JPH05315633A - Cuinse2 group thin film solar cell and manufacture thereof - Google Patents

Cuinse2 group thin film solar cell and manufacture thereof

Info

Publication number
JPH05315633A
JPH05315633A JP4139893A JP13989392A JPH05315633A JP H05315633 A JPH05315633 A JP H05315633A JP 4139893 A JP4139893 A JP 4139893A JP 13989392 A JP13989392 A JP 13989392A JP H05315633 A JPH05315633 A JP H05315633A
Authority
JP
Japan
Prior art keywords
solar cell
film
cuinse
thin film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4139893A
Other languages
Japanese (ja)
Inventor
Kazuto Ito
和人 伊藤
Noriya Ishida
典也 石田
Eiji Kikuchi
英治 菊地
Yutaka Mitsune
裕 光根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP4139893A priority Critical patent/JPH05315633A/en
Publication of JPH05315633A publication Critical patent/JPH05315633A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a thin film solar cell having no exfoliation of a film while being excellent in adhesiveness and having no change with the lapse of time and manufacture thereof by solving a problem of deterioration in a cell characteristic caused by inferior adhesiveness in the interface between CuInSe2 and a rear electrode. CONSTITUTION:After Ti is laminated by 1mum on an Mo substrate by a sputtering method, Cu and In are laminated by an electrodeposition method so that the molar ratio of Cu/In may be 1.3 in order to form a film up to the thickness of about 1mum. Next, its temperature is raised up to 400 deg.C at a temperature-raising speed of 5 deg.C/min in an N2+H2 mixed gas to be maintained for 30 min followed by introducing Se gas to be reacted for 2h so as to form a CuInSe2 film, thereon a CdS film as an n-layer and an In-doped CdS film are formed in order to form a solar cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アモルファスシリコン
系太陽電池と比較して太陽光スペクトルの長波長領域の
利用度が高いCuInSe2 系多結晶薄膜光起電力装置
に関し、更に詳しくは、特にTiが裏面電極とCuIn
Se2 半導体との界面に緩衝層として組み入れられてい
るセル構造およびその製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CuInSe 2 -based polycrystalline thin film photovoltaic device which has higher utilization in the long wavelength region of the sunlight spectrum than amorphous silicon-based solar cells. Is the back electrode and CuIn
The present invention relates to a cell structure incorporated as a buffer layer at an interface with a Se 2 semiconductor and a method for manufacturing the cell structure.

【0002】[0002]

【従来の技術】従来の技術として、CuInSe2 に代
表される三元化合物半導体をp層とし、CdSに代表さ
れるII−VI 族化合物半導体をn層としてヘテロ接合を
形成する太陽電池は、高効率が得られる可能性が高いこ
とから、近年、その研究、開発が盛んに進められてい
る。
2. Description of the Related Art As a conventional technique, a solar cell in which a heterojunction is formed by using a ternary compound semiconductor represented by CuInSe 2 as a p-layer and a II-VI group compound semiconductor represented by CdS as an n-layer is highly expensive. Since there is a high possibility that efficiency can be obtained, research and development have been actively promoted in recent years.

【0003】この種の薄膜太陽電池の基本構造は、特開
昭57−502196号公報に開示されるようにMo/
CuInSe2 /CdS/CdS:Inであり、効率向
上のためにCuInSe2 、CdSのワイドギャップ化
や、窓層材料としてのZnOの採用等が報告されてい
る。また、裏面電極とCuInSe2 との界面にGa層
を緩衝層として配置する構造(特開平2−94669
号)や、あるいはTeを緩衝層とする構造等も提案され
ている。
The basic structure of this type of thin-film solar cell is Mo / as disclosed in JP-A-57-502196.
It is CuInSe 2 / CdS / CdS: In, and it has been reported that CuInSe 2 and CdS have a wide gap to improve efficiency, and that ZnO is used as a window layer material. Further, a structure in which a Ga layer is arranged as a buffer layer at the interface between the back electrode and CuInSe 2 (Japanese Patent Laid-Open No. 2-94669).
No.), or a structure using Te as a buffer layer has been proposed.

