JPS622711B2 - - Google Patents

Info

Publication number
JPS622711B2
JPS622711B2 JP56117162A JP11716281A JPS622711B2 JP S622711 B2 JPS622711 B2 JP S622711B2 JP 56117162 A JP56117162 A JP 56117162A JP 11716281 A JP11716281 A JP 11716281A JP S622711 B2 JPS622711 B2 JP S622711B2
Authority
JP
Japan
Prior art keywords
cdte
solar cell
film
cds
solar cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56117162A
Other languages
Japanese (ja)
Other versions
JPS5818969A (en
Inventor
Hitoshi Matsumoto
Nobuo Nakayama
Akihiko Nakano
Hiroshi Uda
Seiji Ikegami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56117162A priority Critical patent/JPS5818969A/en
Publication of JPS5818969A publication Critical patent/JPS5818969A/en
Publication of JPS622711B2 publication Critical patent/JPS622711B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は太陽電池の製造方法、特にCdTe系の
太陽電池の製造方法にかかり、寿命特性の優れた
高性能の太陽電池を量産性よく製造することので
きる方法を提供しようとするものである。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing solar cells, particularly a method for manufacturing CdTe-based solar cells, and provides a method that can mass-produce high-performance solar cells with excellent life characteristics. This is what I am trying to do.

―族化合物半導体を利用した太陽電池とし
て、もつとも広く知られているものはCu2Sと
CdSの接合の光起電力効果を利用した太陽電池を
あげることができる。これはCdSが多結晶であつ
てもかなり性能のよい太陽電池が実現できるだけ
でなく、製造技術的にも制約が少なく、大面積の
太陽電池を量産することができるためである。
The most widely known solar cells using - group compound semiconductors are Cu 2 S and Cu 2 S.
One example is a solar cell that utilizes the photovoltaic effect of CdS junctions. This is because even though CdS is polycrystalline, it is possible to realize solar cells with fairly good performance, and there are few restrictions in terms of manufacturing technology, making it possible to mass-produce large-area solar cells.

ところがCu2S/CdS系太陽電池の実用化され
る至つていない原因は、その特性の劣化にあり、
これは、P形半導体として使用されているCu2S
の不安定性によるものである。
However, the reason why Cu 2 S/CdS solar cells have not been put into practical use is due to the deterioration of their characteristics.
This is Cu 2 S, which is used as a P-type semiconductor.
This is due to the instability of

このような本質的な問題点のあるCu2Sを使用
しない太陽電池として、CdTe系の太陽電池があ
り、特にCdS/CdTe系太陽電池は広く研究され
ている。この系の太陽電池に於ては、CdTeをP
形にするためのアクセプター不純物として主とし
てCu化合物が用いられている。Cuをドープする
方法として、CdTe膜をCuCl水溶液中に浸漬後熱
処理する、Cu化合物を蒸着する、Cu化合物の入
つたカーボンペーストを印刷後熱処理する等の方
法が用いられてきたが、いずれもCuがイオン伝
導しやすいため寿命特性は必ずしも満足すべきも
のではなかつた。
As a solar cell that does not use Cu 2 S, which has such inherent problems, there is a CdTe-based solar cell, and in particular, CdS/CdTe-based solar cells have been widely studied. In this type of solar cell, CdTe is
Cu compounds are mainly used as acceptor impurities to form Methods of doping Cu have been used, such as immersing a CdTe film in a CuCl aqueous solution and then heat-treating it, vapor-depositing a Cu compound, and heat-treating a carbon paste containing a Cu compound after printing. The life characteristics were not necessarily satisfactory because of the tendency for ion conduction.

本発明はこのような点に鑑みて成されたもので
あり、Teを添加したカーボンペーストをCdTe膜
上に印刷し熱処理すればCdTe膜をP形化できか
つ、同時に一方の電極を形成できることを見い出
したものである。TeはCdTeの構成物質であり、
これをCdTe中へドープしTe過剰のCdTe膜をつ
くることによりCdTeをP形化することができ
る。又TeはCuのようにイオン伝導しやすいもの
ではないので寿命の安定なものができると考えら
れる。さらに本発明の方法はスクリーン印刷法を
用いているので蒸着などによつてTeを付着させ
るのに比べて工程が簡単である。又カーポンペー
スト中へTeを添加するという方法を用いている
ので添加量を任意に制御できるという特徴も有し
ている。
The present invention has been made in view of these points, and it has been discovered that by printing a Te-added carbon paste on a CdTe film and heat-treating it, the CdTe film can be made into P-type, and one electrode can be formed at the same time. This is what I discovered. Te is a component of CdTe,
By doping this into CdTe and creating a CdTe film with excess Te, CdTe can be made into P-type. Also, since Te does not easily conduct ions like Cu, it is thought that it can be made with a stable lifespan. Furthermore, since the method of the present invention uses a screen printing method, the process is simpler than attaching Te by vapor deposition or the like. Furthermore, since it uses a method of adding Te into the carpon paste, it also has the feature that the amount added can be controlled arbitrarily.

