JP3520683B2 - Compound semiconductor thin film, method for manufacturing the same, and solar cell - Google Patents

Compound semiconductor thin film, method for manufacturing the same, and solar cell

Info

Publication number
JP3520683B2
JP3520683B2 JP21958096A JP21958096A JP3520683B2 JP 3520683 B2 JP3520683 B2 JP 3520683B2 JP 21958096 A JP21958096 A JP 21958096A JP 21958096 A JP21958096 A JP 21958096A JP 3520683 B2 JP3520683 B2 JP 3520683B2
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
compound semiconductor
group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21958096A
Other languages
Japanese (ja)
Other versions
JPH1064925A (en
Inventor
直樹 小原
卓之 根上
幹彦 西谷
隆博 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21958096A priority Critical patent/JP3520683B2/en
Publication of JPH1064925A publication Critical patent/JPH1064925A/en
Application granted granted Critical
Publication of JP3520683B2 publication Critical patent/JP3520683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体薄膜
とその製造方法及び太陽電池に関する。
TECHNICAL FIELD The present invention relates to a compound semiconductor thin film, a method for manufacturing the same, and a solar cell.

【0002】[0002]

【従来の技術】太陽電池の光吸収層として用いられるI
族、III族、VI族元素からなる半導体薄膜は光吸収係数
が大きく、薄膜化が可能な太陽電池材料として注目を集
めている。例えばCu(In,Ga)Se2薄膜を光吸収層
に用いた太陽電池は理論上の変換効率が高く、光照射等
による効率の劣化がないという利点を有していることが
報告されている。現在高い変換効率を示す太陽電池に用
いられているCu(In,Ga)Se2薄膜はGa/(In
+Ga)比が0.2〜0.3程度であり、バンドギャッ
プにして1.2eV程度になっている。
2. Description of the Related Art I used as a light absorption layer for solar cells
Semiconductor thin films made of Group III, Group III, and Group VI elements have a large light absorption coefficient, and are attracting attention as solar cell materials that can be thinned. For example, it has been reported that a solar cell using a Cu (In, Ga) Se 2 thin film as a light absorption layer has an advantage that theoretical conversion efficiency is high and efficiency is not deteriorated by light irradiation or the like. . The Cu (In, Ga) Se 2 thin film currently used for the solar cell showing high conversion efficiency is Ga / (In
+ Ga) ratio is about 0.2 to 0.3, and the band gap is about 1.2 eV.

【0003】一方、この高効率Cu(In,Ga)Se2
膜の表面にはIn,Ga過剰相であるCu(In,Ga)3
Se5が存在していると言われ、Cu(In,Ga)3Se5
の結晶構造、及びその膜物性について研究報告されてい
る。例えば1995年のプログレス イン フォトボル
タイック、第3巻、第6(Progress in Photovoltaics,V
ol.3,No.6,1995)においてショック(W.Schock)等はソー
ラーセルズ ベーストオン CuInSe2 アンド
リレーテッド コンパウンズ:マテリアルアンド プロ
シーディング(Solar Cells Based on CuInSe2 and Rela
ted Compounds:Material and Device Properties and P
rocessing)という題で、In,Ga過剰組成のCuIn
Se2薄膜表面にはCuIn3Se5相が存在し、Inを
Gaで置換したCuGaSe2薄膜やSeをSで置換し
たCuInS2薄膜ではCuIn5Se8相やCuIn5
8相に変化することを報告している。しかしIII族元素
やVI族元素の固溶率の違いによる結晶構造の変化につい
ての詳細は明らかでない。その他Cu(In,Ga)3Se
5の物性に関する報告例として、1995年の刊行物ア
プライド フィジックス レター(Applied Physics Le
tters,Vol.67,No.6,1995)で我々はプリパレーション
アンド キャラクタライゼーション オブ Cu(In
1-xGax)3Se5 シン フィルムス(Preparation and
characterization of Cu(In,Ga)3Se5 thin films)と
いう題で、同じGa含有率ではCu(In,Ga)3
5がCu(In,Ga)Se2に比べて大きなバンドギ
ャップを有し、さらにGa量xの増加に伴いCu(I
n,Ga)3Se5のバンドギャップが増加することを報
告している。また、1996年5月に行われた第25回
IEEE太陽エネルギー変換国際会議(25th IEEE First
World Conference on Pkotovoltaic Energy Conversio
n)においてコントレラス(M.Contreras)等はディフェク
ト カルコパイライト Cu(In,Ga)3Se5 ポリ
クリスタラインシン フィルム マテリアルズ(Defect
Chalcopyrite Cu(In,Ga)3Se5 Polycrystalline Thin-Fi
lm Materials)という題で、我々同様、同じGa含有率
では欠陥カルコパイライト構造を有するCu(In,G
a)3Se5相がカルコパイライト構造のCu(In,Ga)
Se2相よりも約200meV程度バンドギャップ大きくな
ることを報告し、さらにCuIn3Se5ではn型を示し
ていた伝導形がGa/(In+Ga)比の値が0.3以上
になるとp形に変化すると報告している。しかしCu
(In,Ga)3Se5は約106Ω-cmと抵抗値が高いた
め、測定上の誤差等を含めその詳細はわからない。
On the other hand, on the surface of this high-efficiency Cu (In, Ga) Se 2 thin film, Cu (In, Ga) 3 which is an In, Ga excess phase is formed.
It is said that Se 5 exists, and Cu (In, Ga) 3 Se 5 is present.
Has been reported on its crystal structure and its physical properties. For example, in 1995 Progress in Photovoltaics, Volume 3, Volume 6 (Progress in Photovoltaics, V
ol.3, No.6,1995), shocks (W.Schock), etc. are caused by solar cells based on CuInSe 2 and
Relayed Compounds: Material and Proceedings (Solar Cells Based on CuInSe 2 and Rela
ted Compounds: Material and Device Properties and P
CuIn with excessive composition of In and Ga
A CuIn 3 Se 5 phase exists on the surface of the Se 2 thin film, and a CuGaSe 2 thin film in which In is replaced by Ga and a CuInS 2 thin film in which Se is replaced by S are CuIn 5 Se 8 phase and CuIn 5 S.
e It has been reported that it changes to phase 8 . However, the details of the change in crystal structure due to the difference in the solid solution rates of group III elements and group VI elements are not clear. Others Cu (In, Ga) 3 Se
As an example of the report on the physical properties of 5, the Applied Physics Letter (1995)
tters, Vol.67, No.6,1995)
And characterization of Cu (In
1-x Ga x ) 3 Se 5 Thin Films (Preparation and
Characterization of Cu (In, Ga) 3 Se 5 thin films), with the same Ga content, Cu (In, Ga) 3 S
e 5 has a larger band gap than Cu (In, Ga) Se 2 , and Cu (I
It has been reported that the band gap of n, Ga) 3 Se 5 increases. In addition, the 25th IEEE International Conference on Solar Energy Conversion (25th IEEE First Conference) held in May 1996.
World Conference on Pkotovoltaic Energy Conversio
In n), M. Contreras and the like are defective chalcopyrite Cu (In, Ga) 3 Se 5 Polycrystalline thin film materials (Defect
Chalcopyrite Cu (In, Ga) 3 Se 5 Polycrystalline Thin-Fi
lm Materials), like us, Cu (In, G) having a defective chalcopyrite structure with the same Ga content
a) Cu (In, Ga) with 3 Se 5 phase having chalcopyrite structure
It was reported that the band gap was about 200 meV larger than that of the Se 2 phase, and the conductivity type, which was n-type in CuIn 3 Se 5 , became p-type when the Ga / (In + Ga) ratio was 0.3 or more. It will change. But Cu
Since (In, Ga) 3 Se 5 has a high resistance value of about 10 6 Ω-cm, its details including measurement error and the like cannot be understood.

