JPS63213974A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPS63213974A
JPS63213974A JP62048111A JP4811187A JPS63213974A JP S63213974 A JPS63213974 A JP S63213974A JP 62048111 A JP62048111 A JP 62048111A JP 4811187 A JP4811187 A JP 4811187A JP S63213974 A JPS63213974 A JP S63213974A
Authority
JP
Japan
Prior art keywords
film
photovoltaic device
resin
type
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62048111A
Other languages
Japanese (ja)
Inventor
Kuniyoshi Omura
尾村 邦嘉
Hiroyuki Kitamura
北村 外幸
Yutaro Kita
祐太郎 北
Noriyuki Ueno
上野 則幸
Mikio Murozono
幹夫 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62048111A priority Critical patent/JPS63213974A/en
Publication of JPS63213974A publication Critical patent/JPS63213974A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To increase the mechanical strength of an electrode section and improve long-term reliability, and to extract a lead through soldering while largely shortening the baking time by forming an electrode conductive film through optical baking. CONSTITUTION:An n-type CdS sintered film 2 is shaped onto a glass substrate 1, and a CdTe sintered film 3 is formed onto the film 2. A carbon film 4 to which a proper quantity of an acceptor impurity is added is printed onto the CdTe film 3 and baked, thus shaping the p-type CdTe film 3. Consequently, a hetero-junction having a photovoltaic effect is formed between the n-type CdS sintered film 2 and the p-type sintered film 3. Silver paste mixed at the ratio of Ag:In:Sn:epoxy resin binder=158:1:1:40 is printed onto the CdS sintered film 2 and the carbon film 4. The whole is baked for ten min at a burning temperature within the range of 150-250 deg.C by an infrared high-speed kiln using a far infrared radiation heating element mainly generating beams having the wavelength of 1-50mum. The silver paste used at that time contains a resin as a binder, and the absorption wavelength range of the resin is kept within the extent of 6-16mum in general. A phenol, acrylic, epoxy or vinyl resin is selected as a resin employed as clectrode paste.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、■−■族化合物半導体を用いた光起電力装置
の製造方法、とくにその電極および電極形成手法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a photovoltaic device using a ■-■ group compound semiconductor, and in particular to an electrode thereof and a method for forming the electrode.

従来の技術 ff−Vl族化合物は、有力な半導体材料の1つであり
、現在では、太陽電池用として、CdSとCciT e
との接合の光起電力効果を利用したものが多く取り上げ
られている。I[−M族化合物を用いて光起電力素子を
作成する際、半導体膜から電極を取り出す必要がある。
Conventional technologyFF-Vl group compounds are one of the leading semiconductor materials, and currently CdS and CciT e are used for solar cells.
There are many examples that utilize the photovoltaic effect of bonding with. When creating a photovoltaic device using an I[-M group compound, it is necessary to take out an electrode from a semiconductor film.

従来は、Aq粉末にIn又はSnを30〜50%添加し
たものに、アクリル、フェノール、エポキシ等の樹脂バ
インダーを加え、溶剤とともに十分混合したものを、素
子半導体1漠上にスクリーン印刷を行い、輻射熱方式の
ベルト焼成炉により、150〜2oo℃で約1時間焼成
を行うことによシミ極形成を行ってきた。
Conventionally, 30 to 50% of In or Sn was added to Aq powder, a resin binder such as acrylic, phenol, or epoxy was added, and the mixture was thoroughly mixed with a solvent and screen printed on a semiconductor element. The stain electrode was formed by firing at 150 to 20° C. for about 1 hour using a radiant heat type belt firing furnace.

発明が解決しようとする問題点 しかし■−■族化合物半導体膜とオーミック接触を得、
かつ光電特性に悪影響を与えない電極/CdS膜間の接
触抵抗値3oΩ/adを得るためには、In+5n(I
n:5n=1 :1 )の添加率をAqペーストの総重
量忙対し、30〜50%にする必要があった。一般の銀
ペーストには、導電性を得るために、銀成分が80〜8
6%含有されており、上記In+Snの添加物を30〜
60%添加する事により、銀ペースト中の金属成分の含
有率が85〜90%となり、樹脂バインダーの含有率が
下がる。この様にして作成した銀ペーストを用いて電極
を形成すると、樹脂成分が10〜15係であるため、電
極自体の機械的強度も低く、特に高温高湿雰囲気下では
、長期信頼性が低かった。
Problems to be solved by the inventionHowever, it is difficult to obtain ohmic contact with the ■-■ group compound semiconductor film,
In order to obtain a contact resistance value of 3 oΩ/ad between the electrode and the CdS film that does not adversely affect the photoelectric properties, In+5n (I
It was necessary to set the addition ratio of n:5n=1:1) to 30 to 50% based on the total weight of the Aq paste. General silver paste has a silver content of 80 to 8 to obtain conductivity.
It contains 6% of the above In+Sn additives.
By adding 60%, the content of the metal component in the silver paste becomes 85 to 90%, and the content of the resin binder decreases. When an electrode is formed using the silver paste prepared in this way, the mechanical strength of the electrode itself is low because the resin component is 10-15%, and the long-term reliability is low, especially in a high-temperature and high-humidity atmosphere. .