以下、本発明の製造方法について、実施例にも
とづいて詳細に説明する。
Hereinafter, the manufacturing method of the present invention will be explained in detail based on Examples.

(実施例 1) CdS粉末に融剤としてCdCl2を10重量%、プロ
ピレングリコールを20〜30重量%加えてCdSペー
ストを作り、これをガラス基板上にスクリーン印
刷した。乾燥後、これを焼成容器に入れて、窒素
気流中で690℃の温度で1時間焼結することによ
り、CdS焼結膜を作成した。次にCdTe粉末に
CdCl2を1重量%、プロピレングリコールを20〜
30重量%加えてCdTeペーストを作り、これを上
記CdS焼結膜上にスクリーン印刷した。乾燥後、
これを焼成容器に入れて、窒素気流中で640℃で
20分間焼結しCdTe焼結膜を作成した。このよう
にして得られたCdTe焼結膜上に1重量%のTeを
含んだ高純度カーボンペーストをスクリーン印刷
法によつて印刷し、乾燥後、窒素中において350
℃の温度で30分間熱処理し、CdTe膜をP形化す
るとともに、カーボン電極を形成した。最後に
CdS側にAg―Inペーストをスクリーン印刷して
CdS側の電極をつけ太陽電池素子を完成した。こ
の太陽電池の真性変換効率は7.8%で6ケ月間の
屋外の実働試験では殆ど劣化していなかつた。
(Example 1) A CdS paste was prepared by adding 10% by weight of CdCl 2 and 20 to 30% by weight of propylene glycol as a flux to CdS powder, and this paste was screen printed on a glass substrate. After drying, this was placed in a sintering container and sintered at a temperature of 690° C. for 1 hour in a nitrogen stream to create a CdS sintered film. Then to CdTe powder
CdCl 2 1% by weight, propylene glycol 20~
A CdTe paste was prepared by adding 30% by weight, and this was screen printed on the CdS sintered film. After drying,
This was placed in a firing container and heated at 640°C in a nitrogen stream.
A CdTe sintered film was created by sintering for 20 minutes. A high-purity carbon paste containing 1% by weight of Te was printed on the CdTe sintered film obtained in this way by screen printing, and after drying, it was dried at 350° C. in nitrogen.
A heat treatment was performed at a temperature of 30°C for 30 minutes to convert the CdTe film into P-type and form a carbon electrode. lastly
Screen print Ag-In paste on the CdS side
A solar cell element was completed by attaching an electrode on the CdS side. The intrinsic conversion efficiency of this solar cell was 7.8%, and it showed almost no deterioration during a 6-month outdoor test.

一方、CdTe焼結膜上に0.1重量%のCuを含ん
だ高純度カーボンペーストをけ、300℃で30分間
熱処理してつくつた太陽電池素子の真性変換効率
は8.1%、350℃で30分間熱処理した素子は6.2%
であつた。しかしこれらの素子は劣化が大きく、
6ケ月間の屋外の実働試験で前者で15%、後者で
20%の劣化率を示した。
On the other hand, the intrinsic conversion efficiency of a solar cell element made by applying a high-purity carbon paste containing 0.1% by weight of Cu on a CdTe sintered film and heat-treating it at 300℃ for 30 minutes was 8.1%; Element is 6.2%
It was hot. However, these elements deteriorate significantly,
15% in the former and 15% in the latter in a 6-month outdoor practical test
It showed a deterioration rate of 20%.

(実施例 2) 酸化インジウムのついたガラス基板上に、CdS
膜をスパツター法でつけ、さらにその上にCdTe
膜を蒸着法でつけた。次にTeを0.3重量%含んだ
高純度カーボンペーストをこのCdTe膜上に印刷
し300℃で30分間熱処理し、CdTe膜をP形化す
るとともに、カーボン電極を形成し、太陽電池素
子をつくつた。この太陽電池の真性変換効率は
6.5%で6ケ月間の屋外の実働試験では殆ど劣化
していなかつた。一方、CdTe蒸着膜上に0.02%
のCuSO4を含んだ高純度カーボンペーストをつ
け、300℃で30分間熱処理してつくつた太陽電池
素子の真性変換効率は6.9%であつたが、6ケ月
の実働試験で10%の劣化率を示した。
(Example 2) CdS was placed on a glass substrate coated with indium oxide.
A film is applied by sputtering, and then CdTe is applied on top of it.
The film was applied by vapor deposition. Next, a high-purity carbon paste containing 0.3% by weight of Te was printed on this CdTe film and heat-treated at 300°C for 30 minutes to convert the CdTe film into P-type and form a carbon electrode, creating a solar cell element. . The intrinsic conversion efficiency of this solar cell is
At 6.5%, there was almost no deterioration in a 6-month outdoor practical test. On the other hand, 0.02% on CdTe vapor deposited film
The intrinsic conversion efficiency of the solar cell element made by attaching high-purity carbon paste containing CuSO 4 and heat-treating it at 300℃ for 30 minutes was 6.9%, but after 6 months of practical testing, the deterioration rate was 10%. Indicated.