【0004】[0004]

【発明が解決しようとする課題】以上の報告からCu
(In,Ga)Se2を太陽電池の光吸収層に適用した場
合、Cu(In,Ga)Se2のバンドギャップを太陽光ス
ペクトルにマッチングさせる必要性があるが、現在高い
変換効率を示す太陽電池に用いられているCu(In,G
a)Se2薄膜はGa/(In+Ga)比が0.2〜0.
3程度であり、バンドギャップにして1.2eV程度にな
っているため、より高い変換効率を得るためにはさらに
Ga濃度を上げ、Ga/(In+Ga)≒0.7でバン
ドギャップを1.5eV程度にする必要がある。しかしバ
ンドギャップを広げる目的でGa濃度を上げるとCu
(In,Ga)Se2の結晶性が低下し、光を吸収して生成
したキャリアを消滅させるような欠陥を多く含むCu
(In,Ga)Se2薄膜になり、その結果太陽電池の変換
効率が低下する結果となる。しかし高品質な膜を得るた
めのGa/(In+Ga)比が0.2〜0.3程度では
太陽光スペクトルとのマッチングを考えた場合、バンド
ギャップが小さく損失が大きくなり、バンドギャップの
値から計算される理論的上の変換効率の最高値も低い値
となる。従って如何にGa濃度の少ない高品質な膜でか
つ太陽光スペクトルにマッチした大きなバンドギャップ
をもつ光吸収層を得るかが重要な課題である。
According to the above reports, Cu
When (In, Ga) Se 2 is applied to the light absorption layer of a solar cell, it is necessary to match the bandgap of Cu (In, Ga) Se 2 with the solar spectrum, but the solar cells that currently show high conversion efficiency. Cu (In, G) used in batteries
a) The Se 2 thin film has a Ga / (In + Ga) ratio of 0.2 to 0.
It is about 3 and the band gap is about 1.2 eV. Therefore, in order to obtain higher conversion efficiency, the Ga concentration is further increased, and Ga / (In + Ga) ≈0.7 and the band gap is 1.5 eV. Need to be about. However, if Ga concentration is increased for the purpose of widening the band gap, Cu
Cu containing many defects such that the crystallinity of (In, Ga) Se 2 is lowered and the generated carriers are eliminated by absorbing light.
This results in a (In, Ga) Se 2 thin film, resulting in a decrease in conversion efficiency of the solar cell. However, when the Ga / (In + Ga) ratio for obtaining a high-quality film is about 0.2 to 0.3, the band gap is small and the loss becomes large when considering the matching with the sunlight spectrum. The highest theoretical conversion efficiency calculated is also low. Therefore, an important issue is how to obtain a high-quality film having a low Ga concentration and a light absorption layer having a large band gap that matches the sunlight spectrum.

【0005】また、同じGa含有量でバンドギャップの
大きなCu(In,Ga)3Se5を光吸収層に適用させる
ためには従来n形の伝導形を示すと考えられていたCu
In 3Se5がGaを含有することによりp形の伝導形に
なる必要性があるが、Ia族を加えた条件でCu(In,
Ga)3Se5がp形化するためのInとGaの固溶率の
範囲に関する詳細については明らかでなく、また基板か
ら拡散、混入しているNa等の不純物元素によってCu
(In,Ga)3Se5がどのような影響を受けるかについ
てはわかっていない。
In addition, the band gap of the same Ga content
Large Cu (In, Ga)3SeFiveApplied to the light absorption layer
In order to achieve this, Cu, which was conventionally thought to exhibit an n-type conduction type,
In 3SeFiveBecomes a p-type conduction type by containing Ga
However, under the condition that Group Ia is added, Cu (In,
Ga)3SeFiveOf In and Ga to form p-type
No details are given regarding the range, and the
Cu due to impurity elements such as Na diffused and mixed from
(In, Ga)3SeFiveHow is it affected
I don't know.

【0006】[0006]

【課題を解決するための手段】本発明は、上記問題を解
決するためにIa族元素を含有する[Cu2(Sz
1- z)]x[(In1-yGay)2(SzSe1-z)31-x化合物
半導体薄膜を提供する。但し、0.16≦x≦0.3
4、0.05≦y≦0.55、0≦z≦1.0である。
In order to solve the above problems, the present invention contains a group Ia element [Cu 2 (S z S
e 1- z)] x [( In 1-y Ga y) 2 (S z Se 1-z) 3] provides 1-x compound semiconductor thin film. However, 0.16 ≦ x ≦ 0.3
4, 0.05 ≦ y ≦ 0.55 and 0 ≦ z ≦ 1.0.

【0007】Ia族元素としてLi、Na、Kのうち少
なくとも一種類を用いることが好ましい。
It is preferable to use at least one of Li, Na and K as the group Ia element.

【0008】また、Ia族元素の含有率は1mol%を上限
とすることが好ましい。本発明はIa族元素の蒸着源と
してLi化合物、Na化合物、K化合物のうち少なくと
も一種類を用いた製造方法を提供する。
The content of the Group Ia element is preferably set to 1 mol% as an upper limit. The present invention provides a manufacturing method using at least one kind of Li compound, Na compound, and K compound as a vapor deposition source of a group Ia element.

【0009】ここでLi化合物としてLi2O、Li2
2、Li2S、Li2Se、Li2Te、LiF、LiC
l、LiBr、LiIのうち少なくとも一種類を用いて
製造することが好ましい。
Here, Li 2 O and Li 2 O are used as the Li compound.
2 , Li 2 S, Li 2 Se, Li 2 Te, LiF, LiC
It is preferable to use at least one of l, LiBr, and LiI.

【0010】また、Na化合物としてNa2O、Na2
2、Na2S、Na2Se、Na2Te、NaF、NaC
l、NaBr、NaIのうち少なくとも一種類を用いて
製造することが好ましい。
Na 2 O and Na 2 O are used as Na compounds.
2 , Na 2 S, Na 2 Se, Na 2 Te, NaF, NaC
It is preferable to use at least one of 1, 1, NaBr, and NaI.

【0011】さらに、K化合物としてK2O、K22
2S、K2Se、K2Te、KF、KCl、KBr、K
Iのうち少なくとも一種類を用いて製造することが好ま
しい。
Further, as K compounds, K 2 O, K 2 O 2 ,
K 2 S, K 2 Se, K 2 Te, KF, KCl, KBr, K
It is preferable to manufacture using at least one kind of I.

【0012】また、本発明は[Cu2(SzSe1-z)]
x[(In1-yGay)2(SzSe1-z)31- x化合物の構成元
素に対して、各構成元素の単体あるいは化合物のうち少
なくとも一種類を用いた製造方法を提供する。
The present invention also provides [Cu 2 (S z Se 1-z )].
the configuration elements x [(In 1-y Ga y) 2 (S z Se 1-z) 3] 1- x compound, a production method using at least one kind of simple substance or compounds of the respective elements provide.

【0013】さらに、上記化合物を不活性ガスあるいは
VIb族元素蒸気のうち少なくとも一種類を用いた雰囲気
中で熱処理することが好ましい。
Further, the above compound is used as an inert gas or
It is preferable to perform the heat treatment in an atmosphere using at least one kind of VIb group element vapor.

【0014】また、本発明は上記化合物半導体薄膜を光
吸収層に用いた太陽電池を提供する。
The present invention also provides a solar cell using the compound semiconductor thin film as a light absorbing layer.

【0015】前記した本発明によれば、Ia族を含有し
た[Cu2(SzSe1-z)]x[(In1- yGay)2(SzSe
1-z)31-x化合物半導体薄膜(但し0.16≦x≦0.
34、0.05≦y≦0.55、0≦z≦1.0)を用
いることによりIa族元素を添加することにより半導体
薄膜の導電率が向上し、さらにIa族を添加しない半導
体薄膜に比べて広範囲での限定されたx、yの値に対し
て太陽電池の光吸収層として機能する伝導形を得ること
が可能となる。ここで0.16≦x≦0.34とするこ
とで同じGa含有量のCu(In,Ga)Se2よりも
大きなバンドギャップを有する単一相Cu(In,G
a)3Se5薄膜を得ることができ、少ないGa含有量で
より太陽光スペクトルにマッチしたバンドギャップを有
する化合物半導体薄膜を得ることが可能となる。さらに
0.05≦y≦0.55とすることにより太陽電池の光
吸収層として機能する伝導形(p形)を有するCu(I
n,Ga)3Se5薄膜を得ることが可能となり、同じバ
ンドギャップでy≧0.5のCu(In,Ga)Se2
膜より結晶性に優れ、より太陽光スペクトルにマッチし
たバンドギャップを有する化合物半導体薄膜を得ること
が可能となる。
According to the present invention described above, containing Group Ia [Cu 2 (S z Se 1 -z)] x [(In 1- y Ga y) 2 (S z Se
1-z ) 3 ] 1-x compound semiconductor thin film (provided that 0.16 ≦ x ≦ 0.
34, 0.05 ≦ y ≦ 0.55, 0 ≦ z ≦ 1.0), the conductivity of the semiconductor thin film is improved by adding the group Ia element, and a semiconductor thin film not containing the group Ia is added. In comparison, it is possible to obtain a conduction type that functions as a light absorption layer of a solar cell for a limited range of x and y values. Here, by setting 0.16 ≦ x ≦ 0.34, single-phase Cu (In, G) having a band gap larger than Cu (In, Ga) Se 2 having the same Ga content.
a) It is possible to obtain a 3 Se 5 thin film, and it is possible to obtain a compound semiconductor thin film having a band gap that matches the sunlight spectrum with a small Ga content. Further, by setting 0.05 ≦ y ≦ 0.55, Cu (I) having a conduction type (p-type) that functions as a light absorption layer of a solar cell
n, Ga) 3 Se 5 thin film can be obtained, and Cu (In, Ga) Se 2 with y ≧ 0.5 in the same bandgap can be obtained.
It is possible to obtain a compound semiconductor thin film having a crystallinity superior to that of the film and having a bandgap more matched to the sunlight spectrum.