【0004】しかしながらこのような従来技術にあって
は、CuInSe2 と裏面電極の界面での密着性不良に
起因する電池特性の劣化がこの系の太陽電池における最
大の問題とされている。一般的に裏面電極材料としてM
oが採用されているのは導電率という観点からは最適材
料でないものの、入手し易さ、価格、およびCuInS
2 構成元素と比較的反応しにくいといった観点による
ものである。
However, in such a conventional technique, deterioration of battery characteristics due to poor adhesion at the interface between CuInSe 2 and the back electrode is the biggest problem in this type of solar cell. Generally M as the back electrode material
Although o is not the optimum material from the viewpoint of conductivity, it is easy to obtain, price, and CuInS
This is because it is relatively difficult to react with the e 2 constituent element.

【0005】このため密着性改善策として、裏面電極で
あるMoの上にインジウムあるいは鉛を電着して緩衝層
とすることが考えられたが、効果はなかった。また、G
a、Teを界面に積層した後CuInSe2 を形成する
ことで一応の改善は確認されているが、この効果の機構
はまだ不明である。この方法におけるGa、Teの役割
はあくまで単なる緩衝剤であるから、接着機構として機
械的接着が主効果になっていると予想され、従って界面
の凹凸等の表面性状により、接着性が大きく左右される
ことになることがわかった。
Therefore, as a measure for improving the adhesion, it was considered that indium or lead was electrodeposited on Mo as the back electrode to form a buffer layer, but it was not effective. Also, G
Although a temporary improvement has been confirmed by forming CuInSe 2 after laminating a and Te on the interface, the mechanism of this effect is still unknown. Since the roles of Ga and Te in this method are merely buffers, it is expected that mechanical adhesion will be the main effect as an adhesion mechanism, and therefore the adhesiveness is greatly influenced by surface properties such as irregularities at the interface. I knew that would happen.

【0006】上述の従来法においては、次のような欠点
を有していた。 (1) 裏面電極としてMoを使用し、緩衝層を設けない場
合、半導体構成成分であるCu、In、SeとMoとの
間では反応、拡散が期待できないため、密着性は機械的
密着機構に頼らざるを得なかった。この為、環境条件等
が変化すると、部分的な剥離が生じることを避けること
ができなかった。 (2) 緩衝層としてIn、Ga、Teを使用する場合、こ
れら元素とMoとの反応もほとんど期待できないため、
多少の改善は可能となっても機械的密着機構であること
に変りなく、根本的解決には致らなかった。 (3)また、In、Ga、Teはカルコパイライト構造を
有する三元化合物の一成分として知られており、GuI
nSe2 に固溶して混晶化合物になることが考えられ
る。この場合、混晶を形成すると半導体として最も重要
とされる組成変動に起因する特性変化を生じる可能性が
高くなるため、CuInSe2 形成の再現性が劣ってい
た。
The above-mentioned conventional method has the following drawbacks. (1) When Mo is used as the back electrode and a buffer layer is not provided, reaction and diffusion cannot be expected between Cu and In, which are semiconductor constituents, and Mo, and therefore adhesion is a mechanical adhesion mechanism. I had to rely on it. Therefore, it is unavoidable that partial peeling occurs when environmental conditions and the like change. (2) When In, Ga, and Te are used as the buffer layer, the reaction between these elements and Mo can hardly be expected.
Even if some improvement was possible, it was still a mechanical contact mechanism, and it was not a fundamental solution. (3) In, Ga, and Te are known as one component of a ternary compound having a chalcopyrite structure, and GuI
It can be considered that it forms a mixed solution with nSe 2 as a solid solution. In this case, when a mixed crystal is formed, there is a high possibility that a characteristic change due to a compositional change, which is the most important as a semiconductor, will occur, and thus the reproducibility of CuInSe 2 formation is poor.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑み、半導体の組成に影響をおよぼさずに裏面電極と
の密着性が良好で、且つ再現性に優れたCuInSe2
系化合物半導体薄膜太陽電池のセル構造とその製造方法
の提供を目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides CuInSe 2 which has good adhesion to the back electrode without affecting the composition of the semiconductor and is excellent in reproducibility.
An object of the present invention is to provide a cell structure of a compound semiconductor thin film solar cell and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】本発明者らは斯かる課題
を解決するために鋭意研究したところ、裏面電極である
MoあるいはWとCuInSe2 との界面にTiを緩衝
層として使用すると、半導体形成時の熱処理に際してT
iがMoおよび半導体構成元素であるCuと拡散、反応
することによって、化学的密着機構が可能となり再現性
よく高品質な三元半導体薄膜が得られることを見出し、
本発明を提供することができた。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve such problems and found that when Ti is used as a buffer layer at the interface between Mo or W and CuInSe 2 which are back electrodes T during heat treatment during formation
It has been found that by diffusing and reacting i with Mo and Cu which is a semiconductor constituent element, a chemical adhesion mechanism becomes possible and a high quality reproducible ternary semiconductor thin film can be obtained,
The present invention can be provided.