また、電極部から半田付によりリード線を取り付ける際
、Inが半田とA9との溶融をさまたげるため、In含
有量がAqペーストに対し、S係を越えると半田付か不
可能となった。しかしながら、従来の電極では、Aqペ
ースト中のIn添加量が15〜20%であるため、半田
による電極−\のリード線取付けは不可能であり、太陽
電池素子を商品化する上で大きな問題点となっていた。
Furthermore, when attaching a lead wire from the electrode part by soldering, since In hinders the melting of the solder and A9, soldering becomes impossible when the In content exceeds the S ratio with respect to the Aq paste. However, in conventional electrodes, since the amount of In added in the Aq paste is 15 to 20%, it is impossible to attach the electrode lead wires by soldering, which is a major problem in commercializing solar cell elements. It became.

問題点を解決するための手段 本発明は、上記問題点を解決すべく、電極導電膜の形成
を光焼成で行うものである。
Means for Solving the Problems In the present invention, in order to solve the above problems, the electrode conductive film is formed by photo-baking.

作   用 これにより銀ペースト中のIn、Sn添加量を減らし、
電極部の機械的強度、長期信頼性を向上させ、半田付に
よるリード取り出しを可能にするとともK、焼成時間を
大幅に低減することができる。
Effect: This reduces the amount of In and Sn added in the silver paste,
It improves the mechanical strength and long-term reliability of the electrode part, makes it possible to take out the leads by soldering, and significantly reduces the firing time.

実施例 以下、本発明を実施例により詳述する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.

本実施例の光起電力素子の断面図を第1図に示した。第
1図に示すように、ガラス基板1上にn型CdS焼結膜
2を形成し、その上にCdTe焼結膜3を形成する。C
dTe膜3上に適量のアクセプタ不純物を添加したカー
ボン膜4を印刷、焼成し、カーホン膜4中に含1れるア
クセプタ不純物1cdTe膜3中にドープすることによ
り、p型CdTe膜3を形成した。このようにしてn型
CdS焼結・膜2とp型焼結膜3との間に光起電力効果
をもつヘテコ接合を形成する。次にCdS焼結膜2上お
よびカーボン膜4上に、Ag:In:Sn:エボキシ樹
脂バインダー:158:1 :1 :40の比で混合し
た銀ペーストを印刷する。ついで1〜60μの波長の光
を主として発生する遠赤外線放射発熱体を用いた遠赤外
高速焼成炉によシ、150℃〜250℃の範j囲の焼成
温度で10分間焼成する。ここで用いた銀ペーストは、
樹脂をバインダーとして含んでおり、樹脂の吸収波長域
は一般に6〜16μの範囲にある。電極ペーストとして
用いる樹脂は、フェノール、アクリル、エポキシ、ビニ
ル系のものを選択する。これらの樹脂分子の双極子モー
メントは一般に高いため、遠赤外線を銀ペースト印刷部
に照射すると、分子振動により、電極内部の樹脂バイン
ダーの温度が急激に上昇する。
A cross-sectional view of the photovoltaic device of this example is shown in FIG. As shown in FIG. 1, an n-type CdS sintered film 2 is formed on a glass substrate 1, and a CdTe sintered film 3 is formed thereon. C
A carbon film 4 doped with an appropriate amount of acceptor impurities was printed and fired on the dTe film 3, and the acceptor impurity 1 contained in the carbon film 4 was doped into the cdTe film 3, thereby forming a p-type CdTe film 3. In this way, a heterojunction having a photovoltaic effect is formed between the n-type CdS sintered film 2 and the p-type sintered film 3. Next, on the CdS sintered film 2 and the carbon film 4, a silver paste mixed in a ratio of Ag:In:Sn:epoxy resin binder: 158:1:1:40 is printed. Then, it is fired for 10 minutes at a firing temperature in the range of 150°C to 250°C in a far-infrared high-speed firing furnace using a far-infrared radiation heating element that mainly emits light with a wavelength of 1 to 60μ. The silver paste used here is
It contains a resin as a binder, and the absorption wavelength range of the resin is generally in the range of 6 to 16μ. The resin used as the electrode paste is selected from phenol, acrylic, epoxy, and vinyl resins. Since the dipole moment of these resin molecules is generally high, when far infrared rays are irradiated onto the silver paste printed area, the temperature of the resin binder inside the electrode rises rapidly due to molecular vibration.