【0016】また、Ia族元素としてLi、Na、Kの
うち少なくとも一種類を用いることによりCu(In,
Ga)3Se5薄膜の結晶成長を促進し、導電率を向上さ
せることが可能となる。
Further, by using at least one of Li, Na and K as the group Ia element, Cu (In,
It becomes possible to promote the crystal growth of the Ga) 3 Se 5 thin film and improve the conductivity.

【0017】さらに、[Cu2(S,Se)]x[(In1-y
Gay)2(S,Se)31-x化合物半導体薄膜中に占めるI
a族元素の割合は1mol%を上限とすることにより、
[Cu2(S,Se)]x[(In1-yGay)2(S,Se)3
1-x薄膜の組成を変化させること無くIa族元素を混入す
ることが可能となる。
Furthermore, [Cu 2 (S, Se)] x [(In 1-y
Ga y ) 2 (S, Se) 3 ] 1-x I in the compound semiconductor thin film
By setting the proportion of the group a element to 1 mol% as the upper limit,
[Cu 2 (S, Se) ] x [(In 1-y Ga y) 2 (S, Se) 3]
It becomes possible to mix the group Ia element without changing the composition of the 1-x thin film.

【0018】Ia族元素の蒸着源としてLi化合物、N
a化合物、K化合物のうち少なくとも一種類を用いて製
造することにより安定した状態でIa族元素を[Cu
2(SzSe1-z)]x[(In1-yGay)2(SzSe1-z)3
1-x化合物半導体薄膜中に混入させることが可能にな
り、前記化合物半導体薄膜の結晶成長促進と導電率を向
上させるのに有効な手段となる。
Li compound, N as a vapor deposition source of the group Ia element
By using at least one of the a compound and the K compound, the group Ia element [Cu
2 (S z Se 1-z )] x [(In 1-y Ga y) 2 (S z Se 1-z) 3]
It becomes possible to mix it into the 1-x compound semiconductor thin film, which is an effective means for promoting the crystal growth and improving the conductivity of the compound semiconductor thin film.

【0019】Li化合物としてLi2O、Li22、L
2S、Li2Se、Li2Te、LiF、LiCl、L
iBr、LiIのうち少なくとも一種類を用いて、また
Na化合物としてNa2O、Na22、Na2S、Na2
Se、Na2Te、NaF、NaCl、NaBr、Na
Iのうち少なくとも一種類を用いて、またK化合物とし
てK2O、K22、K2S、K2Se、K2Te、KF、K
Cl、KBr、KIのうち少なくとも一種類を用いて製
造することにより安定した状態でIa族元素を[Cu
2(S,Se)]x[(In1-yGay)2(S,Se)31-x化合
物半導体薄膜中に混入させることが可能になり、有効に
前記化合物半導体薄膜の結晶成長を促進させ、導電率を
向上させることが可能となる。
Li 2 O, Li 2 O 2 , L as Li compounds
i 2 S, Li 2 Se, Li 2 Te, LiF, LiCl, L
At least one of iBr and LiI is used, and Na 2 O, Na 2 O 2 , Na 2 S, and Na 2 are used as Na compounds.
Se, Na 2 Te, NaF, NaCl, NaBr, Na
At least one of I is used, and K 2 O, K 2 O 2 , K 2 S, K 2 Se, K 2 Te, KF, and K are used as K compounds.
By producing at least one of Cl, KBr, and KI, the group Ia element can be stabilized by [Cu
2 (S, Se)] x [(In 1-y Ga y) 2 (S, Se) 3] 1-x compound it is possible to incorporate into the semiconductor thin film, effectively a compound semiconductor thin film crystal growth of Can be promoted and the conductivity can be improved.

【0020】また、[Cu2(SzSe1-z)]x[(In1-y
Gay)2(SzSe1-z)31-x化合物の構成元素に対し
て、各構成元素の単体あるいは化合物のうち少なくとも
一種類を用いて製造することにより蒸着源に多様な選択
性をもち自由度が広がるほか、精密かつ容易に組成制御
が可能となる。
[Cu 2 (S z Se 1-z )] x [(In 1-y
Ga y ) 2 (S z Se 1-z ) 3 ] 1-x For the constituent elements of the compound, various deposition sources can be selected by manufacturing using at least one of the constituent elements alone or a compound. In addition to its flexibility and flexibility, it also enables precise and easy composition control.

【0021】さらに、上記化合物を不活性ガスあるいは
VIb族元素蒸気のうち少なくとも一種類を用いた雰囲気
中で熱処理することにより[Cu2(SzSe1-z)]
x[(In1 -yGay)2(SzSe1-z)31-x化合物薄膜に存
在する欠陥を低減させ、より高品質な薄膜作製が可能と
なる。
Further, the above compound is used as an inert gas or
[Cu 2 (S z Se 1 -z )] by heat treatment in an atmosphere using at least one kind of VIb group element vapor
x [(In 1 -y Ga y ) 2 (S z Se 1-z) 3] 1-x compound thin film to reduce the defects present, it is possible to higher quality thin film preparation.

【0022】上記化合物半導体薄膜を太陽電池の光吸収
層に用いることにより高効率な薄膜太陽電池作製が可能
となる。
By using the above compound semiconductor thin film for the light absorption layer of a solar cell, a highly efficient thin film solar cell can be manufactured.

【0023】さらに、太陽電池の光吸収層として0.1
6≦x≦0.34、0.05≦y<0.55、0≦z≦
1.0の[Cu2(SzSe1-z)]x[(In1-yGay)2(S
zSe1-z)31-x化合物半導体薄膜を用いることにより
高効率な薄膜太陽電池作製が可能となる。
Furthermore, as a light absorption layer of the solar cell, 0.1
6 ≦ x ≦ 0.34, 0.05 ≦ y <0.55, 0 ≦ z ≦
1.0 [Cu 2 (S z Se 1 -z)] x [(In 1-y Ga y) 2 (S
By using a z Se 1-z ) 3 ] 1-x compound semiconductor thin film, a highly efficient thin film solar cell can be manufactured.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施例について図
面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0025】(実施例1)本実施例におけるIa族元素
を含有した[Cu2(SzSe1-z)]x[(In1-yGay)
2(SzSe1-z)31-x化合物半導体薄膜について述べ
る。図1にCu(In,Ga)3Se5薄膜作製に用いた
真空容器の概略図を示す。図1の排気口7を備えた真空
容器1の内部に、基板ホルダー2と基板を加熱するタン
タルヒーター3を設け、約1μmのMo膜5をコートし
たアルミナ基板4上にIa族の蒸着源であるNa2S12
を蒸着レート100Å/min.で10分間Mo膜上に蒸着
を行った。さらにその上にx=0.25、y=0.2、
z=0のCu(In0.8Ga0.23Se5薄膜6を約2μ
m形成する。Cu(In0.8Ga0.23Se5薄膜の堆積
に際し、Cu(In0.8Ga0.23Se5薄膜の主成分で
あるCuの蒸着源8と、Inの蒸着源9、Gaの蒸着源
10、Seの蒸着源11を用意し、各元素の同時蒸着を
行った。このとき、それぞれの蒸着源が入ったルツボの
温度を1150℃、850℃、900℃、200℃一定
で加熱し、Cu、In、Ga、Seの蒸着レートが化学
量論比組成となるCu(In0.8Ga0.23Se5薄膜が
得られるレートになっている。ここで基板温度は500
℃一定とした。
(Example 1) [Cu 2 (S z Se 1-z )] x [(In 1-y Ga y )] containing the group Ia element in this example.
The 2 (S z Se 1-z ) 3 ] 1-x compound semiconductor thin film will be described. FIG. 1 shows a schematic view of a vacuum container used for forming a Cu (In, Ga) 3 Se 5 thin film. A substrate holder 2 and a tantalum heater 3 for heating the substrate are provided inside a vacuum container 1 having an exhaust port 7 shown in FIG. 1, and an alumina substrate 4 coated with a Mo film 5 of about 1 μm is used as a group Ia vapor deposition source. Na 2 S12
Was vapor-deposited on the Mo film at a vapor deposition rate of 100 L / min for 10 minutes. On top of that, x = 0.25, y = 0.2,
Cu (In 0.8 Ga 0.2 ) 3 Se 5 thin film 6 with z = 0 is about 2 μm.
m form. Upon Cu (In 0.8 Ga 0.2) 3 Se 5 film deposition, Cu (In 0.8 Ga 0.2) 3 Se 5 and the evaporation source 8 of Cu which is a main component of the thin film, In the evaporation source 9, Ga deposition source 10 of, A vapor deposition source 11 of Se was prepared, and simultaneous vapor deposition of each element was performed. At this time, the temperatures of the crucibles containing the respective vapor deposition sources are heated at a constant temperature of 1150 ° C., 850 ° C., 900 ° C., and 200 ° C., and the vapor deposition rates of Cu, In, Ga, and Se become the stoichiometric composition Cu ( The rate is such that an In 0.8 Ga 0.2 ) 3 Se 5 thin film can be obtained. Here, the substrate temperature is 500
The temperature was constant.