【0009】すなわち本発明は、カルコパイライト型結
晶構造を有するCuInSe2 多結晶半導体薄膜とCd
S、CdZnS等のII−VI 族系半導体とによって形成
される太陽電池において、裏面電極とCuInSe2
の間にTiからなる緩衝層を設けたことを特徴とする太
陽電池であり、他の発明は、基板上にTiを予め積層せ
しめた後、Cu、Inを該層上に成膜し、次いでこれら
を不活性あるいは還元性雰囲気において300〜600
℃に加熱した後、セレン化反応を行い、得られたCuI
nSe2 層上にn層と窓層とを設けて太陽電池となすこ
とを特徴とするCuInSe2 系薄膜太陽電池の製法に
関するものである。
That is, the present invention relates to a CuInSe 2 polycrystalline semiconductor thin film having a chalcopyrite type crystal structure and Cd.
S, in a solar cell formed by the group II-VI based semiconductor such CdZnS, a solar cell characterized in that a buffer layer of Ti between the back electrode and the CuInSe 2, another aspect of the present invention Is prepared by preliminarily depositing Ti on the substrate, depositing Cu and In on the layer, and then depositing these in an inert or reducing atmosphere at 300 to 600.
After heating to ℃, selenization reaction was performed to obtain CuI
The present invention relates to a method for producing a CuInSe 2 -based thin film solar cell, which comprises forming an n layer and a window layer on an nSe 2 layer to form a solar cell.

【0010】[0010]

【作用】本発明では、ガラス上にスパッタ法または蒸着
法でMoあるいはWの薄膜を形成した基板や、Mo、W
の薄板を基板として使用し、この上にTiを0.05〜
2μmとなるように積層する。この場合、Ti積層法と
しては、スパッタ法や蒸着法等可能な方法であればいか
なる方法でもよく、このようにして形成された基板上に
Cu、Inを化学量論組成よりもCuリッチとなるよう
に積層する。Cu、Inの積層方法は、蒸着法や電着法
等いずれの方法でもよく、また、単なる積層でも合金と
しての成膜でもよい。
In the present invention, a substrate having a thin film of Mo or W formed on glass by a sputtering method or a vapor deposition method, or Mo, W
Of the thin plate of
It is laminated so that the thickness becomes 2 μm. In this case, the Ti stacking method may be any method as long as it is a sputtering method, a vapor deposition method, or the like, and Cu and In on the substrate thus formed become richer than Cu in the stoichiometric composition. So that it is laminated. The method of laminating Cu and In may be any method such as vapor deposition or electrodeposition, and may be simple layering or film formation as an alloy.

