, preferably 5atX or less, particularly preferably 3a
Film forming conditions are selected so that the amount is t% or less. If it exceeds 10 atomic %, the effect becomes very small and the object of the present invention cannot be achieved.

以下具体的な条件を開示する。光CVDにおいては、低
圧水銀ランプや重水素ランプや希ガスランプなどの、波
長350 na以下の紫外光源を用いて原料ガスを分解
し成膜が行われる。成膜時の条件として、ガス流11=
100 sccm、反応圧力15mtorr 〜大気圧
、基板温度200〜600 ’C,M板の耐熱性、成膜
速度から考えられる成膜時間、後処理のプラズマ処理温
度等を考慮すると、より好ましくは、300〜500°
Cの範囲において適宜選択される。
The specific conditions will be disclosed below. In photo-CVD, film formation is performed by decomposing a source gas using an ultraviolet light source with a wavelength of 350 na or less, such as a low-pressure mercury lamp, deuterium lamp, or rare gas lamp. As conditions during film formation, gas flow 11=
100 sccm, reaction pressure of 15 mtorr to atmospheric pressure, substrate temperature of 200 to 600'C, and considering the heat resistance of the M plate, the film formation time considered from the film formation rate, the plasma treatment temperature of post-processing, etc., more preferably 300 sccm. ~500°
It is appropriately selected within the range of C.

また、プラズマCVDについては、放電の方式として、
高周波放電、直流放電、マイクロ波放電、ECR放電等
の方式を有効に用いることができる。原料ガスの流11
〜900 secm、反応圧力0.001IltOrr
〜大気圧、電力1mW/cJ−10W/cJの範囲で十
分である。これらの成膜条件は成膜速度、放電方法に応
じ適宜変更されるものである。基板温度は200〜60
0°Cであり、より好ましくは300〜500°Cであ
る。なお、この範囲で、温度は高い方がより好ましい。
In addition, regarding plasma CVD, the discharge method is as follows:
Methods such as high frequency discharge, direct current discharge, microwave discharge, and ECR discharge can be effectively used. Raw material gas flow 11
~900 sec, reaction pressure 0.001IltOrr
A range of ~atmospheric pressure and power of 1 mW/cJ to 10 W/cJ is sufficient. These film forming conditions are changed as appropriate depending on the film forming rate and the discharge method. Substrate temperature is 200-60
The temperature is 0°C, more preferably 300 to 500°C. Note that within this range, higher temperatures are more preferable.

本発明において、改質工程は、非堆積性の反応性ガスを
改質室に導入し、放電を発生させ、この放電雰囲気に、
成膜工程において形成された薄膜を曝す工程である。
In the present invention, the reforming step involves introducing a non-depositing reactive gas into the reforming chamber, generating a discharge, and adding to this discharge atmosphere,
This is a process of exposing the thin film formed in the film forming process.

放電を発生させる方式は高周波放電、直流放電、マイク
ロ波放電、ECR放電等を有効に利用することができる
。非堆積性の反応性ガスとは、水素、フッ素、フッ素化
合物等であり、水素ガス、フッ化水素ガス、フッ素ガス
、三フッ化窒素、四フッ化炭素等を有効に用いることが
できる。また、これらのガスの混合ガスでも構わない。
As a method for generating discharge, high frequency discharge, direct current discharge, microwave discharge, ECR discharge, etc. can be effectively used. Non-depositing reactive gases include hydrogen, fluorine, fluorine compounds, etc., and hydrogen gas, hydrogen fluoride gas, fluorine gas, nitrogen trifluoride, carbon tetrafluoride, etc. can be effectively used. Further, a mixed gas of these gases may be used.