【0026】表1にNa元素を添加したCu(In0.8
Ga0.23Se5薄膜とNa元素を添加していないCu
(In0.8Ga0.23Se5薄膜の導電率を示す。
In Table 1, Cu (In 0.8
Ga 0.2 ) 3 Se 5 thin film and Cu without addition of Na element
The conductivity of the (In 0.8 Ga 0.2 ) 3 Se 5 thin film is shown.

【0027】[0027]

【表1】 [Table 1]

【0028】この表よりNa2Sを同時に蒸着したCu
(In0.8Ga0.23Se5薄膜はNa2Sを同時蒸着し
なかった膜よりも約2桁導電率が増加し、太陽電池の光
吸収層に適した導電率を有していることがわかる。すな
わち、Cu(In0.8Ga0.23Se5薄膜にIa族であ
るNaを加えることによってCu(In0.8Ga0.2)S
2の導電率を向上させることが可能となる。
From this table, Cu which was vapor-deposited with Na 2 S at the same time
(In 0.8 Ga 0.2) 3 Se 5 film is Na 2 S increases approximately 2 Ketashirube conductivity than the membrane that was not co-deposited, to have a conductivity suitable for the light absorption layer of a solar cell Recognize. That is, Cu (In 0.8 Ga 0.2 ) S was obtained by adding Na, which is a group Ia, to a Cu (In 0.8 Ga 0.2 ) 3 Se 5 thin film.
It is possible to improve the conductivity of e 2 .

【0029】次に上記2種類のCu(In0.8Ga0.2
3Se5薄膜を太陽電池の光吸収層に適用するため、太陽
電池の作製を行った。図2に太陽電池の構成を示す。以
下にそれぞれの作製法について述べる。アルミナ基板4
の上に裏面電極であるMo膜5をスパッタ法により約1
μm形成し、この上にCu(In0.8Ga0.23Se5
膜5を約2μm形成する。さらにこの上に溶液析出法に
よりCdS薄膜14を約500Åの厚さで形成し、この
上にスパッタ法によりZnO薄膜15を0.5μm、IT
O薄膜16を1μmの厚さで形成した。さらに、ITO
膜上とMo薄膜の上に取り出し電極として真空蒸着法に
よりAu電極17を0.5μmの厚さで形成した。
Next, the above-mentioned two types of Cu (In 0.8 Ga 0.2 )
A solar cell was prepared in order to apply the 3 Se 5 thin film to the light absorption layer of the solar cell. FIG. 2 shows the structure of the solar cell. Each manufacturing method will be described below. Alumina substrate 4
Approximately 1 Mo film 5 which is the back electrode on the
Then, a Cu (In 0.8 Ga 0.2 ) 3 Se 5 thin film 5 is formed to a thickness of about 2 μm. Further, a CdS thin film 14 having a thickness of about 500 Å is formed thereon by a solution deposition method, and a ZnO thin film 15 having a thickness of 0.5 μm and IT is formed thereon by a sputtering method.
The O thin film 16 was formed to a thickness of 1 μm. Furthermore, ITO
An Au electrode 17 having a thickness of 0.5 μm was formed as a take-out electrode on the film and the Mo thin film by a vacuum evaporation method.

【0030】図3は上記Naを添加したCu(In0.8
Ga0.23Se5薄膜を光吸収層として用いた太陽電池
の分光感度特性を示したものである。分光感度特性の測
定はA.M.1.5、100mW/cm2の条件下で行った。C
u(In0.8Ga0.23Se5薄膜上部に形成したITO
/ZnO/CdSがn形の伝導形を示すことから、x=
0.25、y=0.2のCu(In0.8Ga0.23Se5
薄膜はp形の伝導形になっていることが考えられ、太陽
電池の光吸収層に適応することが可能である。なお、N
aを添加していないCu(In0.8Ga0.23Se5薄膜
を光吸収層として用いた同一構造の太陽電池からは分光
感度特性を得ることができなかった。すなわちIaぞく
を含有しなければx=0.25、y=0.2の条件では
Cu(In0 .8Ga0.23Se5薄膜はp形にはならず、
光吸収層として機能しない。
FIG. 3 shows the above-mentioned Na-added Cu (In 0.8
3 shows the spectral sensitivity characteristics of a solar cell using a Ga 0.2 ) 3 Se 5 thin film as a light absorption layer. The spectral sensitivity characteristics were measured under the conditions of AM 1.5 and 100 mW / cm 2 . C
ITO formed on the u (In 0.8 Ga 0.2 ) 3 Se 5 thin film
Since / ZnO / CdS shows an n-type conduction type, x =
0.25, y = 0.2 Cu (In 0.8 Ga 0.2 ) 3 Se 5
The thin film is considered to be a p-type conductive type, and can be applied to the light absorption layer of a solar cell. Note that N
Spectral sensitivity characteristics could not be obtained from a solar cell having the same structure using a Cu (In 0.8 Ga 0.2 ) 3 Se 5 thin film to which a was not added as a light absorption layer. That Ia profane and unless x = 0.25 containing, y = at 0.2 conditions Cu (In 0 .8 Ga 0.2) 3 Se 5 film does not become the p-type,
Does not function as a light absorption layer.

【0031】次にガラス基板上に作製したy=0.2一
定でx=0.5と0.25のIa族元素を含有したCu
(In0.8Ga0.2)Se2、Cu(In0.8Ga0.23
5薄膜の透過特性から(hν)vs(αhν)2をプロ
ットし、算出したバンドギャップの値を表2に示す。
Next, Cu containing ya at a constant y = 0.2 and x = 0.5 and 0.25 containing a group Ia element was prepared on a glass substrate.
(In 0.8 Ga 0.2 ) Se 2 , Cu (In 0.8 Ga 0.2 ) 3 S
Table 2 shows the calculated band gap values obtained by plotting (hν) vs (αhν) 2 from the transmission characteristics of the e 5 thin film.