【0011】次に、このようにして成膜したCu−In
膜を不活性雰囲気あるいは還元性雰囲気下において30
0〜600℃に加熱する。このような予備加熱を実施す
るのは、量論比以上に存在するCuとTiとを反応させ
て反応生成物を形成させるためである。この場合、30
0℃以下では反応生成物を形成できず、600℃以上に
加熱すると過剰に反応してCuInSe2 を形成するた
めのCuが不足することになる。反応生成物の量は、温
度によって一義的に決まり、加熱時間30分以上ではほ
ぼ飽和してくるため、反応温度を定めるとCuとTiと
の反応量の予測が可能になり、どの程度Cuを過剰にす
ればよいかを決定できる。Tiの膜厚としては、2μm
以上にしても特に問題がないが、その分だけCuを過剰
に積層することとなり経済的でなくなる。
Next, the Cu-In thus formed is formed.
The film is placed in an inert or reducing atmosphere for 30
Heat to 0-600 ° C. The reason why such preheating is carried out is to react Cu and Ti existing in a stoichiometric ratio or more to form a reaction product. In this case, 30
A reaction product cannot be formed at 0 ° C or lower, and when heated to 600 ° C or higher, Cu reacts excessively and Cu for forming CuInSe 2 becomes insufficient. The amount of the reaction product is uniquely determined by the temperature and becomes almost saturated when the heating time is 30 minutes or more. Therefore, when the reaction temperature is set, it is possible to predict the reaction amount of Cu and Ti. You can decide if you want to overdo it. The film thickness of Ti is 2 μm
Although there is no particular problem even if the above is adopted, Cu is excessively laminated by that amount, which is not economical.

【0012】その後、ガス状態のセレンを導入してセレ
ン化反応を行なうが、最終的に生成されたCuInSe
2 は、量論組成近くになっており、過剰のCuは基板と
半導体層の界面において、Ti−Cu合金あるいはTi
−Cu−Se合金となり、この両方と化学的に反応して
密着性を向上させる役目を果たすことになる。
After that, selenium in a gas state is introduced to perform a selenization reaction, but CuInSe finally produced is formed.
2 is close to the stoichiometric composition, and excessive Cu is a Ti--Cu alloy or Ti at the interface between the substrate and the semiconductor layer.
It becomes a -Cu-Se alloy, and chemically reacts with both of them to improve the adhesion.

【0013】本発明において使用する基板の材質として
は、Tiと反応するが半導体構成成分であるCu、I
n、Seとは反応しないことが要求される。これは、基
板とこれらの成分とが反応すると最も重要な組成制御が
困難になるからであ。この目的にかなう材質としてMo
あるいはWがあり、これらはTiとは反応して合金化す
るが、その他の構成元素、特にCu、Inとは合金を形
成しないという特質を有する。
The material of the substrate used in the present invention is Cu or I, which reacts with Ti but is a semiconductor constituent.
It is required not to react with n and Se. This is because the most important composition control becomes difficult when the substrate reacts with these components. As a material that meets this purpose, Mo
Alternatively, there is W, which has a characteristic that it reacts with Ti to form an alloy, but does not form an alloy with other constituent elements, particularly Cu and In.

【0014】CuInSe2 の形成方法としては、三元
同時蒸着が考えられる。この方法においては、基板を加
熱した状態でCuだけを最初に蒸着した後、同時蒸着を
実施することで本法の構成も可能であるがSeを固相状
態とする固相セレン化法では、Ti−Cuの反応よりも
Cu−Seの反応が優先されるために形成されるCuI
nSe2 組成がCuリッチとなるし、あるいはCu
e等の異相が存在して半導体としての特性が劣ることに
なる。
As a method of forming CuInSe 2 , ternary simultaneous vapor deposition can be considered. In this method, the structure of the present method is also possible by first vapor-depositing only Cu while heating the substrate and then performing simultaneous vapor deposition, but in the solid-phase selenization method in which Se is in the solid-phase state, CuI formed because the reaction of Cu-Se is prioritized over the reaction of Ti-Cu
nSe 2 composition becomes Cu rich, or Cu x S
Due to the presence of a heterogeneous phase such as e, the characteristics as a semiconductor are deteriorated.