従来の対流式電熱炉では、対流により熱が伝わり、電極
表面部より温度が上がシ、電極部6とCdS膜2との界
面は温度上昇が遅れる傾向があったが、遠赤外線焼成炉
においては、電極内部より温度が上昇するため、電極部
6とCdS膜2との界面付近に存在するIn、Snは、
焼成早期から溶融活性化される。このため、焼成により
樹脂バインダーが硬化する前に、遠赤外焼成では、In
、Snが溶融活性化するため、CdS膜2中2中In、
Snの拡散量及び速度が増大する。
In conventional convection electric heating furnaces, heat is transferred by convection, and the temperature tends to rise above the electrode surface, and the temperature rise at the interface between the electrode part 6 and the CdS film 2 tends to be delayed, but in a far-infrared firing furnace, Since the temperature rises from inside the electrode, In and Sn existing near the interface between the electrode part 6 and the CdS film 2 are
Melting is activated from the early stage of firing. For this reason, in far-infrared firing, before the resin binder is hardened by firing, In
, Sn is melted and activated, so In in the CdS film 2,
The amount and speed of Sn diffusion increases.

第2図に、焼成方法の違いによる電極/CdS膜間の接
触抵抗の変化を示す。図中1は、従来の対流式電熱炉で
焼成した場合の接触抵抗、2は遠赤外線焼成炉で焼成し
た場合の接触抵抗を示す。
FIG. 2 shows the change in contact resistance between the electrode and the CdS film due to different firing methods. In the figure, 1 shows the contact resistance when fired in a conventional convection electric heating furnace, and 2 shows the contact resistance when fired in a far-infrared firing furnace.

縦軸は電極e/acts膜2間の接触抵抗、横軸は銀ペ
ースト全体に対する( I n+Sn )の添加量百分
率全庁す。ここで、InとSnの重量比率はに1である
。第2図に示す様に、遠赤外線処理を行えば、(In+
Sn)添加率が1係でも、従来方法の(In+5n)3
0%添加のものと、電極s/CdS膜2接触低2接触抵
抗等であるという結果が得られた。
The vertical axis represents the contact resistance between the electrode e/acts film 2, and the horizontal axis represents the percentage of the addition amount of (In+Sn) to the entire silver paste. Here, the weight ratio of In and Sn is 1. As shown in Figure 2, if far infrared processing is performed, (In+
Even if the Sn) addition rate is 1 factor, the conventional method (In+5n)3
Results were obtained that the electrode s/CdS film 2 contact had a low 2 contact resistance, etc. compared to the one with 0% addition.

電極部6,6へのリード線取付けは、(I n+sn)
添加の重量百分率が6%以下であれば、半田付によるリ
ード線取り付けが可能であり、本実施例で形成した電極
部は、リード半田取り付は後の垂直引張り強度で0.5
〜1.oKqr/−と非常に高い値が得られる。
To attach the lead wires to the electrode parts 6, 6, (I n+sn)
If the weight percentage of addition is 6% or less, lead wire attachment by soldering is possible, and the electrode portion formed in this example has a vertical tensile strength of 0.5 after lead soldering.
~1. A very high value of oKqr/- is obtained.

また、高温高湿下での長期信頼性も向上し、601:、
95%RH条件下で、2000時間経過後、電極部の劣
化に起因する素子の性能変化は全く認められなかった。
In addition, long-term reliability under high temperature and high humidity has also been improved.
After 2000 hours under 95% RH conditions, no change in performance of the device due to deterioration of the electrode portion was observed.

発明の効果 以上の様に本発明によれば次の効果を得ることができる
Effects of the Invention As described above, according to the present invention, the following effects can be obtained.

(1)II−’A族半導体膜と電極膜との間のオーミ7
り性がよりなり、In、Sn添加量が従来の1Q分の1
以下となった。
(1) Ohmi 7 between II-'A group semiconductor film and electrode film
It has better resilience, and the amount of In and Sn added is 1/1/1 of the conventional amount.
It became the following.

(2)  半田付によるリード取出しが可能となった。(2) It is now possible to take out the leads by soldering.

(3)電極形成時間が短縮された。(3) Electrode formation time was shortened.