【0032】[0032]

【表2】 [Table 2]

【0033】この表よりx=0.25の膜の方がx=
0.5の膜よりもバンドギャップが大きくなっているこ
とがわかる。ここでx=0.25のCu(In0.8Ga
0.23Se5の結晶構造は欠陥カルコパイライト構造で
あり、x=0.5のCu(In0 .8Ga0.2)Se2はカ
ルコパイライト構造であることがX線回折の結果からわ
かっている。薄膜太陽電池の光吸収層としては太陽光ス
ペクトルとのマッチングを考えた場合、バンドギャップ
が1.4〜1.5eV程度になることが理想であるか
ら、今回作製した薄膜試料(y=0.2)では欠陥カル
コパイライト構造を持つ膜の方がより理想的なバンドギ
ャップを有していることがわかる。このことよりx=
0.25、y=0.2のCu(In0.8Ga0.23Se5
薄膜を太陽電池の光吸収層に適用することにより、理想
的な太陽電池作製が可能である。
From this table, the film with x = 0.25 has x =
It can be seen that the band gap is larger than that of the film of 0.5. Here, Cu (In 0.8 Ga) with x = 0.25
0.2) 3 crystal structure of Se 5 is defective chalcopyrite structure, x = 0.5 in the Cu (In 0 .8 Ga 0.2) Se 2 is known from the result that a chalcopyrite structure of the X-ray diffraction . Considering matching with the sunlight spectrum, the light absorption layer of the thin-film solar cell ideally has a band gap of about 1.4 to 1.5 eV, and thus the thin-film sample prepared this time (y = 0. In 2), it can be seen that the film having the defective chalcopyrite structure has a more ideal band gap. From this, x =
0.25, y = 0.2 Cu (In 0.8 Ga 0.2 ) 3 Se 5
By applying the thin film to the light absorption layer of a solar cell, it is possible to manufacture an ideal solar cell.

【0034】次に、欠陥カルコパイライト構造になるI
a族元素を含有した[Cu2(SzSe 1-z)]x[(In1-y
Gay)2(SzSe1-z)31-xのxの条件範囲を調べるた
めに、xの値をx=0.1から0.5まで変化させた
[Cu2(SzSe1-z)]x[(In1 -yGay)2(Sz
1-z)31-x薄膜(y=0.2、z=0)を作製した。
Next, the defect chalcopyrite structure I
[Cu containing group a element2(SzSe 1-z)]x[(In1-y
Gay)2(SzSe1-z)3]1-xThe condition range of x in
For this purpose, the value of x was changed from x = 0.1 to 0.5
[Cu2(SzSe1-z)]x[(In1 -yGay)2(SzS
e1-z)3]1-xA thin film (y = 0.2, z = 0) was prepared.

【0035】図4に作製した薄膜試料(x=0.1、
0.3、0.5)のX線回折パターンを示す。x=0.
1の試料からはCu(In0.8Ga0.23Se5と(In
0.8Ga0.22Se3と思われる回折パターンが得られ、
2成分が混在した形で膜形成されているものと思われ
る。これに対しx=0.3の試料からは欠陥カルコパイ
ライト構造のCu(In0.8Ga0.23Se5相を示す回
折パターンのみが得られ、x=0.25と同じ単一相C
u(In0.8Ga0.23Se5薄膜が形成されていること
がわかる。またx=0.5ではカルコパイライト構造の
Cu(In0.8Ga0.2)Se2相のみが形成され、欠陥
カルコパイライト相に特有の110、202、114と
いったピークが観測されていないことがわかる。欠陥カ
ルコパイライト構造のCu(In0.8Ga0.23Se5
膜はカルコパイライト構造のCu(In0.8Ga0.2)S
2薄膜と比べて大きなバンドギャップを有し、y=
0.2ではより太陽光スペクトルにマッチしたバンドギ
ャップに近い値を持つ。以上の結果からx=0.3にお
いて欠陥カルコパイライト構造を有する単一相のCu
(In0.8Ga0.23Se5薄膜が形成されていることが
わかった。
The thin film sample prepared in FIG. 4 (x = 0.1,
The X-ray diffraction pattern of 0.3, 0.5) is shown. x = 0.
From the sample of No. 1, Cu (In 0.8 Ga 0.2 ) 3 Se 5 and (In
0.8 Ga 0.2) diffraction pattern is obtained seems to 2 Se 3,
It seems that the film is formed in a form in which the two components are mixed. On the other hand, from the sample of x = 0.3, only the diffraction pattern showing the Cu (In 0.8 Ga 0.2 ) 3 Se 5 phase of the defect chalcopyrite structure was obtained, and the same single phase C as x = 0.25 was obtained.
It can be seen that a u (In 0.8 Ga 0.2 ) 3 Se 5 thin film is formed. Further, it can be seen that when x = 0.5, only the Cu (In 0.8 Ga 0.2 ) Se 2 phase having a chalcopyrite structure is formed, and peaks such as 110, 202, and 114 peculiar to the defective chalcopyrite phase are not observed. The defect chalcopyrite structure Cu (In 0.8 Ga 0.2 ) 3 Se 5 thin film is a chalcopyrite structure Cu (In 0.8 Ga 0.2 ) S.
has a larger bandgap than the e 2 thin film, and y =
At 0.2, it has a value closer to the band gap that matches the sunlight spectrum. From the above results, single-phase Cu having a defective chalcopyrite structure at x = 0.3
It was found that a (In 0.8 Ga 0.2 ) 3 Se 5 thin film was formed.

【0036】なお、x=0.3付近で欠陥カルコパイラ
イト構造となる組成領域を精密に検討を行ったところ、
0.16≦x≦0.34の範囲において単一相の欠陥カ
ルコパイライト構造を有するCu(In0.8Ga0.23
Se5薄膜が形成されていることがわかった。このこと
より0.16≦x≦0.34の範囲においてカルコパイ
ライト構造Cu(In0.8Ga0.2)Se2薄膜よりもバ
ンドギャップの大きな単一相欠陥カルコパイライト構造
のCu(In0.8Ga0.23Se5薄膜を得ることが可能
である。
When the composition region of the defective chalcopyrite structure around x = 0.3 was examined precisely,
Cu (In 0.8 Ga 0.2 ) 3 having a single-phase defect chalcopyrite structure in the range of 0.16 ≦ x ≦ 0.34
It was found that a Se 5 thin film was formed. From this fact, in the range of 0.16 ≦ x ≦ 0.34, Cu (In 0.8 Ga 0.2 ) 3 having a single-phase defect chalcopyrite structure having a band gap larger than that of the Cu (In 0.8 Ga 0.2 ) Se 2 thin film having chalcopyrite structure. It is possible to obtain a Se 5 thin film.

【0037】次に、光吸収層としての機能を有するIa
族元素を含有した[Cu2(SzSe1- z)]x[(In1-y
y)2(SzSe1-z)31-xのyの条件範囲を調べるた
め、yの値をy=0〜1.0まで0.1刻みで変化させ
てCu(In1-yGay3Se5薄膜(x=0.25、z
=0)を作製した。
Next, Ia having a function as a light absorption layer
[Cu 2 (S z Se 1- z )] x [(In 1-y G containing a group element
a y ) 2 (S z Se 1-z ) 3 ] 1-x In order to investigate the condition range of y, the value of y is changed from y = 0 to 1.0 in steps of 0.1 and Cu (In 1 -y Ga y) 3 Se 5 film (x = 0.25, z
= 0) was produced.

【0038】図5にy(=Ga/(In+Ga))の値
に対する導電率の変化を示す。この図よりy=0.6以
上になると導電率が低下していることがわかる。また、
Na添加してガラス基板上に作製したCu(In1-y
y3Se5薄膜の透過特性から(hν)vs(αh
ν)2をプロットし、算出したバンドギャップを図6に
示す。この図よりy=0.5付近でバンドギャップが
1.5eV程度になり、太陽電池の光吸収層としては最
適なバンドギャップであることがわかる。また、Gaの
含まない(y=0)CuIn3Se5薄膜を用いて同じ構
造の太陽電池を作製すると量子効率が得られないことか
らGaを含まない(y=0)CuIn3Se5薄膜はn形
の伝導形を示し、Gaを含むことによって太陽電池の光
吸収層としての機能を果たし、p形に変化することがわ
かる。上記の導電率、伝導形の変化と併せて考えると
0.05≦y≦0.55の範囲において比較的導電率が
よく、最適なバンドギャップを有する光吸収層(p形)
Cu(In1-yGay3Se5薄膜作製が可能となる。
FIG. 5 shows the change in conductivity with respect to the value of y (= Ga / (In + Ga)). From this figure, it can be seen that the conductivity decreases when y = 0.6 or more. Also,
Cu (In 1-y G) prepared on a glass substrate by adding Na
From the transmission characteristics of the a y ) 3 Se 5 thin film, (hν) vs (αh
The band gap calculated by plotting ν) 2 is shown in FIG. From this figure, it is found that the bandgap becomes about 1.5 eV near y = 0.5, which is the optimum bandgap for the light absorption layer of the solar cell. Further, when a solar cell having the same structure is manufactured using a GaIn-free (y = 0) CuIn 3 Se 5 thin film, quantum efficiency cannot be obtained, so that a Ga-free (y = 0) CuIn 3 Se 5 thin film is It can be seen that the n-type conductivity type is shown, and that by including Ga, it functions as a light absorption layer of the solar cell and changes to the p-type. Considering together with the changes in conductivity and conductivity type described above, the light absorption layer (p-type) having relatively good conductivity and having an optimum band gap in the range of 0.05 ≦ y ≦ 0.55.
Cu (In 1-y Ga y ) 3 Se 5 thin film forming is made possible.