【0015】最後に、上述の手段で製造したCuInS
2 の上に、n層としてCdSを、窓層としてInをド
ープしたCdSを形成するが、この形成法は蒸着等の一
般的な成膜法であれば特に制限はない。また、n層はC
dSだけでなくII−VI族系化合物であればよく、窓層も
II−VI族系化合物にドープして低抵抗にしたものやZn
O等でもよい。このようにして形成したCuInSe2
系太陽電池は、基板との剥離が存在しないため、本発明
法では再現性が向上した。
Finally, CuInS produced by the above-mentioned means
CdS is formed as an n layer and In-doped CdS is formed as a window layer on e 2 , but this forming method is not particularly limited as long as it is a general film forming method such as vapor deposition. The n layer is C
Not only dS, but any II-VI group compound, including window layers
II-VI group compound doped with low resistance or Zn
It may be O or the like. CuInSe 2 formed in this way
Since the system solar cell does not peel from the substrate, the reproducibility is improved by the method of the present invention.

【0016】以下、実施例により詳細に説明するが、本
発明はこれらにより制限されるものではない。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

【0017】[0017]

【実施例1】Mo板を基板として用い、該基板上にスパ
ッタ法にてTiを1μm積層した。更に、CuとInを
電着法にてCu/Inのモル比が1.3となるように積
層したところ、膜厚は約1μmであった。次いで、これ
を反応管内に設置しN2 +H2 混合ガスを500cc/
分で導入しながら、5℃/分の速度で400℃まで昇温
した。この温度で30分間保持した後、Seガスを導入
し、2時間保持した。その後、Seガスの導入を停止
し、反応管内に残留するSeあるいは過剰に付着するS
eを除去するために、1時間同じ温度に保持した後、室
温まで冷却した。
Example 1 Using a Mo plate as a substrate, Ti was laminated on the substrate by 1 μm by a sputtering method. Furthermore, when Cu and In were laminated by an electrodeposition method so that the Cu / In molar ratio was 1.3, the film thickness was about 1 μm. Then, this was installed in a reaction tube and a mixed gas of N 2 + H 2 was added at 500 cc /
The temperature was raised to 400 ° C. at a rate of 5 ° C./minute while being introduced in minutes. After holding at this temperature for 30 minutes, Se gas was introduced and kept for 2 hours. After that, the introduction of Se gas is stopped, and Se remaining in the reaction tube or S excessively adhered
In order to remove e, it was kept at the same temperature for 1 hour and then cooled to room temperature.

【0018】得られた膜の構造をXRDにて解析する
と、CuInSe2 の他に若干のTi−Se系化合物が
存在していたが、EDX法による組成分析では、Cu/
In/Se=24/26/50(at%)でほぼ化学量
論比になっていた。次いで、該CuInSe2 膜上に、
n層としてCdS、窓層としてInをドープしたCdS
を積層して太陽電池を構成し、特性を測定したところ開
放電圧Vocは300mV、短絡電流密度Jscは、4
0mA/cm2 、曲線因子FFは0.48であった。こ
のセルは、室温、大気中保存で、1週間放置しても膜の
剥離がなく、電池特性の劣化も認められなかった。
When the structure of the obtained film was analyzed by XRD, some Ti--Se compounds were present in addition to CuInSe 2 , but in the composition analysis by the EDX method, Cu /
In / Se = 24/26/50 (at%), which was almost stoichiometric. Then, on the CuInSe 2 film,
CdS as n-layer and CdS doped with In as window layer
Were laminated to form a solar cell, and the characteristics were measured. The open-circuit voltage Voc was 300 mV and the short-circuit current density Jsc was 4
The fill factor FF was 0 mA / cm 2 and 0.48. The cell was stored at room temperature in the air, and the film was not peeled off even after being left for 1 week, and deterioration of battery characteristics was not observed.

【0019】[0019]

【実施例2】積層時のCu/Inモル比を1.6とした
以外は、実施例1と同様に処理したところ、得られた膜
の組成は、EDX法によるとCu/In/Se=30/
18/52で化学量論比よりもCuリッチになってい
た。また、XRDによる構造解析では、CuInSe2
以外にCuxSeの結晶を含んだ異相の混在する状態で
あり、Ti−Se化合物も存在していた。次いでセルを
構成し、電池特性を調べたが、光応答性は認められなか
った。また、膜の剥離も認められなかった。
Example 2 The same process as in Example 1 was carried out except that the Cu / In molar ratio at the time of lamination was set to 1.6. The composition of the obtained film was Cu / In / Se = 30 /
At 18/52, Cu was richer than the stoichiometric ratio. Also, in the structural analysis by XRD, CuInSe 2
In addition to this, a heterogeneous phase containing CuxSe crystals was present in a mixed state, and a Ti-Se compound was also present. Next, a cell was constructed and the battery characteristics were examined, but no photoresponsiveness was observed. No peeling of the film was observed.