(4)  I n 、 S n添加量の減少にともない
、樹脂バインダー含有量が増え、特に高温高湿下での長
期信頼性が向上した。
(4) As the added amounts of In and Sn were reduced, the content of the resin binder was increased, and the long-term reliability was improved, especially under high temperature and high humidity conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光起電力素子の断面図、第2図は
本発明によって形成した電極と、従来法により形成した
電極の、CdS膜との接触抵抗比較図である。 1・・・・・・ガラス基板、2・・・・・・CdS焼結
膜、3・・・・・・CdTe焼結膜、4・・・・・・カ
ーボン膜、5・・・・・・陽極電極、6・・・・・・陰
極電極。
FIG. 1 is a cross-sectional view of a photovoltaic device according to the present invention, and FIG. 2 is a comparison diagram of contact resistance between an electrode formed according to the present invention and an electrode formed by a conventional method with a CdS film. 1... Glass substrate, 2... CdS sintered film, 3... CdTe sintered film, 4... Carbon film, 5... Anode Electrode, 6... cathode electrode.

Claims (7)

【特許請求の範囲】[Claims] (1)II−VI族化合物半導体を用いた光電素子の電極形
成において、電極導電膜を光焼成により形成することを
特徴とした光起電力装置の製造方法。
(1) A method for manufacturing a photovoltaic device, characterized in that in forming electrodes of a photoelectric device using a II-VI group compound semiconductor, an electrode conductive film is formed by photo-baking.
(2)光焼成における照射光の波長λの範囲が、1μ≦
λ≦50μである遠赤外領域の光を主として用いること
を特徴とする特許請求の範囲第1項記載の光起電力装置
の製造方法。
(2) The range of the wavelength λ of the irradiated light in photobaking is 1μ≦
The method for manufacturing a photovoltaic device according to claim 1, characterized in that light in the far infrared region where λ≦50μ is mainly used.
(3)電極導電膜の焼成温度Tが150℃≦T≦250
℃であることを特徴とする特許請求の範囲第1項記載の
光起電力装置の製造方法。
(3) The firing temperature T of the electrode conductive film is 150°C≦T≦250
The method for manufacturing a photovoltaic device according to claim 1, wherein the temperature is .degree.
(4)II−VI族化合物半導体を用いた光起電力素子が、
p型CdTe膜と、n型CdSもしくは、それを含む化
合物半導体からなるn形膜とのヘテロ接合による光起電
性を用いた素子であることを特徴とする特許請求の範囲
第1項記載の光起電力装置の製造方法。
(4) A photovoltaic device using a II-VI group compound semiconductor,
Claim 1, characterized in that the device uses photovoltaic properties due to a heterojunction of a p-type CdTe film and an n-type film made of n-type CdS or a compound semiconductor containing the same. Method of manufacturing a photovoltaic device.
(5)電極導電膜が、Ag、In、Snもしくはそれら
を含む化合物から成ることを特徴とする特許請求の範囲
第1項記載の光起電力装置の製造方法。
(5) The method for manufacturing a photovoltaic device according to claim 1, wherein the electrode conductive film is made of Ag, In, Sn, or a compound containing them.
(6)電極導電膜が、Ag、In、Snもしくはそれら
を含む金属化合物と有機物質との混合物から成ることを
特徴とする特許請求の範囲第1項記載の光起電力装置の
製造方法。
(6) The method for manufacturing a photovoltaic device according to claim 1, wherein the electrode conductive film is made of a mixture of Ag, In, Sn, or a metal compound containing these and an organic substance.
(7)光焼成における光発生源として、遠赤外線放射発
熱体を用いることを特徴とする特許請求の範囲第1項記
載の光起電力装置の製造方法。
(7) A method for manufacturing a photovoltaic device according to claim 1, characterized in that a far-infrared radiation heating element is used as a light generation source in the photo-baking.
JP62048111A 1987-03-03 1987-03-03 Manufacture of photovoltaic device Pending JPS63213974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62048111A JPS63213974A (en) 1987-03-03 1987-03-03 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62048111A JPS63213974A (en) 1987-03-03 1987-03-03 Manufacture of photovoltaic device

Publications (1)

Publication Number Publication Date
JPS63213974A true JPS63213974A (en) 1988-09-06