なお、実施例1,2に於て高純度カーボンペー
スト中に何も添加しない場合は真性変換効率は低
く、1%以下であつた。
In addition, in Examples 1 and 2, when nothing was added to the high purity carbon paste, the intrinsic conversion efficiency was low, being 1% or less.

以上述べたように、本発明の方法によれば寿命
の安定な太陽電池素子を簡単な工程で作成でき
る。特に実施例1で述べたようなCdS膜、CdTe
膜、電極を全てスクリーン印刷方式で形成させて
つくる太陽電池では工程が量産性に優れているの
で、本発明の方法を採用すれば安価で安定な太陽
電池を提供することができる。
As described above, according to the method of the present invention, a solar cell element with a stable lifetime can be produced through simple steps. In particular, CdS film, CdTe as described in Example 1
Solar cells manufactured by forming all membranes and electrodes by screen printing have excellent mass productivity, so if the method of the present invention is employed, it is possible to provide inexpensive and stable solar cells.

なお、上記実施例ではCdS/CdTe太陽電池に
ついて述べたが、本発明の方法はCdTeホモ接合
太陽電池などに於てもCdTeをP形化するのに有
効であるのは勿論のことである。
In the above embodiment, a CdS/CdTe solar cell was described, but it goes without saying that the method of the present invention is also effective for converting CdTe into P-type in a CdTe homojunction solar cell.

Claims (1)

【特許請求の範囲】[Claims] 1 少くともCdTe膜を含む―族化合物半導
体膜を基板上に積層して設ける太陽電池の製造方
法において、前記CdTe膜上にTeを添加したカー
ボンペーストを印刷した後、熱処理を施すことに
より、前記CdTe膜をP形化すると同時に一方の
電極を形成することを特徴とする太陽電池の製造
方法。
1. In a method for manufacturing a solar cell in which a - group compound semiconductor film containing at least a CdTe film is laminated on a substrate, a carbon paste doped with Te is printed on the CdTe film, and then a heat treatment is performed. A method for manufacturing a solar cell characterized by forming one electrode at the same time as converting a CdTe film into P-type.
JP56117162A 1981-07-28 1981-07-28 Manufacture of solar battery Granted JPS5818969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56117162A JPS5818969A (en) 1981-07-28 1981-07-28 Manufacture of solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56117162A JPS5818969A (en) 1981-07-28 1981-07-28 Manufacture of solar battery

Publications (2)

Publication Number Publication Date
JPS5818969A JPS5818969A (en) 1983-02-03
JPS622711B2 true JPS622711B2 (en) 1987-01-21

Family

ID=14704981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56117162A Granted JPS5818969A (en) 1981-07-28 1981-07-28 Manufacture of solar battery

Country Status (1)

Country Link
JP (1) JPS5818969A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4709466A (en) * 1985-04-15 1987-12-01 The University Of Delaware Process for fabricating thin film photovoltaic solar cells

Also Published As

Publication number Publication date
JPS5818969A (en) 1983-02-03

Similar Documents

Publication Publication Date Title
Feng et al. High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells
Duan et al. Defects and stability of perovskite solar cells: a critical analysis
Hodes et al. Painted, polycrystalline thin film photoelectrodes for photoelectrochemical solar cells
US5578503A (en) Rapid process for producing a chalcopyrite semiconductor on a substrate
JPS6252478B2 (en)
US9117956B2 (en) Method of controlling the amount of Cu doping when forming a back contact of a photovoltaic cell
JP3311873B2 (en) Manufacturing method of semiconductor thin film
JP3519543B2 (en) Precursor for forming semiconductor thin film and method for producing semiconductor thin film
US4362896A (en) Polycrystalline photovoltaic cell
JPS622711B2 (en)
CN115568263A (en) Preparation method of perovskite active layer in solar cell
JP3520683B2 (en) Compound semiconductor thin film, method for manufacturing the same, and solar cell
CN109473552B (en) Solar cell based on solution method and preparation method thereof
US4404734A (en) Method of making a CdS/Cux S photovoltaic cell
CN115498052B (en) CIGS solar cell preparation method
JP3069158B2 (en) Solar cell and method of manufacturing the same
JP2003179237A (en) Forming method of semiconductor thin film and solar battery
JPH08195501A (en) Ib-iiib-vib compound semiconductor
JPH11195658A (en) Method and device for manufacturing cadmium sulfide film and solar battery using the same
JP3077574B2 (en) Photoelectric conversion element
JPS62203384A (en) Photovoltaic device and manufacture thereof
CN116454148A (en) High-gallium-component CIGS flexible thin-film solar cell and preparation method thereof
JPH08195502A (en) Thin film photoelectric conversion element
JPS6237552B2 (en)
JP2523734B2 (en) Manufacturing method of photovoltaic device