【0020】[0020]

【比較例1】セレン化温度を650℃とした以外は実施
例1と同様に処理したところ、得られた膜の組成はCu
/In/Se=14/27/59で化学量論比から大き
く変動していた。またXRDの結果を見ると、CuIn
Se2 以外にCu−Ti−Se系化合物が存在してお
り、この場合、膜の剥離はなかったが、光応答もほとん
どなく太陽電池のセルとしては使用できないものであっ
た。
[Comparative Example 1] The same treatment as in Example 1 was conducted except that the selenization temperature was 650 ° C. The composition of the obtained film was Cu.
/ In / Se = 14/27/59, which was greatly changed from the stoichiometric ratio. Also, looking at the XRD results, CuIn
Se 2 except there exists a Cu-Ti-Se-based compound, in this case, there was no peeling of the film, the optical response was also can not be used as a cell of little solar cell.

【0021】[0021]

【比較例2】セレン化温度を250℃とした以外は実施
例1と同様に処理したところ、得られた膜の組成はCu
/In/Se=28/22/50となっており、化学量
論からCuリッチ側に大きくずれていた。またXRDの
結果を見ると、結晶構造はCuInSe2 とCuxSe
であり、Cu−TiあるいはTi−Cu−Se系化合物
は存在しなかった。この場合、セルを構成しても光応答
を示さなく、また、膜の表面は、剥離に起因すると考え
られる膨れが観察された。
[Comparative Example 2] The same treatment as in Example 1 was carried out except that the selenization temperature was 250 ° C. The composition of the obtained film was Cu.
/ In / Se = 28/22/50, which was greatly deviated from the stoichiometry to the Cu-rich side. Also, looking at the results of XRD, the crystal structures are CuInSe 2 and CuxSe.
And no Cu-Ti or Ti-Cu-Se based compound was present. In this case, no optical response was exhibited even when the cell was constructed, and the surface of the film was observed to be swollen, which is considered to be caused by peeling.

【0022】[0022]

【比較例3】実施例1と同様の基板上に、CuとInと
を蒸着法で積層した。これらの組成は量論組成とし、こ
の上にさらにSeを量論組成の2倍として積層し、固相
セレン化を実施した。この時のセレン化反応は、温度4
00℃で行い、時間は2時間であった。
Comparative Example 3 Cu and In were laminated on the same substrate as in Example 1 by the vapor deposition method. These compositions were stoichiometric compositions, and Se was doubled on the stoichiometric compositions to perform solid phase selenization. At this time, the selenization reaction takes place at a temperature of 4
It was carried out at 00 ° C. and the time was 2 hours.

【0023】得られた膜の組成はCu/In/Se=2
4/26/50であり、ほぼ化学量論値であった。その
構造はCuInSe2 単独で、Cu−TiあるいはTi
−Se系化合物は存在しなかった。次いで、セル構成
後、特性を調べるとVoc=200mV、Jsc=25
mA/cm2 、FF=0.33であったが、一週間放置
すると剥離に起因する膨れが見られJscが13mA/
cm2 まで低下してしていた。
The composition of the obtained film was Cu / In / Se = 2.
It was 4/26/50, which was almost a stoichiometric value. The structure is CuInSe 2 alone, Cu-Ti or Ti
No -Se-based compound was present. Next, after the cell configuration, when the characteristics are examined, Voc = 200 mV, Jsc = 25
It was mA / cm 2 and FF = 0.33, but when left for one week, swelling due to peeling was observed and Jsc was 13 mA /
It had dropped to cm 2 .