【0039】なお、ここでは[Cu2(S,Se)]x[(I
1-yGay)2(S,Se)31-x化合物半導体薄膜をz=
0のCu(In,Ga)3Se5薄膜に限定しているが、
Sの入った薄膜試料に対しても同様な結果が得られてい
る。
Here, [Cu 2 (S, Se)] x [(I
n 1-y Ga y) 2 (S, Se) 3] 1-x compound semiconductor thin film z =
0 (Cu, In, Ga) 3 Se 5 thin film
Similar results are obtained for the thin film sample containing S.

【0040】(実施例2)次に、第2の実施例における
Ia族元素を含有した[Cu2(SzSe1-z)]x[(In
1-yGay)2(SzSe1-z)31-x化合物半導体薄膜につい
て述べる。薄膜作製の条件は第1の実施例とほぼ同様で
あるが、Ia族の蒸着源としてNa2S12の代わりにL
2Sを用意し、蒸着レート100Å/min.でMo膜上に
10分間蒸着を行い、その後x=0.25、y=0.
2、z=0のCu(In0.8Ga0.23Se5薄膜形成を
行い、実施例2と同様の構造の太陽電池を作製したとこ
ろ、実施例2と同様な結果を得ることができた。すなわ
ちIa族の蒸着源はNa化合物に限られるものではな
い。
(Embodiment 2) Next, in the second embodiment
[Cu 2 (S z Se 1-z )] x [(In
1-y Ga y) 2 ( S z Se 1-z) 3] 1-x compound semiconductor thin film described. The conditions for forming the thin film are almost the same as those in the first embodiment, but L is used instead of Na 2 S12 as a vapor deposition source of group Ia.
i 2 S was prepared, vapor deposition was performed on the Mo film for 10 minutes at a vapor deposition rate of 100 Å / min., and then x = 0.25, y = 0.
2, a Cu (In 0.8 Ga 0.2 ) 3 Se 5 thin film with z = 0 was formed to manufacture a solar cell having the same structure as that of Example 2, and the same result as that of Example 2 was obtained. That is, the vapor deposition source of Group Ia is not limited to the Na compound.

【0041】その他K化合物、あるいはそれぞれの混合
物を用いても同様の結果を得ることができた。
Similar results could be obtained by using other K compounds or their respective mixtures.

【0042】(実施例3)次に、第3の実施例における
Ia族元素を含有した[Cu2(SzSe1-z)]x[(In
1-yGay)2(SzSe1-z)31-x化合物半導体薄膜につい
て述べる。薄膜作製の条件は第1の実施例とほぼ同様で
あるが、Ia族の蒸着源であるNa2S12において蒸着
レート100Å/min.と200Å/min.で10分間蒸着を
行い、引き続きx=0.25、y=0.2、z=0のC
u(In0.8Ga0.23Se5薄膜形成を行った。
(Third Embodiment) Next, a third embodiment will be described.
[Cu 2 (S z Se 1-z )] x [(In
1-y Ga y) 2 ( S z Se 1-z) 3] 1-x compound semiconductor thin film described. The conditions for forming the thin film are almost the same as those in the first embodiment, but vapor deposition is carried out for 10 minutes at vapor deposition rates of 100 Å / min. And 200 Å / min. In Na 2 S12 which is a group Ia vapor deposition source, and then x = 0. C of 0.25, y = 0.2, z = 0
A thin film of u (In 0.8 Ga 0.2 ) 3 Se 5 was formed.

【0043】作製したCu(In0.8Ga0.23Se5
膜をEPMAにより組成分析した結果、100Å/min.
でNa2Sを蒸着した膜からはNaはほとんど検出され
ず、200Å/min.でNa2Sを蒸着した膜からはNaが
1.5mol%検出された。
The composition of the prepared Cu (In 0.8 Ga 0.2 ) 3 Se 5 thin film was analyzed by EPMA. As a result, 100 Å / min.
In from films deposited Na 2 S Na not is hardly detected, from the film with a deposit of Na 2 S at 200 Å / min. Na was detected 1.5 mol%.

【0044】これら2枚の薄膜に対し、実施例1と同様
の構造の太陽電池を作製した。その結果、200Å/mi
n.でNa2Sを蒸着した膜の太陽電池の方が低い収集効
率を示した。これはNaがCu(In0.8Ga0.23
5薄膜に多く混入したためにCu(In0.8Ga0.23
Se5の組成が変化して、その結果太陽電池特性が劣化
したものと考えられる。従ってCu(In0.8Ga0.2
3Se5の組成を変化させない程度のNa含有量が望まし
く、1mol%を上限とすることで最適組成を有するCu
(In0.8Ga0.23Se5薄膜を太陽電池の光吸収層に
適用することが可能となる。
A solar cell having the same structure as in Example 1 was produced from these two thin films. As a result, 200Å / mi
The solar cells with Na 2 S deposited film at n. showed lower collection efficiency. This is because Na is Cu (In 0.8 Ga 0.2 ) 3 S
e 5 Cu (In 0.8 Ga 0.2 ) 3 because a large amount was mixed in the thin film
It is considered that the composition of Se 5 changed and, as a result, the solar cell characteristics deteriorated. Therefore, Cu (In 0.8 Ga 0.2 )
It is desirable that the Na content is such that the composition of 3 Se 5 does not change, and Cu having the optimum composition by setting 1 mol% as the upper limit.
It becomes possible to apply the (In 0.8 Ga 0.2 ) 3 Se 5 thin film to the light absorption layer of a solar cell.

【0045】(実施例4)次に、第4の実施例における
Ia族元素を含有した[Cu2(SzSe1-z)]x[(In
1-yGay)2(SzSe1-z)31-x化合物半導体薄膜につい
て述べる。薄膜作製の条件は第1の実施例とほぼ同様で
あるが、Na化合物としてNa22を用いて実施例1と
同様の構造の太陽電池を作製した。その結果、実施例1
とほぼ同様の結果を得ることができた。
(Embodiment 4) Next, in the fourth embodiment
[Cu 2 (S z Se 1-z )] x [(In
1-y Ga y) 2 ( S z Se 1-z) 3] 1-x compound semiconductor thin film described. The conditions for forming the thin film are almost the same as those in the first embodiment, but a solar cell having the same structure as that of the first embodiment is manufactured by using Na 2 O 2 as the Na compound. As a result, Example 1
It was possible to obtain almost the same result as.

【0046】その他、Na化合物としてNa2O、Na2
S、Na2Se、Na2Te、NaF、NaCl、NaB
r、NaI、Li化合物としてLi2O、Li22、L
2S、Li2Se、Li2Te、LiF、LiCl、L
iBr、LiI、またK化合物としてK2O、K22
2S、K2Se、K2Te、KF、KCl、KBr、K
Iのうち少なくとも一種類を用いてもほぼ同様な結果を
得ることができたが、Na 2Sを用いた場合にその効果
がより顕著であった。
In addition, Na is used as a Na compound.2O, Na2
S, Na2Se, Na2Te, NaF, NaCl, NaB
r, NaI, Li as a Li compound2O, Li2O2, L
i2S, Li2Se, Li2Te, LiF, LiCl, L
iBr, LiI, or K as a K compound2O, K2O2,
K2S, K2Se, K2Te, KF, KCl, KBr, K
Almost the same result can be obtained by using at least one of I
I got it, but Na 2The effect when S is used
Was more prominent.