Family

ID=12794202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62048111A Pending JPS63213974A (en) 1987-03-03 1987-03-03 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPS63213974A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117177A (en) * 1988-10-26 1990-05-01 Fuji Electric Co Ltd Thin film optoelectric transducer
JP2744847B2 (en) * 1991-06-11 1998-04-28 エイエスイー・アメリカス・インコーポレーテッド Improved solar cell and method for manufacturing the same
EP0744779A3 (en) * 1995-05-17 1998-10-21 Matsushita Battery Industrial Co Ltd A manufacturing method of compound semiconductor thinfilms and photoelectric device or solar cell using the same compound semiconductor thinfilms
JP2002373995A (en) * 2001-06-15 2002-12-26 Honda Motor Co Ltd Manufacturing method for solar cell
JP2008135416A (en) * 2005-11-11 2008-06-12 Mitsubishi Materials Corp Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115359A (en) * 1979-02-27 1980-09-05 Agency Of Ind Science & Technol Electrode material for group 2-6 compound semiconductor
JPS55117287A (en) * 1979-03-02 1980-09-09 Agency Of Ind Science & Technol Photovoltaic element and fabricating the same
JPS5996798A (en) * 1982-11-03 1984-06-04 レイデイアント・テクノロジ−・コ−ポレイシヨン Method of producing multilayer thick film circuit
JPS61124084A (en) * 1984-11-20 1986-06-11 松下電器産業株式会社 Continuous heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115359A (en) * 1979-02-27 1980-09-05 Agency Of Ind Science & Technol Electrode material for group 2-6 compound semiconductor
JPS55117287A (en) * 1979-03-02 1980-09-09 Agency Of Ind Science & Technol Photovoltaic element and fabricating the same
JPS5996798A (en) * 1982-11-03 1984-06-04 レイデイアント・テクノロジ−・コ−ポレイシヨン Method of producing multilayer thick film circuit
JPS61124084A (en) * 1984-11-20 1986-06-11 松下電器産業株式会社 Continuous heater

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117177A (en) * 1988-10-26 1990-05-01 Fuji Electric Co Ltd Thin film optoelectric transducer
JP2744847B2 (en) * 1991-06-11 1998-04-28 エイエスイー・アメリカス・インコーポレーテッド Improved solar cell and method for manufacturing the same
EP0744779A3 (en) * 1995-05-17 1998-10-21 Matsushita Battery Industrial Co Ltd A manufacturing method of compound semiconductor thinfilms and photoelectric device or solar cell using the same compound semiconductor thinfilms
JP2002373995A (en) * 2001-06-15 2002-12-26 Honda Motor Co Ltd Manufacturing method for solar cell
JP2008135416A (en) * 2005-11-11 2008-06-12 Mitsubishi Materials Corp Composition for forming electrode in solar cell, method of forming electrode, and solar cell using electrode obtained by the same
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9312404B2 (en) 2006-06-30 2016-04-12 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9620668B2 (en) 2006-06-30 2017-04-11 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US10020409B2 (en) 2007-04-19 2018-07-10 Mitsubishi Materials Corporation Method for producing a conductive reflective film

Similar Documents

Publication Publication Date Title
US4235644A (en) Thick film silver metallizations for silicon solar cells
JP5438113B2 (en) Use of aluminum paste and aluminum paste in the production of silicon solar cells
CN102770963B (en) For the preparation of the method for MWT silicon solar cell
US20090255583A1 (en) Aluminum pastes and use thereof in the production of silicon solar cells
US20090229665A1 (en) Aluminum pastes and use thereof in the production of silicon solar cells
JP4949263B2 (en) Paste composition and solar cell element using the same
JP2011035024A (en) Paste composition and solar cell element employing the same
CN109659064B (en) Front silver paste with high tensile force for crystalline silicon Perc battery and preparation process thereof
CN1881621A (en) Aluminum thick film composition(s), electrode(s), semiconductor device(s), and methods of making thereof
JPS63213974A (en) Manufacture of photovoltaic device
US20060118898A1 (en) Photoelectric conversion device and method of manufacturing the same
JPS5819125B2 (en) Manufacturing method of semiconductor device
JP2006261621A (en) Solar battery and its manufacturing method
US20100317143A1 (en) Process of forming a silicon solar cell
JP2010123999A (en) Paste material for solar battery and method for manufacturing solar battery
US20120160314A1 (en) Process for the formation of a silver back anode of a silicon solar cell
CN1933183A (en) Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
JP2012094625A (en) Solar battery conductor and its manufacturing method
JPS59117276A (en) Manufacture of solar battery
CN110634618B (en) Method for manufacturing solar cell electrode, conductive paste and method for manufacturing conductive paste
KR101853417B1 (en) Conductive paste composition for electrode of solar cell and solar cell comprising electrode manufactured using the same
KR101711390B1 (en) Aluminum paste composition, a rear electrode for solar cell formed using it, and a solar cell employing it
TWI720664B (en) Solar cell and method for manufacturing solar cell
JPS6237552B2 (en)
KR20100023508A (en) Solar cell and method of fabricating the same