【0024】[0024]

【比較例4】Tiを積層していないMoの薄板を基板と
した以外は、実施例1と同様に処理し、CuとInとの
モル比は0.9とした。得られた膜の組成はCu/In
/Se=24/25/51であり、結晶構造もCuIn
Se2 単独であった。次いで、セル構成後、特性を調べ
たところVoc=280mV、Jsc=35mA/cm
2 、FF=0.45であったが、室温で一週間放置した
後測定したところJscが20mA/cm2 で劣化する
と共に剥離に起因する膨れが観察された。
[Comparative Example 4] The same treatment as in Example 1 was carried out except that a substrate of a Mo thin plate on which Ti was not laminated was used, and the molar ratio of Cu to In was set to 0.9. The composition of the obtained film was Cu / In
/ Se = 24/25/51 and the crystal structure is CuIn
It was Se 2 alone. Then, after the cell structure, the characteristics were examined to find that Voc = 280 mV and Jsc = 35 mA / cm.
2 , FF = 0.45, but when measured after standing for 1 week at room temperature, Jsc deteriorated at 20 mA / cm 2 and swelling due to peeling was observed.

【0025】[0025]

【発明の効果】上述のように本発明は、CuInSe2
系太陽電池の構成において基板とCuInSe2 系膜と
の間にTiを緩衝層として形成することによって、化学
的接合が可能となり、膜の剥離がなくなり、密着性に優
れた経時変化のない太陽電池の形成を可能とした。
As described above, according to the present invention, CuInSe 2
By forming Ti as a buffer layer between the substrate and the CuInSe 2 -based film in the structure of the solar cell, the chemical bonding is possible, the peeling of the film is eliminated, and the solar cell is excellent in adhesion and does not change over time. It was possible to form

───────────────────────────────────────────────────── フロントページの続き (72)発明者 光根 裕 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yutaka Mitsune 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カルコパイライト型結晶構造を有するC
uInSe2 多結晶半導体薄膜とCdS、CdZnS等
のII−VI族系半導体とによって形成される太陽電池にお
いて、裏面電極とCuInSe2 との間にTiからなる
緩衝層を設けたことを特徴とする薄膜太陽電池。
1. C having a chalcopyrite type crystal structure
In a solar cell formed by a uInSe 2 polycrystalline semiconductor thin film and a II-VI group semiconductor such as CdS or CdZnS, a thin film characterized in that a buffer layer made of Ti is provided between a back electrode and CuInSe 2. Solar cells.
【請求項2】 基板上にTiを予め積層せしめた後、C
u、Inを該層上に成膜し、次いでこれらを不活性ある
いは還元性雰囲気下において300〜600℃に加熱し
た後、セレン化反応を行い、得られたCuInSe2
上に、n層と窓層とを設けて太陽電池となすことを特徴
とするCuInSe2 系薄膜太陽電池の製法。
2. A method in which Ti is preliminarily laminated on a substrate and then C
After forming u and In on the layer, and then heating these to 300 to 600 ° C. under an inert or reducing atmosphere, selenization reaction is performed to form an n layer on the obtained CuInSe 2 layer. A method of manufacturing a CuInSe 2 -based thin film solar cell, which comprises forming a window layer to form a solar cell.
JP4139893A 1992-05-01 1992-05-01 Cuinse2 group thin film solar cell and manufacture thereof Pending JPH05315633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4139893A JPH05315633A (en) 1992-05-01 1992-05-01 Cuinse2 group thin film solar cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4139893A JPH05315633A (en) 1992-05-01 1992-05-01 Cuinse2 group thin film solar cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05315633A true JPH05315633A (en) 1993-11-26

Family

ID=15256067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4139893A Pending JPH05315633A (en) 1992-05-01 1992-05-01 Cuinse2 group thin film solar cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05315633A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009441A1 (en) * 1993-09-30 1995-04-06 Siemens Aktiengesellschaft Solar cell with a chalcopyrite absorber layer
JP2003282908A (en) * 2002-03-25 2003-10-03 Honda Motor Co Ltd Method and device for manufacturing light absorbing layer
JP2007527121A (en) * 2004-03-05 2007-09-20 ソリブロ アーベー Method and apparatus for in-line process control of CIGS process
WO2009041657A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041660A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041659A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
CN102054899A (en) * 2010-06-21 2011-05-11 中国科学技术大学 Method for preparing CuInSe2 film as solar battery absorbing layer
CN102270700A (en) * 2011-07-20 2011-12-07 中国科学技术大学 Method for preparing CuInSe2 film for solar cells
EP2369634A3 (en) * 2001-01-31 2014-09-24 Saint-Gobain Glass France Transparent substrate equipped with an electrode
CN110098058A (en) * 2019-05-06 2019-08-06 吉林大学 One kind being based on CuTi2S4The Ti/Cu that template is prepared in situ2-xSe is to electrode, preparation method and applications

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009441A1 (en) * 1993-09-30 1995-04-06 Siemens Aktiengesellschaft Solar cell with a chalcopyrite absorber layer
US5676766A (en) * 1993-09-30 1997-10-14 Siemens Aktiengesellschaft Solar cell having a chalcopyrite absorber layer
EP2369634A3 (en) * 2001-01-31 2014-09-24 Saint-Gobain Glass France Transparent substrate equipped with an electrode
JP2003282908A (en) * 2002-03-25 2003-10-03 Honda Motor Co Ltd Method and device for manufacturing light absorbing layer
JP2007527121A (en) * 2004-03-05 2007-09-20 ソリブロ アーベー Method and apparatus for in-line process control of CIGS process
WO2009041657A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041660A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Substrate for solar cell and solar cell
WO2009041659A1 (en) 2007-09-28 2009-04-02 Fujifilm Corporation Solar cell
CN102054899A (en) * 2010-06-21 2011-05-11 中国科学技术大学 Method for preparing CuInSe2 film as solar battery absorbing layer
CN102270700A (en) * 2011-07-20 2011-12-07 中国科学技术大学 Method for preparing CuInSe2 film for solar cells
CN110098058A (en) * 2019-05-06 2019-08-06 吉林大学 One kind being based on CuTi2S4The Ti/Cu that template is prepared in situ2-xSe is to electrode, preparation method and applications

Similar Documents

Publication Publication Date Title
US5676766A (en) Solar cell having a chalcopyrite absorber layer
JP3249408B2 (en) Method and apparatus for manufacturing thin film light absorbing layer of thin film solar cell
US5626688A (en) Solar cell with chalcopyrite absorber layer
Goetzberger et al. Photovoltaic materials, history, status and outlook
US6534704B2 (en) Solar cell
Yousfi et al. Cadmium-free buffer layers deposited by atomic later epitaxy for copper indium diselenide solar cells
US4612411A (en) Thin film solar cell with ZnO window layer
US8673678B2 (en) Process of making a thin-film photovoltaic device and thin-film photovoltaic device
US8415559B2 (en) Method for forming copper indium gallium chalcogenide layer with shaped gallium profile
US9087954B2 (en) Method for producing the pentanary compound semiconductor CZTSSe, and thin-film solar cell
US20060219288A1 (en) Process and photovoltaic device using an akali-containing layer
US20070093006A1 (en) Technique For Preparing Precursor Films And Compound Layers For Thin Film Solar Cell Fabrication And Apparatus Corresponding Thereto
US8252621B2 (en) Method for forming copper indium gallium chalcogenide layer with optimized gallium content at its surface
EP2201605A2 (en) Photovoltaic devices including an interfacial layer
JP2922466B2 (en) Thin film solar cell
JP2922465B2 (en) Manufacturing method of thin film solar cell
JPH05315633A (en) Cuinse2 group thin film solar cell and manufacture thereof
JPH07122762A (en) Thin film photovoltaic device
JPH10135501A (en) Semiconductor device, its manufacture and solar cell
JPH11177112A (en) Photovoltaic device and its manufacture
JP3408618B2 (en) Solar cell manufacturing method
JPH0555615A (en) Manufacture of thin film solar battery
JP2003008039A (en) Method for manufacturing compound solar battery
JP2831200B2 (en) Manufacturing method of thin film solar cell
JPH0563224A (en) Manufactureof thin-film solar battery