【0047】(実施例5)次に、第5の実施例における
Ia族元素を含有した[Cu2(SzSe1-z)]x[(In
1-yGay)2(SzSe1-z)31-x化合物半導体薄膜につい
て述べる。薄膜作製の条件は第1の実施例とほぼ同様で
あるが、Cu(In0.8Ga0.23Se5の蒸着源として
Cu蒸着源8、In蒸着源9、Ga蒸着源10、Se蒸
着源11の代わりにCu2Se、In2Se3、Ga2Se
3を用いてそれぞれの共蒸着によりCu(In0.8Ga
0.23Se5薄膜形成を試みた。この場合も基板温度は
約500℃である。
(Fifth Embodiment) Next, in the fifth embodiment
[Cu 2 (S z Se 1-z )] x [(In
1-y Ga y) 2 ( S z Se 1-z) 3] 1-x compound semiconductor thin film described. The conditions for forming the thin film are almost the same as those of the first embodiment, but Cu vapor deposition source 8, In vapor deposition source 9, Ga vapor deposition source 10, Se vapor deposition source 11 are used as vapor deposition sources of Cu (In 0.8 Ga 0.2 ) 3 Se 5. Instead of Cu 2 Se, In 2 Se 3 , Ga 2 Se
3 by the respective co-deposition using Cu (In 0.8 Ga
An attempt was made to form a 0.2 ) 3 Se 5 thin film. Also in this case, the substrate temperature is about 500 ° C.

【0048】X線回折による分析結果、実施例1で作製
したCu(In0.8Ga0.23Se5薄膜と同様の配向性
を示すX線回折パターンが得られた。また、この膜を用
いて実施例1と同様の構造の太陽電池を作製したとこ
ろ、実施例1と同程度の収集効率を得ることができた。
すなわち、Cu(In0.8Ga0.23Se5薄膜形成は各
々独立した各構成元素からの共蒸着に限られるものでは
ない。
As a result of the X-ray diffraction analysis, an X-ray diffraction pattern showing the same orientation as the Cu (In 0.8 Ga 0.2 ) 3 Se 5 thin film prepared in Example 1 was obtained. Further, when a solar cell having the same structure as that of Example 1 was manufactured using this film, the same collection efficiency as that of Example 1 could be obtained.
That, Cu (In 0.8 Ga 0.2) 3 Se 5 film formation is not limited to the co-deposition from each independent respective elements were.

【0049】(実施例6)次に、第6の実施例における
Ia族元素を含有した[Cu2(SzSe1-z)]x[(In
1-yGay)2(SzSe1-z)31-x化合物半導体薄膜につい
て述べる。薄膜作製の条件は第1の実施例とほぼ同様で
あるが、作製したCu(In0.8Ga0.23Se5をSe
雰囲気中400℃、30分間熱処理を行った。その結
果、熱処理を行わなかった試料よりもわずかながら太陽
電池特性を向上させることができた。これはCu(In
0.8Ga0.23Se5薄膜形成時に生成した欠陥を熱処理
を行うことにより低減させることができたことによるも
のと考えられる。
(Embodiment 6) Next, in the sixth embodiment
[Cu 2 (S z Se 1-z )] x [(In
1-y Ga y) 2 ( S z Se 1-z) 3] 1-x compound semiconductor thin film described. The conditions for forming the thin film are almost the same as those of the first embodiment, but the prepared Cu (In 0.8 Ga 0.2 ) 3 Se 5 is used as Se.
Heat treatment was performed at 400 ° C. for 30 minutes in the atmosphere. As a result, the solar cell characteristics could be slightly improved as compared with the sample that was not heat-treated. This is Cu (In
It is considered that this is because the defects generated at the time of forming the 0.8 Ga 0.2 ) 3 Se 5 thin film could be reduced by performing the heat treatment.

【0050】その他、熱処理雰囲気として不活性ガスあ
るいはVIb族元素蒸気のうち少なくとも一種類を用いて
も同様な効果を得ることができた。
In addition, the same effect could be obtained by using at least one kind of inert gas or VIb group element vapor as the heat treatment atmosphere.

【0051】[0051]

【発明の効果】本発明により、太陽電池の光吸収層に適
した伝導形、バンドギャップを有する高品質なIa族元
素を含有した[Cu2(SzSe1-z)]x[(In1-yGay)
2(SzSe1-z)31-x化合物半導体薄膜を作製すること
ができ、変換効率の高い太陽電池を作製することが可能
である。
According to the present invention, [Cu 2 (S z Se 1-z )] x [(In containing a high-quality Group Ia element having a conduction type and a band gap suitable for a light absorption layer of a solar cell is provided. 1-y Ga y)
2 (S z Se 1-z ) 3 ] 1-x compound semiconductor thin film can be manufactured, and a solar cell with high conversion efficiency can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるIa族元素を含有し
た[Cu2(SzSe1-z)]x[(In1-yGay)2(SzSe
1-z)31-x化合物半導体薄膜形成装置の断面を示す図
Containing Ia group element in an embodiment of the invention, FIG [Cu 2 (S z Se 1 -z)] x [(In 1-y Ga y) 2 (S z Se
1-z ) 3 ] 1-x compound semiconductor thin film forming apparatus

【図2】本発明の一実施例におけるIa族元素を含有し
た[Cu2(SzSe1-z)]x[(In1-yGay)2(SzSe
1-z)31-x化合物半導体薄膜を用いた太陽電池の断面を
示す図
Containing Ia group element in an embodiment of the present invention; FIG [Cu 2 (S z Se 1 -z)] x [(In 1-y Ga y) 2 (S z Se
1-z ) 3 ] 1-x Cross-section of solar cell using compound semiconductor thin film

【図3】本発明の一実施例におけるIa族元素を含有し
た[Cu2(SzSe1-z)]x[(In1-yGay)2(SzSe
1-z)31-x化合物半導体薄膜を用いた太陽電池の分光感
度特性を示す図
Containing Ia group element in one embodiment of the present invention; FIG [Cu 2 (S z Se 1 -z)] x [(In 1-y Ga y) 2 (S z Se
1-z ) 3 ] 1-x Diagram showing the spectral sensitivity characteristics of solar cells using compound semiconductor thin films

【図4】本発明の一実施例におけるIa族元素を含有し
た[Cu2(SzSe1-z)]x[(In1-yGay)2(SzSe
1-z)31-x化合物半導体薄膜のX線回折パターンを示す
Containing Ia group element in an embodiment of the present invention; FIG [Cu 2 (S z Se 1 -z)] x [(In 1-y Ga y) 2 (S z Se
1-z ) 3 ] 1-x compound semiconductor thin film X-ray diffraction pattern

【図5】本発明の一実施例におけるIa族元素を含有し
た[Cu2(SzSe1-z)]x[(In1-yGay)2(SzSe
1-z)31-x化合物半導体薄膜の導電率を示す図
Containing Ia group element in an embodiment of the present invention; FIG [Cu 2 (S z Se 1 -z)] x [(In 1-y Ga y) 2 (S z Se
1-z ) 3 ] 1-x diagram showing conductivity of compound semiconductor thin film

【図6】本発明の一実施例におけるIa族元素を含有し
た[Cu2(SzSe1-z)]x[(In1-yGay)2(SzSe
1-z)31-x化合物半導体薄膜のバンドギャップを示す図
Containing Ia group element in an embodiment of the invention; FIG [Cu 2 (S z Se 1 -z)] x [(In 1-y Ga y) 2 (S z Se
1-z ) 3 ] 1-x Diagram showing the band gap of compound semiconductor thin film

【符号の説明】[Explanation of symbols]

1 真空容器 2 基板ホルダー 3 タンタルヒーター 4 アルミナ基板 5 Mo薄膜 6 Cu(In,Ga)3Se5薄膜 7 排気口 8 Cu源 9 In源 10 Ga源 11 Se源 12 Na2S源 13 シャッター 14 CdS薄膜 15 ZnO薄膜 16 ITO薄膜 17 Au電極1 Vacuum Container 2 Substrate Holder 3 Tantalum Heater 4 Alumina Substrate 5 Mo Thin Film 6 Cu (In, Ga) 3 Se 5 Thin Film 7 Exhaust Port 8 Cu Source 9 In Source 10 Ga Source 11 Se Source 12 Na 2 S Source 13 Shutter 14 CdS Thin film 15 ZnO thin film 16 ITO thin film 17 Au electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 隆博 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平8−102546(JP,A) 特開 平5−175119(JP,A) 欧州特許出願公開715358(EP,A 1) 国際公開96/013063(WO,A1) (58)調査した分野(Int.Cl.7,DB名) H01L 21/203 H01L 21/363 H01L 31/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takahiro Wada 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-8-102546 (JP, A) JP-A-5- 175119 (JP, A) European patent application publication 715358 (EP, A 1) International publication 96/013063 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21/203 H01L 21 / 363 H01L 31/04