改質工程の具体的な条件を次に開示する。放電は、放電
電力1〜500−1非堆積性の反応性ガスの流量、5〜
500sccm 、圧力、0.OO1mLorr〜大気
圧の範囲において、発生維持される。改質工程における
温度条件は基板の温度で管理される。この基板温度は、
成膜工程の基板温度と同じかあるいはより低い温度であ
り、室温から600 ’C1好ましくは、200〜so
o cである。
Specific conditions for the modification step will be disclosed next. The discharge is performed at a discharge power of 1 to 500-1, a flow rate of non-depositing reactive gas, and a flow rate of 5 to 500-1.
500sccm, pressure, 0. It is generated and maintained in the range of OO 1 mL to atmospheric pressure. The temperature conditions in the modification process are controlled by the temperature of the substrate. This substrate temperature is
The temperature is the same as or lower than the substrate temperature in the film forming process, and is preferably 200 to 600°C from room temperature.
It is oc.

一回の成膜工程においては、3〜1000人、好まする
。また、3人未満の膜厚においては、改質の効果はある
が、実用性の観点から成膜、改質の繰り返し回数が増加
するので好ましくない。なお、半導体薄膜の全体の厚さ
は、特に限定するものではないが、通常tooo八〜l
へμ僧程度が好ましい。
In one film forming process, 3 to 1000 people are preferred. Further, a film thickness of less than 3 layers is not preferable because, although the modification effect is achieved, the number of repetitions of film formation and modification increases from the viewpoint of practicality. Note that the overall thickness of the semiconductor thin film is not particularly limited, but is usually about 8 to 10 m.
Preferably at the level of a monk.

1サイクルに要する時間は特に限定される要件ではない
が、1000秒以内である。成膜工程から改質工程へ移
行する時間および改質工程から成膜工程に移行する時間
はできる限り短いほうがこのましい、この時間は装置形
状・寸法、真空IJl−気シスナシステム存する。具体
的には30秒以内に短縮することもできる。
The time required for one cycle is not particularly limited, but is within 1000 seconds. It is preferable that the time from the film forming process to the modifying process and the time from the modifying process to the film forming process be as short as possible; this time depends on the shape and dimensions of the apparatus and the vacuum IJl-gas system. Specifically, the time can be shortened to less than 30 seconds.

本発明の半導体薄膜が形成されるべき基板は、本発明の
プロセス温度に耐えること以外には限定される条件はな
い。青板ガラス、ホウケイ酸ガラス、石英ガラス等の透
光性の材料や金属、セラミックス、耐熱性高分子材料等
を基板として使用できる。また、太陽電池やセンサー等
に用いられる、電極が形成された基板も本発明において
有効に用いられることはもちろんである。
There are no limitations on the substrate on which the semiconductor thin film of the present invention is to be formed, other than that it can withstand the process temperature of the present invention. Translucent materials such as blue plate glass, borosilicate glass, and quartz glass, metals, ceramics, heat-resistant polymer materials, and the like can be used as the substrate. Further, it goes without saying that substrates on which electrodes are formed, which are used for solar cells, sensors, etc., can also be effectively used in the present invention.

以下、実施例により本発明をより具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

〔実施例1〕 本発明を実施するための装置の一例を第1rAに示した
。装置は成膜室lおよび改質室2から構成され、それぞ
れ、シリコンを堆積するためのスパッタリング装置およ
び放電を発生させるための電極を有している。これらの
2室は搬送装置により結合されており、基板は両室を相
互に連続的に移動し、成膜と改質を繰り返すことができ
る。スパッタリングは成膜速度などを考慮し、高周波マ
グネトロンスパッタリング法を用いた。
[Example 1] An example of an apparatus for implementing the present invention is shown in 1rA. The apparatus is composed of a film forming chamber 1 and a reforming chamber 2, each of which has a sputtering device for depositing silicon and an electrode for generating electric discharge. These two chambers are connected by a transport device, and the substrate can be continuously moved between the two chambers to repeat film formation and modification. For sputtering, high-frequency magnetron sputtering was used in consideration of film formation speed and other factors.

出発原料として、高純度シリコンを陰極にセットし、ア
ルゴンガスを10105e導入した。基板温度は次の改
質工程の温度である300 ’Cに設定した0反応室内
の圧力を0.6mtorrs高周波電力10〇−印加に
よりSil膜が約100人成膜された基板は、成膜後6
0秒以内に改質室に移送された。なお、このsin膜中
の結合水素量は、後記比較例1に示すごとく1aL%以
下であることを確認した。改質室において、水素ガス1
00sec+* 、圧力0.2 Lorr、高周波電力
50Wを印加し高周波放電を発生させ、30秒間5iF
l膜を放電中に暴露した。再び、成膜室に改質工程を経
た基板を移送し、成膜工程−改質工程を同一条件で繰り
返した。40回の繰り返しにより、約4000人の1膜
を得た。ここで基板としては、石英ガラス基板および単
結晶Si3板を用いた0石英基板上に成膜されたSi1
膜を用いて光学的性質の測定およびその一部に金属電橋
を形成し、電気特性を測定した。また、単結晶Si基板
上に成膜した試料は赤外線吸収スペクトル測定により、
結合水素量を推算するための試料とした。この結合水素
量については、さらに二次イオン’11分析法(SIM
S)によって確認した。
As a starting material, high purity silicon was set as a cathode, and argon gas was introduced at 10105e. The substrate temperature was set at 300'C, which is the temperature for the next modification step, and the pressure in the reaction chamber was set at 0.6 mtorrs.The substrate on which a Sil film was deposited by applying 1000 kHz of high-frequency power was 6
It was transferred to the reforming chamber within 0 seconds. It was confirmed that the amount of bound hydrogen in this sin film was 1aL% or less, as shown in Comparative Example 1 below. In the reforming chamber, hydrogen gas 1
00sec+*, pressure 0.2 Lorr, high frequency power 50W was applied to generate high frequency discharge, and 5iF for 30 seconds.
1 membrane was exposed during a discharge. The substrate that had undergone the modification process was transferred to the film formation chamber again, and the film formation process and the modification process were repeated under the same conditions. By repeating the test 40 times, one membrane for about 4000 people was obtained. Here, the substrate is a Si1 film formed on a quartz substrate using a quartz glass substrate and a single crystal Si3 plate.
The optical properties of the film were measured, and a metal bridge was formed on a part of the film to measure the electrical properties. In addition, the sample formed on the single crystal Si substrate was measured by infrared absorption spectrum.
This was used as a sample to estimate the amount of bound hydrogen. The amount of bonded hydrogen can be determined using the secondary ion '11 analysis method (SIM
Confirmed by S).

この結果、得られたS1薄膜の特性として、光学的バン
ドギャップ1.65eV 、、擬似太陽光(A?l−1
,5)100IIW/c艷照射下の導電率(光導電率)
は2 X 10− ’S/c+*、暗導電率は7 X 
10− ” S/cm 、活性化エネルギー0.82e
V 、結合水素量5atχ、であった。
As a result, the properties of the obtained S1 thin film are as follows: optical bandgap 1.65 eV, pseudo sunlight (A?l-1
,5) Electrical conductivity under 100IIW/c irradiation (photoconductivity)
is 2 x 10-'S/c+*, dark conductivity is 7 x
10-”S/cm, activation energy 0.82e
V, and the amount of bound hydrogen was 5atχ.

さらに、このSi薄膜の光安定性を調べるために、擬似
太陽光AM−1,5100mW/cmを20時間連続照
射し、光導電率の変化を観測した。初期の光導電率に対
する20時間後の光導電率の変化は5%以下であり、き
わめて安定性の高い薄膜であることが判明した。
Furthermore, in order to examine the photostability of this Si thin film, it was continuously irradiated with simulated sunlight AM-1 at 5100 mW/cm for 20 hours, and changes in photoconductivity were observed. The change in photoconductivity after 20 hours with respect to the initial photoconductivity was 5% or less, and it was found that the thin film was extremely stable.

〔実施例2〕 実施例1において成膜厚みならびに改質時間のみ変更し
、それぞれ、約3人および6秒とした。
[Example 2] In Example 1, only the film forming thickness and the modification time were changed to about 3 people and 6 seconds, respectively.

成膜厚みの変更は成膜時間を変更することにより実施し
た。実施例1において、スパッタリングによる成膜速度
が約1入/秒と判明したので、本実施例においては一回
の成膜時間を3秒とした。成膜工程−改質工程の135
0回の繰り返しにより、約4000人の薄膜を得た。実
施例1と同様の測定を実施してつぎの結果を得た。光学
的バンドギャップ1.59eす、擬似太陽光CAM−1
,5)loomW/c−照射下の導電率(光導電率)は
3X 10−’S/cm、暗導電率は5X10”S/c
m 、活性化エネルギー0.”80eν、結合水素量3
 ad、であった。
The film formation thickness was changed by changing the film formation time. In Example 1, the film formation rate by sputtering was found to be about 1 input/second, so in this example, the time for one film formation was set to 3 seconds. Film formation process - Modification process 135
After 0 repetitions, approximately 4000 thin films were obtained. The same measurements as in Example 1 were carried out and the following results were obtained. Optical bandgap 1.59e, simulated sunlight CAM-1
,5) roomW/c - conductivity under irradiation (photoconductivity) is 3X 10-'S/cm, dark conductivity is 5X10"S/c
m, activation energy 0. "80eν, amount of bonded hydrogen 3
It was ad.

さらに、この5iFll膜の光安定性を調べるために、
擬似太陽光AM−1,5100mW/cdを20時間連
続照射し、光導電率の変化を観測した。初期の光導電率
に対する20時間後の光導電率の変化は5%以下であり
、きわめて安定性の高い薄膜であることが判明した。
Furthermore, in order to investigate the photostability of this 5iFll film,
Simulated sunlight AM-1, 5100 mW/cd was continuously irradiated for 20 hours, and changes in photoconductivity were observed. The change in photoconductivity after 20 hours with respect to the initial photoconductivity was 5% or less, and it was found that the thin film was extremely stable.

本実施例は非常に効果的であるが、成膜−改質の回数が
実施例1の30倍以上と多くなった。
Although this example is very effective, the number of times of film formation and modification was more than 30 times that of Example 1.

〔実施例3) 実施例1において成膜厚みならびに改質時間のみ変更し
、それぞれ、約1000人および300秒とした。成膜
厚みの変更は成膜時間を変更することにより実施した。
[Example 3] In Example 1, only the film forming thickness and the modification time were changed to about 1000 people and 300 seconds, respectively. The film formation thickness was changed by changing the film formation time.

実施例1において、スパッタリングによる成膜速度が約
1入/秒と判明したので、本実施例においては一回の成
膜時間を1000秒とした。成膜工程−改質工程の4回
の繰り返しにより約4000人の薄膜を得た。実施例1
と同様の測定を実施してつぎの結果を得た。光学的バン
ドギャップ1.73eV 、 TM似太陽光(AM−1
,5) 100mW/c+a照射下の導電率(光導電率
)は5 X 10− ’S/cm、暗導電率は5 X 
10− ” S/c+* 、活性化エネルギー0.87
eV 。
In Example 1, the film formation rate by sputtering was found to be about 1 input/second, so in this example, the time for one film formation was set to 1000 seconds. Approximately 4000 thin films were obtained by repeating the film forming process and the modification process four times. Example 1
A similar measurement was carried out and the following results were obtained. Optical bandgap 1.73eV, TM-like solar light (AM-1
, 5) The conductivity (photoconductivity) under 100 mW/c+a irradiation is 5 X 10-'S/cm, and the dark conductivity is 5 X
10-” S/c+*, activation energy 0.87
eV.

結合水素118atχ、であった。The bonded hydrogen was 118atχ.

さらに、このSll膜の光安定性を調べるために、擬(
以太陽光へM−1,5100s+W/c−を20時間連
続照射し、光導電率の変化を観測した。初期の光導電率
に対する20時間後の光導電率の変化は約8χであり、
きわめて安定性の高い薄膜であることが判明した。
Furthermore, in order to investigate the photostability of this Sll film, we conducted a pseudo(
After that, the sunlight was continuously irradiated with M-1,5100s+W/c- for 20 hours, and changes in photoconductivity were observed. The change in photoconductivity after 20 hours with respect to the initial photoconductivity is about 8χ,
It turned out to be an extremely stable thin film.

〔比較例1〕 実施例1において、Sil膜の形成後、改質工程を経る
ことなく 4000人の厚みにまで形成した0本方法に
より得られたFit膜の特性は、光導電率6×10− 
’S/cm、暗導電率6xlO−’ S/cmであり、
結合水素量は、l  at%以下であった。この膜特性
は実施例1で示された膜特性に比べ著しく低(、光電特
性を示さず、光電変iA素子の材料として用いることは
出来ない特性である。本比較例は結合水素量が10at
X以下であっても、改質工程を経過しなければ本発明の
効果は発揮出来ないことを示すものである。
[Comparative Example 1] In Example 1, after the formation of the Sil film, the Fit film was formed to a thickness of 4000 mm without going through the modification process. −
'S/cm, dark conductivity 6xlO-'S/cm,
The amount of bound hydrogen was less than 1 at%. This film property is significantly lower than the film property shown in Example 1 (it does not exhibit photoelectric properties and cannot be used as a material for a photoelectric conversion IA element. In this comparative example, the amount of bound hydrogen is 10 at
This shows that even if it is less than X, the effects of the present invention cannot be exhibited unless the modification step is performed.

〔比較例2) 実施例1において、Si薄膜を4000人の厚みにまで
形成した後(結合水素111aL%以下であった)、改
質工程を経た。改質は放電時間1200秒とした、本方
法により得られた3膜の特性は、光導電率2X 10−
 ’S/c++、暗導電率lXl0−’ S/cmであ
り、結合水素量は、11 atχであった。この膜特性
は実施例1で示された膜特性に比べて低く、従来のグロ
ー放電法や光CVI法で得られるSi薄膜と同様の特性
を示すものであった。この光安定性を測定したところ、
光導電率の変化率は約1桁はどの変化を示し、従来のs
i薄膜と同程度であった0本比較例は本発明における結
合水素量の重要性を明らかにするものであり、loa 
tχを越える結合水素量においては、成膜−改質工程の
繰り返しにおいても効果のないことを明らかにするもの
である。
[Comparative Example 2] In Example 1, after forming the Si thin film to a thickness of 4000 mm (bonded hydrogen content was 111 aL% or less), a modification process was performed. The properties of the three films obtained by this method, in which the modification was carried out for a discharge time of 1200 seconds, were as follows: photoconductivity 2X 10-
'S/c++, dark conductivity lXl0-' S/cm, and the amount of bonded hydrogen was 11 atχ. This film property was lower than the film property shown in Example 1, and exhibited properties similar to those of a Si thin film obtained by the conventional glow discharge method or photo-CVI method. When this photostability was measured,
The rate of change in photoconductivity shows a change of approximately one order of magnitude, compared to the conventional s
The comparative example, which was about the same as the i thin film, clarifies the importance of the amount of bound hydrogen in the present invention, and the loa
It is clear that when the amount of bound hydrogen exceeds tχ, there is no effect even in repeating the film formation-modification process.

(比較例3) 実施例1において、成膜工程を、水素をArに加えて添
加する反応性スパッタリングにより実施した(なお、改
質工程を行わず、4000人の薄膜を形成してその結合
水素量を測定したところ13ai、%であることを確認
した。)0本方法により得られた薄膜の特性は、光導電
率5 X 10− ’S/cm、暗導電率6 X 10
− ” S/c@であり、結合水素量は、12 atχ
であった。この膜特性は実施例1で示された膜特性に比
べて低く、従来のグロー放電法や光CVO法で得られる
Si薄膜と同様の特性を示すものであった。この光安定
性を測定したところ、光導電率の変化率は約50mはど
の変化を示して減少し、従来のSi薄膜よりは効果的で
あったが、本発明に比較するとその効果はきわめて少な
いものであった。
(Comparative Example 3) In Example 1, the film formation process was carried out by reactive sputtering in which hydrogen was added to Ar. When the amount was measured, it was confirmed that it was 13ai,%.) The properties of the thin film obtained by the 0-piece method were as follows: photoconductivity: 5 x 10-'S/cm; dark conductivity: 6 x 10-'S/cm.
- ”S/c@, and the amount of bonded hydrogen is 12 atχ
Met. This film property was lower than the film property shown in Example 1, and exhibited properties similar to those of a Si thin film obtained by a conventional glow discharge method or photo-CVO method. When this photostability was measured, the rate of change in photoconductivity decreased after about 50 m, and although it was more effective than the conventional Si thin film, the effect was extremely small compared to the present invention. It was something.

本比較例は比較例2と同様に、結合水素量の重要性を明
らかにする例であるe 10atχを越える結合水素量
のll膜においては、たとえ、成膜時のI!I厚を好ま
しい条件に選択して、成膜−改質工程を繰り返しても、
その効果は少ないことを明らかにするものである。
Similar to Comparative Example 2, this comparative example is an example that clarifies the importance of the amount of bound hydrogen. Even if the I thickness is selected under favorable conditions and the film formation-modification process is repeated,
This clearly shows that the effect is small.

〔発明の効果〕〔Effect of the invention〕

以上の実施例ならびに比較例から明らかなように、本方
法を用いて作製した非晶質半導体薄膜は、極めて良好な
光電特性を有し、かつ本質的に問題とされている光照射
に対する安定性も著しく改善される。これは、非晶質太
陽電池の光電変換効率の改善ならびに信幀性の向上につ
ながるものである。したがって、本発明は電力用太陽電
池に要求される高変換効率ならびに高信転性を可化にす
る技術を提供できるものであり、エネルギー産業にとっ
て、きわめて有用な発明である。
As is clear from the above Examples and Comparative Examples, the amorphous semiconductor thin film produced using this method has extremely good photoelectric properties and is stable against light irradiation, which is an essential problem. is also significantly improved. This leads to improvement in the photoelectric conversion efficiency and reliability of the amorphous solar cell. Therefore, the present invention can provide a technology that enables high conversion efficiency and high reliability required for power solar cells, and is an extremely useful invention for the energy industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための、非晶質半導体薄膜製
造装置の例を示す構成図である。
FIG. 1 is a block diagram showing an example of an amorphous semiconductor thin film manufacturing apparatus for carrying out the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)結合水素量が10原子%以下の半導体薄膜の形成
工程と反応性ガスを含む放電雰囲気に曝す工程とを繰り
返し行うことにより形成された半導体薄膜。
(1) A semiconductor thin film formed by repeatedly performing the step of forming a semiconductor thin film having a bound hydrogen content of 10 at % or less and the step of exposing it to a discharge atmosphere containing a reactive gas.
(2)結合水素量が10原子%以下の半導体薄膜の形成
工程と放電雰囲気に曝す工程の繰り返しにおいて、一度
の繰り返しにおいて形成される半導体薄膜の厚みが、3
から1000Åである請求項1記載の半導体薄膜。
(2) In repeating the process of forming a semiconductor thin film with a bound hydrogen content of 10 atomic % or less and the process of exposing it to a discharge atmosphere, the thickness of the semiconductor thin film formed in one repetition is 3.
2. The semiconductor thin film according to claim 1, which has a thickness of from 1000 Å to 1000 Å.
JP1163710A 1989-06-28 1989-06-28 Amorphous semiconductor thin film Pending JPH0330319A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1163710A JPH0330319A (en) 1989-06-28 1989-06-28 Amorphous semiconductor thin film
CA002019923A CA2019923C (en) 1989-06-28 1990-06-27 Semiconductor film and process for its production
DE69032290T DE69032290T2 (en) 1989-06-28 1990-06-27 Process for producing an amorphous semiconductor layer
EP90307023A EP0407088B1 (en) 1989-06-28 1990-06-27 Method of forming an amorphous semiconductor film
AU57938/90A AU631436B2 (en) 1989-06-28 1990-06-27 Semiconductor film and process for its production
US07/830,967 US5194398A (en) 1989-06-28 1992-02-06 Semiconductor film and process for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1163710A JPH0330319A (en) 1989-06-28 1989-06-28 Amorphous semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH0330319A true JPH0330319A (en) 1991-02-08

Family

ID=15779165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163710A Pending JPH0330319A (en) 1989-06-28 1989-06-28 Amorphous semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0330319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034084A (en) * 2009-11-16 2010-02-12 Kansai Electric Power Co Inc:The Follow current breaker and arc horn device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188518A (en) * 1984-10-05 1986-05-06 Fujitsu Ltd Manufacture of thin film transistor
JPS6314420A (en) * 1986-07-07 1988-01-21 Hitachi Ltd Manufacture of thin film
JPS63283119A (en) * 1987-05-15 1988-11-21 Kanegafuchi Chem Ind Co Ltd Amorphous semiconductor, amorphous semiconductor device and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188518A (en) * 1984-10-05 1986-05-06 Fujitsu Ltd Manufacture of thin film transistor
JPS6314420A (en) * 1986-07-07 1988-01-21 Hitachi Ltd Manufacture of thin film
JPS63283119A (en) * 1987-05-15 1988-11-21 Kanegafuchi Chem Ind Co Ltd Amorphous semiconductor, amorphous semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034084A (en) * 2009-11-16 2010-02-12 Kansai Electric Power Co Inc:The Follow current breaker and arc horn device

Similar Documents

Publication Publication Date Title
US5194398A (en) Semiconductor film and process for its production
US5248348A (en) Amorphous silicon solar cell and method for manufacturing the same
Craig et al. Structure, optical properties and decomposition kinetics of sputtered hydrogenated carbon
JPH084071B2 (en) Deposited film formation method
Kessels et al. High-rate deposition of a-SiN x: H for photovoltaic applications by the expanding thermal plasma
JPH02155225A (en) Method of forming amorphous semiconductor thin-film
JPH0330319A (en) Amorphous semiconductor thin film
EP0407088B1 (en) Method of forming an amorphous semiconductor film
JPH0364019A (en) Semiconductor thin film
JPH07221026A (en) Method for forming quality semiconductor thin film
JP2966909B2 (en) Amorphous semiconductor thin film
JPH03217014A (en) Thin amorphous semiconductor film
JPH0332019A (en) Amorphous semiconductor thin film
JPH0364020A (en) Semiconductor thin film
JPH0332018A (en) Amorphous semiconductor thin film
JP2966908B2 (en) Photoelectric conversion element
JP3126176B2 (en) Semiconductor thin film
JPH0364021A (en) Semiconductor thin film
JPH04326577A (en) Photoelectric transducer
JPH04115579A (en) Amorphous solar cell
JPH0364909A (en) Semiconductor thin film
JPH04320323A (en) Semiconductor thin film
JPS5916326A (en) Manufacture of thin film
JPH0590157A (en) N-type semiconductor thin film
JPH08181079A (en) Forming method of amorphous semiconductor thin film