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 欠陥カルコパイライト構造を有し、Ia
族元素を含有した[Cu2(SzSe1-z)]x[In1-y
Gay2(SzSe1-z31-x化合物半導体薄膜。但
し、0.16≦x≦0.34、0.05≦y≦0.5
5、0≦z≦1.0である。
1. A defective chalcopyrite structure, Ia
[Cu 2 (S z Se 1-z )] x [In 1-y containing a group element
Ga y) 2 (S z Se 1-z) 3] 1-x compound semiconductor thin film. However, 0.16 ≦ x ≦ 0.34, 0.05 ≦ y ≦ 0.5
5, 0 ≦ z ≦ 1.0.
【請求項2】 Ia族元素がLi、Na、Kよりなる群
から選ばれた少なくとも一種類である請求項1記載の化
合物半導体薄膜。
2. The compound semiconductor thin film according to claim 1, wherein the group Ia element is at least one selected from the group consisting of Li, Na, and K.
【請求項3】 Ia族元素の含有率が1mol%を上限
とする請求項1記載の化合物半導体薄膜。
3. The compound semiconductor thin film according to claim 1, wherein the content of the group Ia element is 1 mol% as an upper limit.
【請求項4】 Ia族元素の蒸着源がLi化合物、Na
化合物、K化合物よりなる群から選ばれた少なくとも一
種類である請求項2記載の化合物半導体薄膜の製造方
法。
4. A vapor deposition source of a group Ia element is a Li compound, Na
The method for producing a compound semiconductor thin film according to claim 2, wherein the compound semiconductor thin film is at least one selected from the group consisting of compounds and K compounds.
【請求項5】 Li化合物がLi2O、Li22、Li2
S、Li2Se、Li2Te、LiF、LiCl、LiB
r、LiIよりなる群のうち少なくとも一種類である請
求項4記載の化合物半導体薄膜の製造方法。
5. The Li compound is Li 2 O, Li 2 O 2 , Li 2
S, Li 2 Se, Li 2 Te, LiF, LiCl, LiB
The method for producing a compound semiconductor thin film according to claim 4, wherein the compound semiconductor thin film is at least one selected from the group consisting of r and LiI.
【請求項6】 Na化合物がNa2O、Na22、Na2
S、Na2Se、Na2Te、NaF、NaCl、NaB
r、NaIよりなる群のうち少なくとも一種類である請
求項4記載の化合物半導体薄膜の製造方法。
6. The Na compound is Na 2 O, Na 2 O 2 , Na 2
S, Na 2 Se, Na 2 Te, NaF, NaCl, NaB
The method for producing a compound semiconductor thin film according to claim 4, wherein the compound semiconductor thin film is at least one selected from the group consisting of r and NaI.
【請求項7】 K化合物がK2O、K22、K2S、K2
Se、K2Te、KF、KCl、KBr、KIよりなる
群のうち少なくとも一種類である請求項4記載の化合物
半導体薄膜の製造方法。
7. The K compound is K 2 O, K 2 O 2 , K 2 S or K 2.
The method for producing a compound semiconductor thin film according to claim 4, wherein the compound semiconductor thin film is at least one selected from the group consisting of Se, K 2 Te, KF, KCl, KBr, and KI.
【請求項8】 [Cu2(SzSe1-z)]x[In1-y
y2(SzSe1-z31-x化合物の構成元素に対し
て、前記構成元素の単体あるいは化合物よりなる群のう
ち少なくとも一種類を用いて形成する請求項1記載の化
合物半導体薄膜の製造方法。
8. [Cu 2 (S z Se 1-z )] x [In 1-y G
The ay ) 2 (S z Se 1-z ) 3 ] 1-x compound is formed by using at least one kind of a group consisting of a simple substance or a compound of the constituent elements with respect to the constituent elements of the compound. Method for manufacturing compound semiconductor thin film.
【請求項9】 不活性ガスあるいはVIb族元素蒸気よ
りなる群のうち少なくとも一種類を用いた雰囲気中で熱
処理する工程を含む請求項1記載の化合物半導体薄膜の
製造方法。
9. The method for producing a compound semiconductor thin film according to claim 1, further comprising a step of performing heat treatment in an atmosphere using at least one selected from the group consisting of an inert gas and a VIb group element vapor.
【請求項10】 光吸収層が請求項1〜3記載の化合物
半導体薄膜よりなる太陽電池。
10. A solar cell in which the light absorption layer comprises the compound semiconductor thin film according to any one of claims 1 to 3.
JP21958096A 1996-08-21 1996-08-21 Compound semiconductor thin film, method for manufacturing the same, and solar cell Expired - Fee Related JP3520683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21958096A JP3520683B2 (en) 1996-08-21 1996-08-21 Compound semiconductor thin film, method for manufacturing the same, and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21958096A JP3520683B2 (en) 1996-08-21 1996-08-21 Compound semiconductor thin film, method for manufacturing the same, and solar cell

Publications (2)

Publication Number Publication Date
JPH1064925A JPH1064925A (en) 1998-03-06
JP3520683B2 true JP3520683B2 (en) 2004-04-19

Family

ID=16737762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21958096A Expired - Fee Related JP3520683B2 (en) 1996-08-21 1996-08-21 Compound semiconductor thin film, method for manufacturing the same, and solar cell

Country Status (1)

Country Link
JP (1) JP3520683B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246839B2 (en) * 2006-08-24 2013-07-24 独立行政法人産業技術総合研究所 Semiconductor thin film manufacturing method, semiconductor thin film manufacturing apparatus, photoelectric conversion element manufacturing method, and photoelectric conversion element
KR101144807B1 (en) 2007-09-18 2012-05-11 엘지전자 주식회사 Ink For Solar Cell And Manufacturing Method Of The Ink, And CIGS Film Solar Cell Using The Ink And Manufacturing Method Therof
JP2010232608A (en) * 2009-03-30 2010-10-14 Honda Motor Co Ltd Method of manufacturing chalcopyrite-type solar cell
JP2013084921A (en) * 2011-09-28 2013-05-09 Fujifilm Corp Photoelectric conversion element and solar cell
KR101283106B1 (en) * 2011-11-21 2013-07-05 엘지이노텍 주식회사 Solar cell and method for fabricating unsing the same

Also Published As

Publication number Publication date
JPH1064925A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
US6534704B2 (en) Solar cell
US5626688A (en) Solar cell with chalcopyrite absorber layer
EP0067860B1 (en) Methods and apparatus for forming thin-film heterojunction solar cells from i-iii-vi2 chalcopyrite compounds, and solar cells produced thereby
US5674555A (en) Process for preparing group Ib-IIIa-VIa semiconducting films
USRE31968E (en) Methods for forming thin-film heterojunction solar cells from I-III-VI.sub.2
Basol et al. Deposition of CuInSe/sub 2/films by a two-stage process utilizing E-beam evaporation
Zhang et al. Formation of CuInSe2 and Cu (In, Ga) Se2 films by electrodeposition and vacuum annealing treatment
JP2922466B2 (en) Thin film solar cell
Schulmeyer et al. Influence of Cu (In, Ga) Se2 band gap on the valence band offset with CdS
JP2922465B2 (en) Manufacturing method of thin film solar cell
Zhao et al. Fabrication and characterization of Cu2ZnSnS4 thin films by sputtering a single target at different temperature
JP3311873B2 (en) Manufacturing method of semiconductor thin film
JP3520683B2 (en) Compound semiconductor thin film, method for manufacturing the same, and solar cell
JP3519543B2 (en) Precursor for forming semiconductor thin film and method for producing semiconductor thin film
JP3408618B2 (en) Solar cell manufacturing method
KR100347106B1 (en) The manufacturing method of CuInSe2 thin film using vacuum evaporation of binary selenides
JPH05315633A (en) Cuinse2 group thin film solar cell and manufacture thereof
Zweigart et al. CuInSe 2 film growth using precursors deposited at low temperature
JPH0555615A (en) Manufacture of thin film solar battery
JP3228503B2 (en) Semiconductor thin film, method of manufacturing the same, and solar cell using the same
JPH11224953A (en) Photovolatic device and manufacture thereof
JP2004158556A (en) Solar cell
JPH08195501A (en) Ib-iiib-vib compound semiconductor
JPH08111425A (en) Production of semiconductor thin film having chalcopyrite structure
JPH07263735A (en) Solar cell and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140213

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees